Resilient Coastal Protection Infrastructures: Probabilistic Sensitivity Analysis of Wave Overtopping Using Gaussian Process Surrogate Models
Abstract
:1. Introduction
2. Wave Overtopping Processes
3. Database
4. Method
4.1. Probabilistic Sensitivity Analysis
4.1.1. Function Decomposition for Main Effects and Interactions
4.1.2. Variance-Based Methods
4.2. Emulator-Based Sensitivity Analysis
4.2.1. Gaussian Process Emulators
4.2.2. Analysis of Main Effects and Interactions
5. Results
5.1. Data Preparation and Initial Examination of the CLASH Dataset
- Database cleaning and the selection of a highly reliable subset.
- Perform an exploratory analysis of the subset.
- Fit a Gaussian process regression model for the selected subset of the dataset.
- Compute the SA measures, including the variance-based indexes and the main effects.
- Illustrate the corresponding SA plots.
- Interpret the SA results, perform an uncertainty analysis, and draw conclusions about the most influencing input parameters affecting the wave overtopping.
5.2. GP-Based Sensitivity Analysis for the Wave Overtopping Dataset
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations. Fact Sheet: People and Oceans. 2007. Available online: https://sustainabledevelopment.un.org/content/documents/Ocean_Factsheet_People.pdf (accessed on 4 September 2024).
- Lee, J.Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C.; Jones, C.; et al. Future global climate: Scenario-based projections and near-term information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; pp. 553–672. [Google Scholar]
- Fanous, M.; Eden, J.M.; Remesan, R.; Daneshkhah, A. Challenges and prospects of climate change impact assessment on mangrove environments through mathematical models. Environ. Model. Softw. 2023, 162, 105658. [Google Scholar] [CrossRef]
- United Nations. The Climate Crisis—A Race We Can Win. 2020. Available online: https://www.un.org/en/un75/climate-crisis-race-we-can-win (accessed on 4 September 2024).
- Jevrejeva, S.; Jackson, L.; Grinsted, A.; Lincke, D.; Marzeion, B. Flood damage costs under the sea level rise with warming of 1.5 °C and 2 °C. Environ. Res. Lett. 2018, 13, 074014. [Google Scholar] [CrossRef]
- Donnelly, J.; Abolfathi, S.; Daneshkhah, A. A physics-informed neural network surrogate model for tidal simulations. In Proceedings of the 5th ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Science and Engineering, Athens, Greece, 12–14 June 2023; pp. 836–844. [Google Scholar]
- Liu, N.; Salauddin, M.; Yeganeh-Bakhtiari, A.; Pearson, J.; Abolfathi, S. The impact of eco-retrofitting on coastal resilience enhancement—A physical modelling study. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Mohali, India, 23–24 June 2022; IOP Publishing: Bristol, UK, 2022; Volume 1072, p. 012005. [Google Scholar]
- Gallien, T.; Sanders, B.; Flick, R. Urban coastal flood prediction: Integrating wave overtopping, flood defenses and drainage. Coast. Eng. 2014, 91, 18–28. [Google Scholar] [CrossRef]
- Xie, D.; Zou, Q.P.; Mignone, A.; MacRae, J.D. Coastal flooding from wave overtopping and sea level rise adaptation in the northeastern USA. Coast. Eng. 2019, 150, 39–58. [Google Scholar] [CrossRef]
- Lynett, P.J.; Melby, J.A.; Kim, D.H. An application of Boussinesq modelling to hurricane wave overtopping and inundation. Ocean Eng. 2010, 37, 135–153. [Google Scholar] [CrossRef]
- Gallien, T. Validated coastal flood modelling at Imperial Beach, California: Comparing total water level, empirical and numerical overtopping methodologies. Coast. Eng. 2016, 111, 95–104. [Google Scholar] [CrossRef]
- Abolfathi, S.; Pearson, J. Numerical Modelling of Wave Runup & Overtopping under Influence of Complex Geometries. Coast. Eng. Proc. 2018, 1, 44. [Google Scholar]
- Torabbeigi, M.; Akbari, H.; Adibzade, M.; Abolfathi, S. modelling wave dynamics with coastal vegetation using a smoothed particle hydrodynamics porous flow model. Ocean Eng. 2024, 311, 118756. [Google Scholar] [CrossRef]
- Pillai, K.; Etemad-Shahidi, A.; Lemckert, C. Wave overtopping at berm breakwaters: Experimental study and development of prediction formula. Coast. Eng. 2017, 130, 85–102. [Google Scholar] [CrossRef]
- De Chowdhury, S.; Anand, K.; Sannasiraj, S.; Sundar, V. Nonlinear wave interaction with curved front seawalls. Ocean Eng. 2017, 140, 84–96. [Google Scholar] [CrossRef]
- Salauddin, M.; Pearson, J. Wave overtopping and toe scouring at a plain vertical seawall with shingle foreshore: A physical model study. Ocean Eng. 2019, 171, 286–299. [Google Scholar] [CrossRef]
- Battjes, J.A. Surf similarity. In Coastal Engineering 1974; American Society of Civil Engineers: Reston, VA, USA, 1974; pp. 466–480. [Google Scholar]
- Besley, P.; Stewart, T.; Allsop, N. Overtopping of vertical structures: New prediction methods to account for shallow water conditions. In Proceedings of the Coastlines, Structures and Breakwaters, London, UK, 19–20 March 1998; pp. 46–57. [Google Scholar]
- Goda, Y. Derivation of unified wave overtopping formulas for seawalls with smooth, impermeable surfaces based on selected CLASH datasets. Coast. Eng. 2009, 56, 385–399. [Google Scholar] [CrossRef]
- Van der Meer, J.; Sigurdarson, S. Geometrical design of berm breakwaters. Coast. Eng. Proc. 2014, 1, 25. [Google Scholar] [CrossRef]
- Sigurdarson, S.; Van der Meer, J. Design and Construction of Berm Breakwaters; World Scientific: Singapore, 2016; Volume 40. [Google Scholar]
- Allsop, W.; Bruce, T.; Pearson, J.; Besley, P. Wave overtopping at vertical and steep seawalls. In Proceedings of the Institution of Civil Engineers-Maritime Engineering; Thomas Telford Ltd.: London, UK, 2005; Volume 158, pp. 103–114. [Google Scholar]
- Pullen, T.; Allsop, N.; Pearson, J.; Bruce, T. Violent wave overtopping discharges and the safe use of seawalls. In Proceedings of the Defra Flood & Coastal Management Conference, York, UK, 29 June–1 July 2004; Flood Management Division, Department for Environment Food and Rural Affairs: London, UK, 2004. [Google Scholar]
- van der Meer, J.W.; Verhaeghe, H.; Steendam, G.J. The new wave overtopping database for coastal structures. Coast. Eng. 2009, 56, 108–120. [Google Scholar] [CrossRef]
- De Rouck, J.; Van der Meer, J.; Allsop, N.; Franco, L.; Verhaeghe, H. Wave overtopping at coastal structures: Development of a database towards up-graded prediction methods. In Coastal Engineering 2002: Solving Coastal Conundrums; World Scientific: Singapore, 2003; pp. 2140–2152. [Google Scholar]
- Van der Meer, J. Technical Report Wave Run-Up and Wave Overtopping at Dikes. TAW Report (Incorporated in the EurOtop Manual). 2002. Available online: http://www.overtopping-manual.com/assets/downloads/TRRunupOvertopping.pdf (accessed on 31 May 2002).
- Van der Meer, J.; Allsop, N.; Bruce, T.; De Rouck, J.; Kortenhaus, A.; Pullen, T.; Schüttrumpf, H.; Troch, P.; Zanuttigh, B. Manual on Wave Overtopping of Sea Defences and Related Structures: An Overtopping Manual Largely Based on European Research, But for Worldwide Application; EurOtop: London, UK, 2016; p. 264. [Google Scholar]
- Steendam, G.J.; Van Der Meer, J.W.; Verhaeghe, H.; Besley, P.; Franco, L.; Van Gent, M.R. The international database on wave overtopping. In Coastal Engineering 2004: (In 4 Volumes); World Scientific: Singapore, 2005; pp. 4301–4313. [Google Scholar]
- Sobol, I.M. Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1993, 1, 407–414. [Google Scholar]
- Saltelli, A.; Tarantola, S.; Chan, K.S. A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 1999, 41, 39–56. [Google Scholar] [CrossRef]
- Sudret, B. Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 2008, 93, 964–979. [Google Scholar] [CrossRef]
- Oakley, J.E.; O’Hagan, A. Probabilistic sensitivity analysis of complex models: A Bayesian approach. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2004, 66, 751–769. [Google Scholar] [CrossRef]
- Daneshkhah, A.; Bedford, T. Probabilistic sensitivity analysis of system availability using Gaussian processes. Reliab. Eng. Syst. Saf. 2013, 112, 82–93. [Google Scholar] [CrossRef]
- Homma, T.; Saltelli, A. Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 1996, 52, 1–17. [Google Scholar] [CrossRef]
- Sacks, J.; Welch, W.J.; Mitchell, T.J.; Wynn, H.P. Design and analysis of computer experiments. Stat. Sci. 1989, 4, 409–435. [Google Scholar] [CrossRef]
- Kennedy, M.C.; O’Hagan, A. Bayesian calibration of computer models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2001, 63, 425–464. [Google Scholar] [CrossRef]
- O’Hagan, A.; Bernardo, J.M.; Berger, J.O.; Dawid, A.P. Uncertainty Analysis and other Inference Tools for Complex Computer Codes; Smith, A.F.M., Dyy, M.C., Oakley, J.E., Eds.; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Erdik, T.; Savci, M.; Şen, Z. Artificial neural networks for predicting maximum wave runup on rubble mound structures. Expert Syst. Appl. 2009, 36, 6403–6408. [Google Scholar] [CrossRef]
- van Gent, M.R.; van den Boogaard, H.F.; Pozueta, B.; Medina, J.R. Neural network modelling of wave overtopping at coastal structures. Coast. Eng. 2007, 54, 586–593. [Google Scholar] [CrossRef]
- Taddy, M.A.; Lee, H.K.; Gray, G.A.; Griffin, J.D. Bayesian guided pattern search for robust local optimization. Technometrics 2009, 51, 389–401. [Google Scholar] [CrossRef]
- Pianosi, F.; Beven, K.; Freer, J.; Hall, J.W.; Rougier, J.; Stephenson, D.B.; Wagener, T. Sensitivity analysis of environmental models: A systematic review with practical workflow. Environ. Model. Softw. 2016, 79, 214–232. [Google Scholar] [CrossRef]
- Kennedy, M.; Petropoulos, G. GEM-SA: The Gaussian Emulation Machine for Sensitivity Analysis. In Sensitivity Analysis in Earth Observation Modelling; Elsevier: Amsterdam, The Netherlands, 2017; pp. 341–361. [Google Scholar]
- Quinonero-Candela, J.; Rasmussen, C.E. A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res. 2005, 6, 1939–1959. [Google Scholar]
Parameter | Range | Parameter | Range | Description |
Structural parameters | Hydrodynamic parameters | |||
(0, 100) | (0.003, 5.920) | |||
(6, 1000) | [0.545, 15] | |||
(0.029, 9.32) | (0.454, 12.5) | = | ||
(0.025, 7.78) | (0.495, 13.636) | = | ||
(0, 10) | (0, 80) | |||
(0.35, 1) | (0.003, 3.8) | =4 | ||
(0, 7) | (0.545, 16.4) | |||
(−5, 9.706) | (0.454, 11.881) | |||
(−1.533, 8.144) | (0.495, 10.64) | |||
(−1.533, 12.821) | (0, ) | |||
(0, 8.345) | (0, 81) | |||
(0, 8) | ||||
(−0.208, 1.175) | General parameters | |||
(0, 0.125) | (1, 4) | |||
(0, 8) | (1, 4) | |||
(0, 7.87) | ||||
(0, 5.6) |
Parameters | Variance (%) | Total Effect |
---|---|---|
Signif wave height () | 10.93 | 11.22 |
Peak period in the deep () | 5.53 | 5.83 |
Mean period m2/m0, deep () | 0.79 | 0.89 |
Mean period, deep () | 7.63 | 7.77 |
Off-shore Water depth, () | 1.93 | 2.04 |
Slope of foreshore (m) | 1.28 | 1.38 |
Angle of wave attack () | 0.85 | 0.96 |
Water depth at toe (h) | 1.59 | 1.69 |
Signif wave height at toe () | 8.11 | 8.22 |
Peak period, toe () | 15.75 | 15.86 |
Mean wave period, toe () | 8.48 | 8.59 |
Spectral wave period at toe () | 4.06 | 4.17 |
Water depth on toe () | 1.27 | 1.40 |
Toe width () | 0.95 | 1.06 |
Roughness/perm factor () | 0.06 | 0.17 |
Cot downward slope, berm () | 4.01 | 4.30 |
Cot upward slope, berm () | 0.65 | 0.68 |
Cot slope, excl berm () | 16.91 | 17.02 |
Cot slope, incl berm () | 1.07 | 1.37 |
Crest freeboard () | 0.74 | 1.04 |
Width of berm (B) | 2.15 | 2.22 |
Water depth on berm () | 2.51 | 2.65 |
tan of slope of berm () | 0.32 | 0.43 |
Width of horizontally schematised berm () | 1.50 | 1.62 |
Width of crest () | 0.39 | 0.50 |
Armour crest freeboard () | 0.20 | 0.31 |
Total variance (%) | 99.64 | |
Estimated mean output | 0.00779018 | |
Estimated variance output |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kent, P.; Abolfathi, S.; Al Ali, H.; Sedighi, T.; Chatrabgoun, O.; Daneshkhah, A. Resilient Coastal Protection Infrastructures: Probabilistic Sensitivity Analysis of Wave Overtopping Using Gaussian Process Surrogate Models. Sustainability 2024, 16, 9110. https://doi.org/10.3390/su16209110
Kent P, Abolfathi S, Al Ali H, Sedighi T, Chatrabgoun O, Daneshkhah A. Resilient Coastal Protection Infrastructures: Probabilistic Sensitivity Analysis of Wave Overtopping Using Gaussian Process Surrogate Models. Sustainability. 2024; 16(20):9110. https://doi.org/10.3390/su16209110
Chicago/Turabian StyleKent, Paul, Soroush Abolfathi, Hannah Al Ali, Tabassom Sedighi, Omid Chatrabgoun, and Alireza Daneshkhah. 2024. "Resilient Coastal Protection Infrastructures: Probabilistic Sensitivity Analysis of Wave Overtopping Using Gaussian Process Surrogate Models" Sustainability 16, no. 20: 9110. https://doi.org/10.3390/su16209110
APA StyleKent, P., Abolfathi, S., Al Ali, H., Sedighi, T., Chatrabgoun, O., & Daneshkhah, A. (2024). Resilient Coastal Protection Infrastructures: Probabilistic Sensitivity Analysis of Wave Overtopping Using Gaussian Process Surrogate Models. Sustainability, 16(20), 9110. https://doi.org/10.3390/su16209110