Research on a Non-Stationary Groundwater Level Prediction Model Based on VMD-iTransformer and Its Application in Sustainable Water Resource Management of Ecological Reserves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Processing
2.3. Methodology
2.3.1. Variational Mode Decomposition
2.3.2. VMD-iTransformer
2.3.3. Inversion of the VMD-iTransformer
2.3.4. Assessment of the Indicators
3. Results
3.1. Advantages of Using VMD to Improve iTransformer’s Predictive Performance
3.2. Impact of VMD Decomposition on iTransformer Performance
3.3. Comparison Between Deep Learning Performance and Data Volume
4. Discussion
4.1. Importance of VMD Coupled with iTransformer in Deep Learning
4.2. Insights from Regional Projections of Ecological Reserves in Arid Zones
4.3. Exploring the Threshold of the Impact of Data Volume on Deep Learning Models’ Performance
4.4. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahamad, F.; Tyagi, S.K.; Singh, M.; Sharma, A.K. Groundwater in arid and semi-arid regions of india: A review on the quality, management and challenges. In Groundwater in Arid and Semi-Arid Areas: Monitoring, Assessment, Modelling, and Management; Springer: Berlin/Heidelberg, Germany, 2023; pp. 11–52. [Google Scholar]
- Tong, C.; He, R.; Wang, J.; Zheng, H. Study on Water and Salt Transport Characteristics of Sunflowers under Different Irrigation Amounts in the Yellow River Irrigation Area. Agronomy 2024, 14, 1058. [Google Scholar] [CrossRef]
- Benfetta, H.; Ouadja, A. Groundwater overuse in arid areas: Case study of syncline Bouguirat-Mostaganem, Algeria. Arab. J. Geosci. 2020, 13, 786. [Google Scholar] [CrossRef]
- Yang, D.; Bian, Z. Comparison of the disturbance of soil physical quality indices between different underground mining stages in semi-arid regions of Western China. Environ. Earth Sci. 2022, 81, 354. [Google Scholar] [CrossRef]
- Bhering, A.P.; Antunes, I.M.H.R.; Marques, E.A.; de Paula, R.S. Geological and hydrogeological review of a semi-arid region with conflicts to water availability (southeastern Brazil). Environ. Res. 2021, 202, 111756. [Google Scholar] [CrossRef]
- Awadh, S.M.; Al-Mimar, H.; Yaseen, Z.M. Groundwater availability and water demand sustainability over the upper mega aquifers of Arabian Peninsula and west region of Iraq. Environ. Dev. Sustain. 2021, 23, 1–21. [Google Scholar] [CrossRef]
- Rahimi, M.; Ebrahimi, H. Data driven of underground water level using artificial intelligence hybrid algorithms. Sci. Rep. 2023, 13, 10359. [Google Scholar] [CrossRef]
- Sureshkumar, V.; Rajasomashekar, S.; Sarala, B. An efficient underground water prediction using optimal deep neural network. Concurr. Comput. Pract. Exp. 2023, 35, e7421. [Google Scholar] [CrossRef]
- Koyama, N.; Sakai, M.; Yamada, T. Study on a water-level-forecast method based on a time series analysis of urban river basins—A case study of Shibuya River basin in Tokyo. Water 2022, 15, 161. [Google Scholar] [CrossRef]
- Hodgson, F.D. The use of multiple linear regression in simulating ground-water level responses. Groundwater 1978, 16, 249–253. [Google Scholar] [CrossRef]
- Pathak, A.A.; Dodamani, B.M. Trend analysis of groundwater levels and assessment of regional groundwater drought: Ghataprabha River Basin, India. Nat. Resour. Res. 2019, 28, 631–643. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Lei, X. Real-time forecasting of river water level in urban based on radar rainfall: A case study in Fuzhou City. J. Hydrol. 2021, 603, 126820. [Google Scholar] [CrossRef]
- Chi, D.T.K.; Thiem, D.D.; Quynh, T.T.N.; Nguyen, T.Q. Enhancing Prediction Accuracy and Data Handling for Environmental Applications in Innovative Modeling of Underground Water Level Fluctuations Based on Tree Ensembles Technique. Int. J. Comput. Intell. Syst. 2024. [Google Scholar] [CrossRef]
- Abuamra, I.A.; Maghari, A.Y.; Abushawish, H.F. Medium-term forecasts for groundwater production and rainfall amounts (Deir El-Balah City as a case study). Sustain. Water Resour. Manag. 2020, 6, 82. [Google Scholar] [CrossRef]
- Coulibaly, P.; Anctil, F.; Aravena, R.; Bobée, B. Artificial neural network modeling of water table depth fluctuations. Water Resour. Res. 2001, 37, 885–896. [Google Scholar] [CrossRef]
- Sharafeldin, M.; Essa, K.S.; Sayıl, N.; Youssef, M.A.S.; Diab, Z.E.; Karslı, H. Geophysical investigation of ground water hazards in Giza Pyramids and Sphinx using electrical resistivity tomography and ground penetrating radar: A case study. In Proceedings of the 9th Congress of the Balkan Geophysical Society, Antalya, Turkey, 5–9 November 2017; European Association of Geoscientists & Engineers: Bunnik, The Netherlands, 2017; Volume 2017, pp. 1–5. [Google Scholar]
- Sharafeldin, M.; Essa, K.S.; Youssef, M.A.; Karsli, H.; Diab, Z.E.; Sayil, N. Shallow geophysical techniques to investigate the groundwater table at the Great Pyramids of Giza, Egypt. Geosci. Instrum. Methods Data Syst. 2019, 8, 29–43. [Google Scholar] [CrossRef]
- Mohammed, K.S.; Shabanlou, S.; Rajabi, A.; Yosefvand, F.; Izadbakhsh, M.A. Prediction of groundwater level fluctuations using artificial intelligence-based models and GMS. Appl. Water Sci. 2023, 13, 54. [Google Scholar] [CrossRef]
- Zheng, H.; Hou, H.; Li, R.; Tong, C. Trend Prediction of Vegetation and Drought by Informer Model Based on STL-EMD Decomposition of Ha Cai Tou Dang Water Source Area in the Maowusu Sandland. Agronomy 2024, 14, 708. [Google Scholar] [CrossRef]
- Han, K.; Xiao, A.; Wu, E.; Guo, J.; Xu, C.; Wang, Y. Transformer in transformer. Adv. Neural Inf. Process. Syst. 2021, 34, 15908–15919. [Google Scholar]
- Liu, Y.; Hu, T.; Zhang, H.; Wu, H.; Wang, S.; Ma, L.; Long, M. iTransformer: Inverted transformers are effective for time series forecasting. arXiv 2023, arXiv:2310.06625. [Google Scholar]
- Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2013, 62, 531–544. [Google Scholar] [CrossRef]
- He, X.; Luo, J.; Li, P.; Zuo, G.; Xie, J. A hybrid model based on variational mode decomposition and gradient boosting regression tree for monthly runoff forecasting. Water Resour. Manag. 2020, 34, 865–884. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, H.; Wang, J.; Shi, C.; Hua, D.; Li, J. Ensemble streamflow forecasting based on variational mode decomposition and long short term memory. Sci. Rep. 2022, 12, 518. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Chen, Z.; Wu, M.; Hu, C. Long time series of remote sensing to monitor the transformation research of Kubuqi Desert in China. Earth Sci. Inform. 2020, 13, 795–809. [Google Scholar] [CrossRef]
- Chen, P.; Wang, S.; Song, S.; Wang, Y.; Wang, Y.; Gao, D.; Li, Z. Ecological restoration intensifies evapotranspiration in the Kubuqi Desert. Ecol. Eng. 2022, 175, 106504. [Google Scholar] [CrossRef]
- Du, H.; Wang, T.; Xue, X.; Li, S. Modern eolian and fluvial processes and their interactions in an ephemeral desert stream in Inner Mongolia, China. J. Soils Sediments 2020, 20, 1140–1156. [Google Scholar] [CrossRef]
- Li, H.; Liu, T.; Wu, X.; Chen, Q. An optimized VMD method and its applications in bearing fault diagnosis. Measurement 2020, 166, 108185. [Google Scholar] [CrossRef]
- Zhong, H.F.; Sun, Q.; Sun, H.M.; Jia, R.S. NT-Net: A semantic segmentation network for extracting lake water bodies from optical remote sensing images based on transformer. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Qian, J.; Pu, N.; Qian, L.; Xue, X.; Bi, Y.; Norra, S. Identification of driving factors of algal growth in the South-to-North Water Diversion Project by Transformer-based deep learning. Water Biol. Secur. 2023, 2, 100184. [Google Scholar] [CrossRef]
- Abed, M.; Imteaz, M.A.; Ahmed, A.N.; Huang, Y.F. A novel application of transformer neural network (TNN) for estimating pan evaporation rate. Appl. Water Sci. 2023, 13, 31. [Google Scholar] [CrossRef]
- Zukowski, P.; Kierczynski, K.; Koltunowicz, T.N.; Rogalski, P.; Subocz, J.; Korenciak, D. AC conductivity measurements of liquid-solid insulation of power transformers with high water content. Measurement 2020, 165, 108194. [Google Scholar] [CrossRef]
- Villarroel, R.; de Burgos, B.G.; García, D.F. Moisture dynamics in natural-ester filled transformers. Int. J. Electr. Power Energy Syst. 2021, 124, 106172. [Google Scholar] [CrossRef]
- Shen, Z.; Xu, H.; Luo, T.; Song, Y.; He, Z. UDAformer: Underwater image enhancement based on dual attention transformer. Comput. Graph. 2023, 111, 77–88. [Google Scholar] [CrossRef]
- Peng, L.; Wu, H.; Gao, M.; Yi, H.; Xiong, Q.; Yang, L.; Cheng, S. TLT: Recurrent fine-tuning transfer learning for water quality long-term prediction. Water Res. 2022, 225, 119171. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Guo, Z.; Zhang, X.; Chen, J.; Zhang, Y. RR-Former: Rainfall-runoff modeling based on Transformer. J. Hydrol. 2022, 609, 127781. [Google Scholar] [CrossRef]
- Nascimento, E.G.S.; de Melo, T.A.; Moreira, D.M. A transformer-based deep neural network with wavelet transform for forecasting wind speed and wind energy. Energy 2023, 278, 127678. [Google Scholar] [CrossRef]
- Li, W.; Liu, C.; Xu, Y.; Niu, C.; Li, R.; Li, M.; Tian, L. An interpretable hybrid deep learning model for flood forecasting based on Transformer and LSTM. J. Hydrol. Reg. Stud. 2024, 54, 101873. [Google Scholar] [CrossRef]
- Saren, S.; Mitra, S.; Miyazaki, T.; Ng, K.C.; Thu, K. A novel hybrid adsorption heat transformer–multi-effect distillation (AHT-MED) system for improved performance and waste heat upgrade. Appl. Energy 2022, 305, 117744. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, G.; Chen, B.; Han, J.; Zhao, Y.; Zhang, C. Short-term wind speed prediction model based on GA-ANN improved by VMD. Renew. Energy 2020, 156, 1373–1388. [Google Scholar] [CrossRef]
- Tao, H.; Hameed, M.M.; Marhoon, H.A.; Zounemat-Kermani, M.; Heddam, S.; Kim, S.; Yaseen, Z.M. Groundwater level prediction using machine learning models: A comprehensive review. Neurocomputing 2022, 489, 271–308. [Google Scholar] [CrossRef]
- Wen, Y.; Pan, S.; Li, X.; Li, Z. Highly fluctuating short-term load forecasting based on improved secondary decomposition and optimized VMD. Sustain. Energy Grids Netw. 2024, 37, 101270. [Google Scholar] [CrossRef]
- Zhou, Z.; Lyu, G.; Huang, Y.; Wang, Z.; Jia, Z.; Yang, Z. SDformer: Transformer with Spectral Filter and Dynamic Attention for Multivariate Time Series Long-term Forecasting. In Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24), Jeju, Republic of Korea, 3–9 August 2024. [Google Scholar]
- Yao, J.; Chen, S.; Ruan, X. Interpretable CEEMDAN-FE-LSTM-transformer hybrid model for predicting total phosphorus concentrations in surface water. J. Hydrol. 2024, 629, 130609. [Google Scholar] [CrossRef]
- Bai, T.; Tahmasebi, P. Characterization of groundwater contamination: A transformer-based deep learning model. Adv. Water Resour. 2022, 164, 104217. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Straface, S.; Kuriqi, A. Sustainable saltwater intrusion management in coastal aquifers under climatic changes for humid and hyper-arid regions. Ecol. Eng. 2021, 171, 106382. [Google Scholar] [CrossRef]
- Muneer, A.S.; Sayl, K.N.; Kamel, A.H. Modeling of runoff in the arid regions using remote sensing and geographic information system (GIS). Int. J. Des. Nat. Ecodyn. 2020, 15, 691–700. [Google Scholar] [CrossRef]
- Abdelkarim, B.; Telahigue, F.; Agoubi, B. Assessing and delineation of groundwater recharge areas in coastal arid area southern Tunisia. Groundw. Sustain. Dev. 2022, 18, 100760. [Google Scholar] [CrossRef]
- Giuliari, F.; Hasan, I.; Cristani, M.; Galasso, F. Transformer networks for trajectory forecasting. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; IEEE: New York, NY, USA, 2021; pp. 10335–10342. [Google Scholar]
- Zeng, A.; Chen, M.; Zhang, L.; Xu, Q. Are transformers effective for time series forecasting? In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37, pp. 11121–11128. [Google Scholar]
- Huy, P.C.; Minh, N.Q.; Tien, N.D.; Anh, T.T.Q. Short-term electricity load forecasting based on temporal fusion transformer model. IEEE Access 2022, 10, 106296–106304. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Q.; Wu, T. A novel hybrid model for water quality prediction based on VMD and IGOA optimized for LSTM. Front. Environ. Sci. Eng. 2023, 17, 88. [Google Scholar] [CrossRef]
- Song, C.; Yao, L.; Hua, C.; Ni, Q. A water quality prediction model based on variational mode decomposition and the least squares support vector machine optimized by the sparrow search algorithm (VMD-SSA-LSSVM) of the Yangtze River, China. Environ. Monit. Assess. 2021, 193, 363. [Google Scholar] [CrossRef]
- Mondal, A.; Le, M.H.; Lakshmi, V. Land use, climate, and water change in the Vietnamese Mekong Delta (VMD) using earth observation and hydrological modeling. J. Hydrol. Reg. Stud. 2022, 42, 101132. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Hou, H.; Qin, Z. Research on a Non-Stationary Groundwater Level Prediction Model Based on VMD-iTransformer and Its Application in Sustainable Water Resource Management of Ecological Reserves. Sustainability 2024, 16, 9185. https://doi.org/10.3390/su16219185
Zheng H, Hou H, Qin Z. Research on a Non-Stationary Groundwater Level Prediction Model Based on VMD-iTransformer and Its Application in Sustainable Water Resource Management of Ecological Reserves. Sustainability. 2024; 16(21):9185. https://doi.org/10.3390/su16219185
Chicago/Turabian StyleZheng, Hexiang, Hongfei Hou, and Ziyuan Qin. 2024. "Research on a Non-Stationary Groundwater Level Prediction Model Based on VMD-iTransformer and Its Application in Sustainable Water Resource Management of Ecological Reserves" Sustainability 16, no. 21: 9185. https://doi.org/10.3390/su16219185
APA StyleZheng, H., Hou, H., & Qin, Z. (2024). Research on a Non-Stationary Groundwater Level Prediction Model Based on VMD-iTransformer and Its Application in Sustainable Water Resource Management of Ecological Reserves. Sustainability, 16(21), 9185. https://doi.org/10.3390/su16219185