Nanotechnology-Based Lithium-Ion Battery Energy Storage Systems
Abstract
:1. Introduction
2. Conventional Systems of Energy Storage and Their Limitations
2.1. Compressed Storage of Air Energy (CAES)
2.2. Storage of Hydroelectricity via Pumping Process (PHES)
2.3. Lead–Acid Batteries (LABs)
3. Nanotechnology-Based Li-Ion Batteries
3.1. Metallic Nanoparticles
3.1.1. Nickel Nanoparticles
3.1.2. Cobalt Nanoparticles
3.1.3. Aluminum Nanoparticles
3.1.4. Hybrid Metallic Nanomaterials
3.2. Carbon Nanoparticles
3.2.1. Graphene
3.2.2. Nanosized Tubes of Carbon (CNTs)
3.2.3. Other Carbon-Based Nanomaterials
Nanosized Carbon Fibers (CNFs)
Mesoporous Carbon
3.3. Other Nanoparticles
3.3.1. Oxides of Transition Metals
Manganese Oxide (MnO)
Niobium Oxide (Nb2O5)
3.3.2. Transition Metal Sulfides
Molybdenum Disulfide (MoS2)
Vanadium Sulfide (VS2)
3.3.3. Nanosized Particles with Polymers
3.3.4. Silicon Nanoparticles
3.3.5. Tin Oxide Nanoparticles
4. Thermal Analysis to Characterize LIBs Based on Nanotechnology
4.1. Standalone Analysis of Temperature
4.1.1. Differential Scanning Calorimetry (DSC)
4.1.2. Thermogravimetric Analysis (TGA)
4.1.3. Differential Thermal Analysis (DTA)
4.1.4. Thermal Conductivity Analysis (TCA)
4.1.5. Infrared Thermography (IRT)
4.2. Combination of Distinct Tools for Thermal Analysis to Characterize Nanotechnology-Based Li-Ion Batteries
4.2.1. DSC—TGA—FTIR—SEM
4.2.2. TGA—DSC—FESEM—TEM—XRD—Raman Spectroscopy—FTIR—Moss-Bauer Spectroscopy
4.2.3. TGA—DSC—DTA—CV—IS—XRD—SEM—FTIR
4.2.4. TGA-ARC (Accelerating Rate Calorimetry)—XRD—MS (Mass Spectrometry)—Raman—FTIR—ICP (Inductively Coupled Plasma)
5. Nanoparticles for the Environmental Remediation of Li-Ion Batteries
5.1. Nanosized Carbon Materials
5.2. Nanocellulose Materials
5.3. Nanosized Metal Oxides
6. Recovery of Spent Li-Ion Components Using Nanotechnological Approach
6.1. Iron
6.2. Nickel
6.3. Copper
6.4. Aluminum
6.5. Cobalt
6.6. Manganese
6.7. Lithium
6.8. Graphite
7. Future Perspective
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amir, M.; Deshmukh, R.G.; Khalid, H.M.; Said, Z.; Raza, A.; Muyeen, S.; Nizami, A.-S.; Elavarasan, R.M.; Saidur, R.; Sopian, K. Energy storage technologies: An integrated survey of developments, global economical/environmental effects, optimal scheduling model, and sustainable adaption policies. J. Energy Storage 2023, 72, 108694. [Google Scholar] [CrossRef]
- Gür, T.M. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy Environ. Sci. 2018, 11, 2696–2767. [Google Scholar] [CrossRef]
- Ausfelder, F.; Beilmann, C.; Bertau, M.; Bräuninger, S.; Heinzel, A.; Hoer, R.; Koch, W.; Mahlendorf, F.; Metzelthin, A.; Peuckert, M. Energy storage as part of a secure energy supply. ChemBioEng Rev. 2017, 4, 144–210. [Google Scholar] [CrossRef]
- Matos, C.R.; Silva, P.P.; Carneiro, J.F. Overview of compressed air energy storage projects and regulatory framework for energy storage. J. Energy Storage 2022, 55, 105862. [Google Scholar] [CrossRef]
- Liu, W.; Placke, T.; Chau, K. Overview of batteries and battery management for electric vehicles. Energy Rep. 2022, 8, 4058–4084. [Google Scholar] [CrossRef]
- Lennon, A.; Jiang, Y.; Hall, C.; Lau, D.; Song, N.; Burr, P.; Grey, C.P.; Griffith, K.J. High-rate lithium ion energy storage to facilitate increased penetration of photovoltaic systems in electricity grids. MRS Energy Sustain. 2019, 6, E2. [Google Scholar] [CrossRef]
- Karduri, R.K. Next-Generation Energy Storage: Beyond Lithium-Ion Batteries. Int. J. Adv. Res. Innov. Discov. Eng. Appl. (IJARIDEA) 2018, 3, 54–65. [Google Scholar]
- Alamgir, M. Lithium Has Transformed Vehicle Technology: How trends in Li-ion battery technology have developed for vehicle electrification. IEEE Electrif. Mag. 2017, 5, 43–52. [Google Scholar] [CrossRef]
- Mochane, M.J.; Mokhena, T.C.; Mokhothu, T.H.; Mtibe, A.; Sadiku, E.R.; Ray, S.S. The importance of nanostructured materials for energy storage/conversion. In Handbook of Nanomaterials for Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 768–792. [Google Scholar]
- Zhang, Q.; Uchaker, E.; Candelaria, S.L.; Cao, G. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013, 42, 3127–3171. [Google Scholar] [CrossRef]
- Wang, F.; Wu, X.; Li, C.; Zhu, Y.; Fu, L.; Wu, Y.; Liu, X. Nanostructured positive electrode materials for post-lithium ion batteries. Energy Environ. Sci. 2016, 9, 3570–3611. [Google Scholar] [CrossRef]
- Pfrang, A.; Kriston, A.; Ruiz, V.; Lebedeva, N.; Di Persio, F. Safety of rechargeable energy storage systems with a focus on Li-ion technology. In Emerging Nanotechnologies in Rechargeable Energy Storage Systems; Elsevier: Amsterdam, The Netherlands, 2017; pp. 253–290. [Google Scholar]
- Kumar, R.; Mitra, A.; Srinivas, T. Role of nano-additives in the thermal management of lithium-ion batteries: A review. J. Energy Storage 2022, 48, 104059. [Google Scholar] [CrossRef]
- Ponnada, S.; Kiai, M.S.; Krishnapriya, R.; Singhal, R.; Sharma, R.K. Lithium-free batteries: Needs and challenges. Energy Fuels 2022, 36, 6013–6026. [Google Scholar] [CrossRef]
- Mitali, J.; Dhinakaran, S.; Mohamad, A. Energy storage systems: A review. Energy Storage Sav. 2022, 1, 166–216. [Google Scholar] [CrossRef]
- Bussar, C.; Stöcker, P.; Cai, Z.; Moraes, L., Jr.; Magnor, D.; Wiernes, P.; van Bracht, N.; Moser, A.; Sauer, D.U. Large-scale integration of renewable energies and impact on storage demand in a European renewable power system of 2050—Sensitivity study. J. Energy Storage 2016, 6, 1–10. [Google Scholar] [CrossRef]
- Poblete, I.B.S.; de Queiroz, F.A.O.; de Medeiros, J.L. Dynamic analysis of sustainable biogas-combined-cycle plant: Time-varying demand and bioenergy with carbon capture and storage. Renew. Sustain. Energy Rev. 2020, 131, 109997. [Google Scholar] [CrossRef]
- Olabi, A.; Wilberforce, T.; Ramadan, M.; Abdelkareem, M.A.; Alami, A.H. Compressed air energy storage systems: Components and operating parameters–A review. J. Energy Storage 2021, 34, 102000. [Google Scholar] [CrossRef]
- Zhou, Q.; Du, D.; Lu, C.; He, Q.; Liu, W. A review of thermal energy storage in compressed air energy storage system. Energy 2019, 188, 115993. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Du, M.A.; Huang, I.-T.; Liu, I.-H.; Chang, E.; Chiang, P.-C. Strategies on implementation of waste-to-energy (WTE) supply chain for circular economy system: A review. J. Clean. Prod. 2015, 108, 409–421. [Google Scholar] [CrossRef]
- Budt, M.; Wolf, D.; Span, R.; Yan, J. A review on compressed air energy storage: Basic principles, past milestones and recent developments. Appl. Energy 2016, 170, 250–268. [Google Scholar] [CrossRef]
- Šćekić, L.; Mujović, S.; Radulović, V. Pumped hydroelectric energy storage as a facilitator of renewable energy in liberalized electricity market. Energies 2020, 13, 6076. [Google Scholar] [CrossRef]
- Rehman, S.; Al-Hadhrami, L.M.; Alam, M.M. Pumped hydro energy storage system: A technological review. Renew. Sustain. Energy Rev. 2015, 44, 586–598. [Google Scholar] [CrossRef]
- Ameen, M.T.; Ma, Z.; Smallbone, A.; Norman, R.; Roskilly, A.P. Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency. Appl. Energy 2023, 333, 120580. [Google Scholar] [CrossRef]
- Blakers, A.; Stocks, M.; Lu, B.; Cheng, C. A review of pumped hydro energy storage. Prog. Energy 2021, 3, 022003. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, C.-G.; Yang, J.; Xue, S.-C.; Gao, H.-L.; Yan, X.-H.; Huo, Q.-Y.; Wang, S.-W.; Cao, Y.; Yan, J. Advances and challenges in improvement of the electrochemical performance for lead-acid batteries: A comprehensive review. J. Power Sources 2022, 520, 230800. [Google Scholar] [CrossRef]
- Lach, J.; Wróbel, K.; Wróbel, J.; Podsadni, P.; Czerwiński, A. Applications of carbon in lead-acid batteries: A review. J. Solid State Electrochem. 2019, 23, 693–705. [Google Scholar] [CrossRef]
- Ajibade, H.; Ujah, C.O.; Nnakwo, K.C.; Kallon, D.V. Improvement in battery technologies as panacea for renewable energy crisis. Discov. Appl. Sci. 2024, 6, 374. [Google Scholar] [CrossRef]
- Islam, M.; Khalekuzzaman, M.; Kabir, S.; Rana, M. A Study on Recycling Used Lead-Acid Batteries (ULABs) in Bangladesh. in Researchgate. In Proceedings of the WasteSafe 2021–7th International Conference on Integrated Solid Waste & Faecal Sludge Management in South-Asian Countries, Khulna, Bangladesh, 27–28 February 2021. [Google Scholar]
- Yu, Q.; Tang, W.; Hu, Y.; Gao, J.; Wang, M.; Liu, S.; Lai, H.; Xu, L.; Fan, C. Novel low-cost, high-energy-density (>700 Wh kg−1) Li-rich organic cathodes for Li-ion batteries. Chem. Eng. J. 2021, 415, 128509. [Google Scholar] [CrossRef]
- Vangapally, N.; Penki, T.R.; Elias, Y.; Muduli, S.; Maddukuri, S.; Luski, S.; Aurbach, D.; Martha, S.K. Lead-acid batteries and lead–carbon hybrid systems: A review. J. Power Sources 2023, 579, 233312. [Google Scholar] [CrossRef]
- May, G.J.; Davidson, A.; Monahov, B. Lead batteries for utility energy storage: A review. J. Energy Storage 2018, 15, 145–157. [Google Scholar] [CrossRef]
- Schismenos, S.; Chalaris, M.; Stevens, G. Battery hazards and safety: A scoping review for lead acid and silver-zinc batteries. Saf. Sci. 2021, 140, 105290. [Google Scholar] [CrossRef]
- Xu, J.; Cai, X.; Cai, S.; Shao, Y.; Hu, C.; Lu, S.; Ding, S. High-energy lithium-ion batteries: Recent progress and a promising future in applications. Energy Environ. Mater. 2023, 6, e12450. [Google Scholar] [CrossRef]
- Selinis, P.; Farmakis, F. A review on the anode and cathode materials for lithium-ion batteries with improved subzero temperature performance. J. Electrochem. Soc. 2022, 169, 010526. [Google Scholar] [CrossRef]
- Chen, H.; Wang, W.; Yang, L.; Dong, L.; Wang, D.; Xu, X.; Wang, D.; Huang, J.; Lv, M.; Wang, H. A review of cobalt-containing nanomaterials, carbon nanomaterials and their composites in preparation methods and application. Nanomaterials 2022, 12, 2042. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.K.; Anh, L.T.; Park, C.-J.; Kim, J. Electrochemical study of NiO nanoparticles electrode for application in rechargeable lithium-ion batteries. Ceram. Int. 2013, 39, 6611–6618. [Google Scholar]
- Mahmud, S.; Rahman, M.; Kamruzzaman, M.; Ali, M.O.; Emon, M.S.A.; Khatun, H.; Ali, M.R. Recent advances in lithium-ion battery materials for improved electrochemical performance: A review. Results Eng. 2022, 15, 100472. [Google Scholar] [CrossRef]
- Guan, D.; Li, J.; Gao, X.; Yuan, C. A comparative study of enhanced electrochemical stability of tin–nickel alloy anode for high-performance lithium ion battery. J. Alloys Compd. 2014, 617, 464–471. [Google Scholar] [CrossRef]
- Liu, C.; Gong, W.; Iftikhar, T.; Liu, W.; Su, L.; Zhang, X. Iron-based metal-organic frameworks and their derivatives for high-performance supercapacitors. Next Mater. 2025, 7, 100362. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Wang, H.; Tan, H.; Luo, X.; Wang, H.; Ma, T.; Lv, M.; Song, X.; Jin, S.; Chang, X.; Li, X. The progress on aluminum-based anode materials for lithium-ion batteries. J. Mater. Chem. A 2020, 8, 25649–25662. [Google Scholar] [CrossRef]
- Chang, X.; Xie, Z.; Liu, Z.; Zheng, X.; Zheng, J.; Li, X. Aluminum: An underappreciated anode material for lithium-ion batteries. Energy Storage Mater. 2020, 25, 93–99. [Google Scholar] [CrossRef]
- Kuksenko, S. Aluminum foil as anode material of lithium-ion batteries: Effect of electrolyte compositions on cycling parameters. Russ. J. Electrochem. 2013, 49, 67–75. [Google Scholar] [CrossRef]
- Li, Y.; Tan, Z.; Liu, Y.; Lei, C.; He, P.; Li, J.; He, Z.; Cheng, Y.; Wu, F.; Li, Y. Past, present and future of high-nickel materials. Nano Energy 2023, 119, 109070. [Google Scholar] [CrossRef]
- Itani, K.; De Bernardinis, A. Review on new-generation batteries technologies: Trends and future directions. Energies 2023, 16, 7530. [Google Scholar] [CrossRef]
- Zeng, X.; Li, M.; El-Hady, D.A.; Alshitari, W.; Al-Bogami, A.S.; Lu, J.; Amine, K. Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. 2019, 9, 1900161. [Google Scholar] [CrossRef]
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Rish, S.K.; Tahmasebi, A.; Wang, R.; Dou, J.; Yu, J. Novel composite nano-materials with 3D multilayer-graphene structures from biomass-based activated-carbon for ultrahigh Li-ion battery performance. Electrochim. Acta 2021, 390, 138839. [Google Scholar] [CrossRef]
- Li, R.; Li, J.; Qi, K.; Ge, X.; Zhang, Q.; Zhang, B. One-step synthesis of 3D sulfur/nitrogen dual-doped graphene supported nano silicon as anode for Li-ion batteries. Appl. Surf. Sci. 2018, 433, 367–373. [Google Scholar] [CrossRef]
- Li, W.; Li, M.; Adair, K.R.; Sun, X.; Yu, Y. Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 2017, 5, 13882–13906. [Google Scholar] [CrossRef]
- Li, C.; Yin, X.; Chen, L.; Li, Q.; Wang, T. Porous carbon nanofibers derived from conducting polymer: Synthesis and application in lithium-ion batteries with high-rate capability. J. Phys. Chem. C 2009, 113, 13438–13442. [Google Scholar] [CrossRef]
- Rahman, M.M.; Ara, M.G.; Alim, M.A.; Uddin, M.S.; Najda, A.; Albadrani, G.M.; Sayed, A.A.; Mousa, S.A.; Abdel-Daim, M.M. Mesoporous carbon: A versatile material for scientific applications. Int. J. Mol. Sci. 2021, 22, 4498. [Google Scholar] [CrossRef]
- Salim, N.V.; Mateti, S.; Cizek, P.; Hameed, N.; Parameswaranpillai, J.; Fox, B. Large, mesoporous carbon nanoparticles with tunable architectures for energy storage. ACS Appl. Nano Mater. 2019, 2, 1727–1736. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, A. Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries. Sci. Bull. 2015, 60, 823–838. [Google Scholar] [CrossRef]
- Yi, T.-F.; Sari, H.M.K.; Li, X.; Wang, F.; Zhu, Y.-R.; Hu, J.; Zhang, J.; Li, X. A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors. Nano Energy 2021, 85, 105955. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Kim, Y.; Cho, J. Nanostructured transition metal sulfides for lithium ion batteries: Progress and challenges. Nano Today 2014, 9, 604–630. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Wang, Y.; Li, H.; Peng, Y. The application of nanostructured transition metal sulfides as anodes for lithium ion batteries. J. Energy Chem. 2018, 27, 1536–1554. [Google Scholar] [CrossRef]
- Li, J.; Cai, Y.; Wu, H.; Yu, Z.; Yan, X.; Zhang, Q.; Gao, T.Z.; Liu, K.; Jia, X.; Bao, Z. Polymers in lithium-ion and lithium metal batteries. Adv. Energy Mater. 2021, 11, 2003239. [Google Scholar] [CrossRef]
- Zhu, G.; Chao, D.; Xu, W.; Wu, M.; Zhang, H. Microscale silicon-based anodes: Fundamental understanding and industrial prospects for practical high-energy lithium-ion batteries. ACS Nano 2021, 15, 15567–15593. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.H.; Chowdhury, M.A.; Hossain, N.; Islam, M.A.; Mobarak, M.H. Advances of lithium-ion batteries anode materials—A review. Chem. Eng. J. Adv. 2023, 16, 100569. [Google Scholar] [CrossRef]
- Wang, R.; Sun, S.; Xu, C.; Cai, J.; Gou, H.; Zhang, X.; Wang, G. Interface Engineering and Structure Design of Alloying Type Metal Foil Anode for Lithium Ion Batteries: A Review. Mater. Horiz. 2023, 11, 903–922. [Google Scholar] [CrossRef]
- Shang, R.; Kurban, M.; Ozkan, M.; Ozkan, C.S. Rational design of SnO2 thin film coated cathode with function of entrapping polysulfides for performance enhanced Li–S batteries. J. Power Sources 2024, 597, 234144. [Google Scholar] [CrossRef]
- Gu, D.; Yuan, Y.; Peng, X.; Li, D.; Wu, L.; Huang, G.; Wang, J.; Pan, F. Realizing high-stability anode for rechargeable magnesium battery via in-situ-formed nanoporous Bi and nanosized Sn. J. Mater. Chem. A 2024, 12, 26890–26901. [Google Scholar] [CrossRef]
- Peerawattuk, I.; Bobicki, E. Lithium extraction and utilization: A historical perspective. In Extraction 2018: Proceedings of the First Global Conference on Extractive Metallurgy; Davis, B.R., Moats, M.S., Wang, S., Eds.; Springer: Cham, Switzerland, 2018; pp. 2209–2224. [Google Scholar]
- Rybakowski, J.K. Mood stabilizers: Lithium. In NeuroPsychopharmacotherapy; Riederer, P., Laux, G., Nagatsu, T., Le, W., Riederer, C., Eds.; Springer: Cham, Switzerland, 2022; pp. 1493–1521. [Google Scholar]
- Mrozik, W.; Rajaeifar, M.A.; Heidrich, O.; Christensen, P. Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy Environ. Sci. 2021, 14, 6099–6121. [Google Scholar] [CrossRef]
- Kumar, R.R.; Alok, K. Adoption of electric vehicle: A literature review and prospects for sustainability. J. Clean. Prod. 2020, 253, 119911. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Luo, L.; Fan, Y.; Du, Z. A review on thermal management of lithium-ion batteries for electric vehicles. Energy 2022, 238, 121652. [Google Scholar] [CrossRef]
- Wakihara, M. Recent developments in lithium ion batteries. Mater. Sci. Eng. R Rep. 2001, 33, 109–134. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561. [Google Scholar] [CrossRef] [PubMed]
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- Saw, L.; Ye, Y.; Tay, A. Electrochemical–thermal analysis of 18650 Lithium Iron Phosphate cell. Energy Convers. Manag. 2013, 75, 162–174. [Google Scholar] [CrossRef]
- Spada, D. The Key Role of High-Performance Anode Materials in Li-and Na-Ion Batteries. Available online: https://iris.unipv.it/bitstream/11571/1450824/2/Tesi%20dottorato%20-%20corretta.pdf (accessed on 21 October 2024).
- Koçer, C.P.; Griffith, K.J.; Grey, C.P.; Morris, A.J. Cation disorder and lithium insertion mechanism of Wadsley–Roth crystallographic shear phases from first principles. J. Am. Chem. Soc. 2019, 141, 15121–15134. [Google Scholar] [CrossRef]
- Zhang, Q.-K.; Zhang, X.-Q.; Yuan, H.; Huang, J.-Q. Thermally stable and nonflammable electrolytes for lithium metal batteries: Progress and perspectives. Small Sci. 2021, 1, 2100058. [Google Scholar] [CrossRef]
- Mohamed, N.; Allam, N.K. Recent advances in the design of cathode materials for Li-ion batteries. Rsc Adv. 2020, 10, 21662–21685. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Zhong, Y.; Pan, L.; Zhang, H.; Yang, Y.; Liu, D.; Teng, F.; Bando, Y.; Yao, J.; Wang, X. Recent advances in designing high-capacity anode nanomaterials for Li-ion batteries and their atomic-scale storage mechanism studies. Adv. Sci. 2018, 5, 1700902. [Google Scholar] [CrossRef] [PubMed]
- Martins, J.; Brito, F. Alternative fuels for internal combustion engines. Energies 2020, 13, 4086. [Google Scholar] [CrossRef]
- Lecocq, A.; Bertana, M.; Truchot, B.; Marlair, G. Comparison of the fire consequences of an electric vehicle and an internal combustion engine vehicle. In 2. International Conference on Fires in Vehicles-FIVE 2012; SP Technical Research Institute of Sweden: Boras, Sweden, 2012; pp. 183–194. [Google Scholar]
- Madani, S.S.; Ziebert, C.; Marzband, M. Thermal behavior modeling of lithium-ion batteries: A comprehensive review. Symmetry 2023, 15, 1597. [Google Scholar] [CrossRef]
- Jiang, K.; Liao, G.; Jiaqiang, E.; Zhang, F.; Chen, J.; Leng, E. Thermal management technology of power lithium-ion batteries based on the phase transition of materials: A review. J. Energy Storage 2020, 32, 101816. [Google Scholar] [CrossRef]
- Al-Rashed, A.A. Thermal management of lithium-ion batteries with simultaneous use of hybrid nanofluid and nano-enhanced phase change material: A numerical study. J. Energy Storage 2022, 46, 103730. [Google Scholar] [CrossRef]
- Knoop, J.E.; Ahn, S. Recent advances in nanomaterials for high-performance Li–S batteries. J. Energy Chem. 2020, 47, 86–106. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; He, P.; Hosono, E.; Zhou, H. Nano active materials for lithium-ion batteries. Nanoscale 2010, 2, 1294–1305. [Google Scholar] [CrossRef] [PubMed]
- Holzapfel, M.; Buqa, H.; Hardwick, L.J.; Hahn, M.; Würsig, A.; Scheifele, W.; Novák, P.; Kötz, R.; Veit, C.; Petrat, F.-M. Nano silicon for lithium-ion batteries. Electrochim. Acta 2006, 52, 973–978. [Google Scholar] [CrossRef]
- Wu, S.; Ge, R.; Lu, M.; Xu, R.; Zhang, Z. Graphene-based nano-materials for lithium–sulfur battery and sodium-ion battery. Nano Energy 2015, 15, 379–405. [Google Scholar] [CrossRef]
- Hekmat, S.; Bamdezh, M.; Molaeimanesh, G. Hybrid thermal management for achieving extremely uniform temperature distribution in a lithium battery module with phase change material and liquid cooling channels. J. Energy Storage 2022, 50, 104272. [Google Scholar] [CrossRef]
- Zhu, Q.; Ong, P.J.; Goh, S.H.A.; Yeo, R.J.; Wang, S.; Liu, Z.; Loh, X.J. Recent advances in graphene-based phase change composites for thermal energy storage and management. Nano Mater. Sci. 2023, 6, 115–138. [Google Scholar] [CrossRef]
- Kumar, P.; Channi, H.K.; Babbar, A.; Kumar, R.; Bhutto, J.K.; Khan, T.Y.; Bhowmik, A.; Razak, A.; Wodajo, A.W. A systematic review of nanotechnology for electric vehicles battery. Int. J. Low-Carbon Technol. 2024, 19, 747–765. [Google Scholar] [CrossRef]
- Abdelrazik, A.; Saidur, R.; Al-Sulaiman, F. Thermal regulation and performance assessment of a hybrid photovoltaic/thermal system using different combinations of nano-enhanced phase change materials. Sol. Energy Mater. Sol. Cells 2020, 215, 110645. [Google Scholar] [CrossRef]
- Joseph, M.; Sajith, V. Graphene enhanced paraffin nanocomposite based hybrid cooling system for thermal management of electronics. Appl. Therm. Eng. 2019, 163, 114342. [Google Scholar] [CrossRef]
- Chen, S.; Wan, C.; Wang, Y. Thermal analysis of lithium-ion batteries. J. Power Sources 2005, 140, 111–124. [Google Scholar] [CrossRef]
- Gharanjig, H.; Gharanjig, K.; Hosseinnezhad, M.; Jafari, S.M. Differential scanning calorimetry (DSC) of nanoencapsulated food ingredients. In Characterization of Nanoencapsulated Food Ingredients; Elsevier: Amsterdam, The Netherlands, 2020; pp. 295–346. [Google Scholar]
- Wunderlich, B. Thermal Analysis of Polymeric Materials; Springer Science & Business Media: Berlin, Germany, 2005. [Google Scholar]
- Cheremisinoff, N.P. Polymer Characterization: Laboratory Techniques and Analysis; William Andrew: Norwich, NY, USA, 1996. [Google Scholar]
- Gedde, U. Thermal analysis of polymers. Drug Dev. Ind. Pharm. 1990, 16, 2465–2486. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Seifi, H.; Gholami, T.; Ganduh, S.H.; Jasim, L.S.; Mahdi, M.A.; Salavati-Niasari, M. Thermal analysis techniques for evaluating the thermal stability of battery materials: A comprehensive review. J. Anal. Appl. Pyrolysis 2023, 174, 106136. [Google Scholar] [CrossRef]
- Yi, J.; Wang, C.; Xia, Y. Comparison of thermal stability between micro-and nano-sized materials for lithium-ion batteries. Electrochem. Commun. 2013, 33, 115–118. [Google Scholar] [CrossRef]
- Xu, C.; Xue, L.; Zhang, W.; Fan, X.; Yan, Y.; Li, Q.; Huang, Y.; Zhang, W. Hydrothermal synthesis of Li4Ti5O12/TiO2 nano-composite as high performance anode material for Li-ion batteries. Electrochim. Acta 2014, 147, 506–512. [Google Scholar] [CrossRef]
- Nakajima, K.; Souza, F.L.; Freitas, A.L.; Thron, A.; Castro, R.H. Improving thermodynamic stability of nano-LiMn2O4 for Li-ion battery cathode. Chem. Mater. 2021, 33, 3915–3925. [Google Scholar] [CrossRef]
- Rahman, U.U.; Sahar, A.; Ishaq, A.; Khalil, A.A. Design of nanoparticles for future beverage industry. In Nanoengineering in the Beverage Industry; Elsevier: Amsterdam, The Netherlands, 2020; pp. 105–136. [Google Scholar]
- Chen, C.; Hwang, B.; Do, J.; Weng, J.; Venkateswarlu, M.; Cheng, M.; Santhanam, R.; Ragavendran, K.; Lee, J.; Chen, J. An understanding of anomalous capacity of nano-sized CoO anode materials for advanced Li-ion battery. Electrochem. Commun. 2010, 12, 496–498. [Google Scholar] [CrossRef]
- Day, R.; Xia, J.; Petibon, R.; Rucska, J.; Wang, H.; Wright, A.; Dahn, J. Differential thermal analysis of Li-ion cells as an effective probe of liquid electrolyte evolution during aging. J. Electrochem. Soc. 2015, 162, A2577. [Google Scholar] [CrossRef]
- Bauer, M.K.; Dahn, J. Using lithium-ion differential thermal analysis to probe tortuosity of negative electrodes in lithium-ion cells. J. Electrochem. Soc. 2021, 168, 020501. [Google Scholar] [CrossRef]
- Premila, R.; Subbu, C.; Rajendran, S. Experimental investigation of nano filler TiO2 doped composite polymerelectrolytes for lithium ion batteries. Appl. Surf. Sci. 2018, 449, 426–434. [Google Scholar] [CrossRef]
- Sivaraj, P.; Nalini, B.; Abhilash, K.; Lakshmi, D.; Selvin, P.C.; Balraju, P. Study on the influences of calcination temperature on structure and its electrochemical performance of Li2FeSiO4/C nano cathode for lithium ion batteries. J. Alloys Compd. 2018, 740, 1116–1124. [Google Scholar] [CrossRef]
- Mylarappa, M.; Lakshmi, V.V.; Mahesh, K.V.; Raghavendra, N.; Nagaswarupa, H. Cyclic voltammetry, impedance and thermal properties of CoFe2O4 obtained from waste Li-Ion batteries. Mater. Today Proc. 2018, 5, 22425–22432. [Google Scholar] [CrossRef]
- Hu, C.; Guo, J.; Wen, J.; Peng, Y. Preparation and electrochemical performance of nano-Co3O4 anode materials from spent Li-ion batteries for lithium-ion batteries. J. Mater. Sci. Technol. 2013, 29, 215–220. [Google Scholar] [CrossRef]
- Wang, D.; Ding, N.; Song, X.; Chen, C. A simple gel route to synthesize nano-Li4Ti5O12 as a high-performance anode material for Li-ion batteries. J. Mater. Sci. 2009, 44, 198–203. [Google Scholar] [CrossRef]
- Mortazavi, B.; Yang, H.; Mohebbi, F.; Cuniberti, G.; Rabczuk, T. Graphene or h-BN paraffin composite structures for the thermal management of Li-ion batteries: A multiscale investigation. Appl. Energy 2017, 202, 323–334. [Google Scholar] [CrossRef]
- Giammichele, L.; D’Alessandro, V.; Falone, M.; Ricci, R. Thermal behaviour assessment and electrical characterisation of a cylindrical Lithium-ion battery using infrared thermography. Appl. Therm. Eng. 2022, 205, 117974. [Google Scholar] [CrossRef]
- Chacón, X.C.A.; Laureti, S.; Ricci, M.; Cappuccino, G. A Review of Non-Destructive Techniques for Lithium-Ion Battery Performance Analysis. World Electr. Veh. J. 2023, 14, 305. [Google Scholar] [CrossRef]
- Goutam, S.; Timmermans, J.-M.; Omar, N.; Van den Bossche, P.; Van Mierlo, J. Comparative study of surface temperature behavior of commercial li-ion pouch cells of different chemistries and capacities by infrared thermography. Energies 2015, 8, 8175–8192. [Google Scholar] [CrossRef]
- Ni, S.; Lama, S.; Lee, Y.-J.; Kim, J.-H. Early Detection of Secondary Battery Degradation by Infrared Technology: An Experimental Study. Arab. J. Sci. Eng. 2024, 1–14. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Y.; Zhong, B.; Liu, H.; Zhong, Y.; Guo, X. Facile synthesis of Li3V2(PO4)3/C nano-flakes with high-rate performance as cathode material for Li-ion battery. J. Solid State Electrochem. 2014, 18, 215–221. [Google Scholar] [CrossRef]
- Jagadeesan, A.; Sasikumar, M.; Krishna, R.H.; Raja, N.; Gopalakrishna, D.; Vijayashree, S.; Sivakumar, P. High electrochemical performance of nano TiO2 ceramic filler incorporated PVC-PEMA composite gel polymer electrolyte for Li-ion battery applications. Mater. Res. Express 2019, 6, 105524. [Google Scholar] [CrossRef]
- Mohan, E.H.; Siddhartha, V.; Gopalan, R.; Rao, T.N.; Rangappa, D. Urea and sucrose assisted combustion synthesis of LiFePO4/C nano-powder for lithium-ion battery cathode application. AIMS Mater. Sci. 2014, 1, 191–201. [Google Scholar] [CrossRef]
- Haik, O.; Martha, S.K.; Sclar, H.; Samuk-Fromovich, Z.; Zinigrad, E.; Markovsky, B.; Kovacheva, D.; Saliyski, N.; Aurbach, D. Characterizations of self-combustion reactions (SCR) for the production of nanomaterials used as advanced cathodes in Li-ion batteries. Thermochim. Acta 2009, 493, 96–104. [Google Scholar] [CrossRef]
- Dobó, Z.; Dinh, T.; Kulcsár, T. A review on recycling of spent lithium-ion batteries. Energy Rep. 2023, 9, 6362–6395. [Google Scholar] [CrossRef]
- Kim, E.; Xu, H.; Lim, J.; Kang, J.; Gim, J.; Mathew, V.; Kim, J. Impact of glucose on the electrochemical performance of nano-LiCoPO 4 cathode for Li-ion batteries. J. Solid State Electrochem. 2012, 16, 149–155. [Google Scholar] [CrossRef]
- Bhuvaneswari, M.; Bramnik, N.; Ensling, D.; Ehrenberg, H.; Jaegermann, W. Synthesis and characterization of Carbon Nano Fiber/LiFePO4 composites for Li-ion batteries. J. Power Sources 2008, 180, 553–560. [Google Scholar] [CrossRef]
- Tummala, R.; Guduru, R.K.; Mohanty, P.S. Binder free, porous and nanostructured Co3O4 anode for Li-ion batteries from solution precursor plasma deposition. J. Power Sources 2012, 199, 270–277. [Google Scholar] [CrossRef]
- Dhaybi, S.; Marsan, B.; Hammami, A. A novel low-cost and simple colloidal route for preparing high-performance carbon-coated LiFePO4 for lithium batteries. J. Energy Storage 2018, 18, 259–265. [Google Scholar] [CrossRef]
- Razzak, S.A.; Faruque, M.O.; Alsheikh, Z.; Alsheikhmohamad, L.; Alkuroud, D.; Alfayez, A.; Hossain, S.M.Z.; Hossain, M.M. A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environ. Adv. 2022, 7, 100168. [Google Scholar] [CrossRef]
- Ganie, A.S.; Bano, S.; Khan, N.; Sultana, S.; Rehman, Z.; Rahman, M.M.; Sabir, S.; Coulon, F.; Khan, M.Z. Nanoremediation technologies for sustainable remediation of contaminated environments: Recent advances and challenges. Chemosphere 2021, 275, 130065. [Google Scholar] [CrossRef]
- Narwal, N.; Katyal, D.; Kataria, N.; Rose, P.K.; Warkar, S.G.; Pugazhendhi, A.; Ghotekar, S.; Khoo, K.S. Emerging micropollutants in aquatic ecosystems and nanotechnology-based removal alternatives: A review. Chemosphere 2023, 341, 139945. [Google Scholar] [CrossRef]
- Afreen, S.; Omar, R.A.; Talreja, N.; Chauhan, D.; Ashfaq, M. Carbon-based nanostructured materials for energy and environmental remediation applications. In Approaches in Bioremediation: The New Era of Environmental Microbiology and Nanobiotechnology; Springer: Berlin/Heidelberg, Germany, 2018; pp. 369–392. [Google Scholar]
- Siqueira, J.R.; Oliveira, O.N.; Nanomaterials, C.-B. 9-Carbon-Based Nanomaterials. In Nanostructures; William Andrew Publishing: Norwich, NY, USA, 2017; pp. 233–249. [Google Scholar]
- Jha, M.K.; Joshi, S.; Sharma, R.K.; Kim, A.A.; Pant, B.; Park, M.; Pant, H.R. Surface modified activated carbons: Sustainable bio-based materials for environmental remediation. Nanomaterials 2021, 11, 3140. [Google Scholar] [CrossRef]
- Yadav, B.; Kumar, R. Structure, properties and applications of fullerenes. Int. J. Nanotechnol. Appl. 2008, 2, 15–24. [Google Scholar]
- Hoang, A.T.; Nižetić, S.; Cheng, C.K.; Luque, R.; Thomas, S.; Banh, T.L.; Nguyen, X.P. Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review. Chemosphere 2022, 287, 131959. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, S.; Su, Y.; Wu, D.; Zhao, Y.; Xie, B. Removal of microplastics from aqueous solutions by magnetic carbon nanotubes. Chem. Eng. J. 2021, 406, 126804. [Google Scholar] [CrossRef]
- Zhou, G.; Huang, X.; Xu, H.; Wang, Q.; Wang, M.; Wang, Y.; Li, Q.; Zhang, Y.; Ye, Q.; Zhang, J. Removal of polystyrene nanoplastics from water by CuNi carbon material: The role of adsorption. Sci. Total Environ. 2022, 820, 153190. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; Wong, C.P.P.; Tan, T.L.; Lai, C.W. Functionalized carbon nanotubes for adsorptive removal of water pollutants. Mater. Sci. Eng. B 2018, 236, 61–69. [Google Scholar] [CrossRef]
- Liang, J.; Liu, J.; Yuan, X.; Dong, H.; Zeng, G.; Wu, H.; Wang, H.; Liu, J.; Hua, S.; Zhang, S. Facile synthesis of alumina-decorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene. Chem. Eng. J. 2015, 273, 101–110. [Google Scholar] [CrossRef]
- Liu, K.; Zhao, D.; Hu, Z.; Xiao, Y.; He, C.; Jiang, F.; Zhao, N.; Zhao, C.; Zhang, W.; Qiu, R. The adsorption and reduction of anionic Cr (VI) in groundwater by novel iron carbide loaded on N-doped carbon nanotubes: Effects of Fe-confinement. Chem. Eng. J. 2023, 452, 139357. [Google Scholar] [CrossRef]
- Stafiej, A.; Pyrzynska, K. Adsorption of heavy metal ions with carbon nanotubes. Sep. Purif. Technol. 2007, 58, 49–52. [Google Scholar] [CrossRef]
- Rizwan, M.S.; Imtiaz, M.; Huang, G.; Chhajro, M.A.; Liu, Y.; Fu, Q.; Zhu, J.; Ashraf, M.; Zafar, M.; Bashir, S. Immobilization of Pb and Cu in polluted soil by superphosphate, multi-walled carbon nanotube, rice straw and its derived biochar. Environ. Sci. Pollut. Res. 2016, 23, 15532–15543. [Google Scholar] [CrossRef]
- Hua, S.; Gong, J.-L.; Zeng, G.-M.; Yao, F.-B.; Guo, M.; Ou, X.-M. Remediation of organochlorine pesticides contaminated lake sediment using activated carbon and carbon nanotubes. Chemosphere 2017, 177, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, C.; Hu, W.; Ding, A.; Xu, D.; Zhou, X. Sorption of 243Am (III) to multiwall carbon nanotubes. Environ. Sci. Technol. 2005, 39, 2856–2860. [Google Scholar] [CrossRef]
- Gupta, A.; Vidyarthi, S.; Sankararamakrishnan, N. Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes. J. Hazard. Mater. 2014, 274, 132–144. [Google Scholar] [CrossRef]
- Ramana, D.V.; Kim, Y.Y.; Min, K. Efficient removal of Ni (II) by multi step treated carbon nanotubes from aqueous solutions: Kinetic, equilibrium and thermodynamic studies. Indian J. Adv. Chem. Sci. 2014, 3, 113–121. [Google Scholar]
- Dehghani, M.H.; Yetilmezsoy, K.; Salari, M.; Heidarinejad, Z.; Yousefi, M.; Sillanpää, M. Adsorptive removal of cobalt (II) from aqueous solutions using multi-walled carbon nanotubes and γ-alumina as novel adsorbents: Modelling and optimization based on response surface methodology and artificial neural network. J. Mol. Liq. 2020, 299, 112154. [Google Scholar] [CrossRef]
- Nayak, T.; Pathan, A. Environmental remediation and application of carbon-based nanomaterials in the treatment of heavy metal-contaminated water: A review. Mater. Today Proc. 2023, 92, 1659–1670. [Google Scholar] [CrossRef]
- Compton, O.C.; Nguyen, S.T. Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials. Small 2010, 6, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Karthik, V.; Selvakumar, P.; Kumar, P.S.; Vo, D.-V.N.; Gokulakrishnan, M.; Keerthana, P.; Elakkiya, V.T.; Rajeswari, R. Graphene-based materials for environmental applications: A review. Environ. Chem. Lett. 2021, 19, 3631–3644. [Google Scholar] [CrossRef]
- Huo, J.; Yu, G.; Wang, J. Efficient removal of Co (II) and Sr (II) from aqueous solution using polyvinyl alcohol/graphene oxide/MnO2 composite as a novel adsorbent. J. Hazard. Mater. 2021, 411, 125117. [Google Scholar] [CrossRef]
- Yi, X.; Sun, F.; Han, Z.; Han, F.; He, J.; Ou, M.; Gu, J.; Xu, X. Graphene oxide encapsulated polyvinyl alcohol/sodium alginate hydrogel microspheres for Cu (II) and U (VI) removal. Ecotoxicol. Environ. Saf. 2018, 158, 309–318. [Google Scholar] [CrossRef]
- Baudino, L.; Pedico, A.; Bianco, S.; Periolatto, M.; Pirri, C.F.; Lamberti, A. Crown-ether functionalized graphene oxide membrane for lithium recovery from water. Membranes 2022, 12, 233. [Google Scholar] [CrossRef]
- Zhao, C.; Ma, L.; You, J.; Qu, F.; Priestley, R.D. EDTA-and amine-functionalized graphene oxide as sorbents for Ni (II) removal. Desalination Water Treat. 2016, 57, 8942–8951. [Google Scholar] [CrossRef]
- Yan, H.; Li, H.; Tao, X.; Li, K.; Yang, H.; Li, A.; Xiao, S.; Cheng, R. Rapid removal and separation of iron (II) and manganese (II) from micropolluted water using magnetic graphene oxide. ACS Appl. Mater. Interfaces 2014, 6, 9871–9880. [Google Scholar] [CrossRef]
- Apul, O.G.; Wang, Q.; Zhou, Y.; Karanfil, T. Adsorption of aromatic organic contaminants by graphene nanosheets: Comparison with carbon nanotubes and activated carbon. Water Res. 2013, 47, 1648–1654. [Google Scholar] [CrossRef]
- Abdulsahib, W.K.; Ganduh, S.H.; Mahdi, M.A.; Jasim, L.S. Adsorptive removal of doxycycline from aqueous solution using graphene oxide/hydrogel composite. Int. J. Appl. Pharm. 2020, 12, 100–106. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, L.; Xiao, S.; Chen, J. Preparation of a novel manganese oxide-modified diatomite and its aniline removal mechanism from solution. Chem. Eng. J. 2016, 284, 609–619. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, S.; Liu, J.; Sun, J.; Zhang, Z.; Zhu, Q. Sustainable cellulose nanomaterials for environmental remediation-Achieving clean air, water, and energy: A review. Carbohydr. Polym. 2022, 285, 119251. [Google Scholar] [CrossRef] [PubMed]
- Hokkanen, S.; Repo, E.; Sillanpää, M. Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chem. Eng. J. 2013, 223, 40–47. [Google Scholar] [CrossRef]
- Reshmy, R.; Philip, E.; Paul, S.A.; Madhavan, A.; Sindhu, R.; Binod, P.; Pandey, A.; Sirohi, R. Nanocellulose-based products for sustainable applications-recent trends and possibilities. Rev. Environ. Sci. Bio/Technol. 2020, 19, 779–806. [Google Scholar] [CrossRef]
- Lin, N.; Huang, J.; Dufresne, A. Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: A review. Nanoscale 2012, 4, 3274–3294. [Google Scholar] [CrossRef]
- Sun, Y.; Chu, Y.; Wu, W.; Xiao, H. Nanocellulose-based lightweight porous materials: A review. Carbohydr. Polym. 2021, 255, 117489. [Google Scholar] [CrossRef] [PubMed]
- Reshmy, R.; Philip, E.; Madhavan, A.; Pugazhendhi, A.; Sindhu, R.; Sirohi, R.; Awasthi, M.K.; Pandey, A.; Binod, P. Nanocellulose as green material for remediation of hazardous heavy metal contaminants. J. Hazard. Mater. 2022, 424, 127516. [Google Scholar] [CrossRef]
- Singh, A.; Vijayan, J.G.; Moodley, K.G. Surface functionalizations of nanocellulose for wastewater treatment. In Handbook of Nanocelluloses: Classification, Properties, Fabrication, and Emerging Applications; Barhoum, A., Ed.; Springer: Cham, Switzerland, 2022; pp. 1–48. [Google Scholar]
- Anirudhan, T.; Deepa, J.; Christa, J. Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of Cobalt (II) from nuclear industry wastewater samples. J. Colloid Interface Sci. 2016, 467, 307–320. [Google Scholar] [CrossRef]
- Jalvo, B.; Aguilar-Sanchez, A.; Ruiz-Caldas, M.-X.; Mathew, A.P. Water filtration membranes based on non-woven cellulose fabrics: Effect of nanopolysaccharide coatings on selective particle rejection, antifouling, and antibacterial properties. Nanomaterials 2021, 11, 1752. [Google Scholar] [CrossRef]
- Bahi, A.; Shao, J.; Mohseni, M.; Ko, F.K. Membranes based on electrospun lignin-zeolite composite nanofibers. Sep. Purif. Technol. 2017, 187, 207–213. [Google Scholar] [CrossRef]
- Chellasamy, G.; Kiriyanthan, R.M.; Maharajan, T.; Radha, A.; Yun, K. Remediation of microplastics using bionanomaterials: A review. Environ. Res. 2022, 208, 112724. [Google Scholar] [CrossRef] [PubMed]
- Trache, D.; Hussin, M.H.; Haafiz, M.M.; Thakur, V.K. Recent progress in cellulose nanocrystals: Sources and production. Nanoscale 2017, 9, 1763–1786. [Google Scholar] [CrossRef] [PubMed]
- Rahmanian, V.; Pirzada, T.; Wang, S.; Khan, S.A. Cellulose-based hybrid aerogels: Strategies toward design and functionality. Adv. Mater. 2021, 33, 2102892. [Google Scholar] [CrossRef] [PubMed]
- Wahib, S.A.; Da’na, D.A.; Zaouri, N.; Hijji, Y.M.; Al-Ghouti, M.A. Adsorption and recovery of lithium ions from groundwater using date pits impregnated with cellulose nanocrystals and ionic liquid. J. Hazard. Mater. 2022, 421, 126657. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, L.; Wei, G. Recent advances in the fabrication and environmental science applications of cellulose nanofibril-based functional materials. Materials 2021, 14, 5390. [Google Scholar] [CrossRef]
- Qin, F.; Fang, Z.; Zhou, J.; Sun, C.; Chen, K.; Ding, Z.; Li, G.; Qiu, X. Efficient removal of Cu2+ in water by carboxymethylated cellulose nanofibrils: Performance and mechanism. Biomacromolecules 2019, 20, 4466–4475. [Google Scholar] [CrossRef]
- Keshtkar, A.R.; Tabatabaeefar, A.; Vaneghi, A.S.; Moosavian, M.A. Electrospun polyvinylpyrrolidone/silica/3-aminopropyltriethoxysilane composite nanofiber adsorbent: Preparation, characterization and its application for heavy metal ions removal from aqueous solution. J. Environ. Chem. Eng. 2016, 4, 1248–1258. [Google Scholar] [CrossRef]
- Yousif, A.M.; Labib, S.A.; Ibrahim, I.A.; Atia, A.A. Recovery of Pt (IV) from aqueous solutions using magnetic functionalized cellulose with quaternary amine. Sep. Sci. Technol. 2019, 54, 1257–1268. [Google Scholar] [CrossRef]
- Choi, H.Y.; Bae, J.H.; Hasegawa, Y.; An, S.; Kim, I.S.; Lee, H.; Kim, M. Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water. Carbohydr. Polym. 2020, 234, 115881. [Google Scholar] [CrossRef]
- Hamimed, S.; Abdeljelil, N.; Landoulsi, A.; Chatti, A.; Aljabali, A.A.; Barhoum, A. Bacterial cellulose nanofibers: Biosynthesis, unique properties, modification, and emerging applications. In Handbook of Nanocelluloses: Classification, Properties, Fabrication, and Emerging Applications; Barhoum, A., Ed.; Springer: Cham, Switzerland, 2022; pp. 297–334. [Google Scholar]
- Huang, Y.; Zhu, C.; Yang, J.; Nie, Y.; Chen, C.; Sun, D. Recent advances in bacterial cellulose. Cellulose 2014, 21, 1–30. [Google Scholar] [CrossRef]
- Mahfoudhi, N.; Boufi, S. Nanocellulose as a novel nanostructured adsorbent for environmental remediation: A review. Cellulose 2017, 24, 1171–1197. [Google Scholar] [CrossRef]
- Nata, I.F.; Sureshkumar, M.; Lee, C.-K. One-pot preparation of amine-rich magnetite/bacterial cellulose nanocomposite and its application for arsenate removal. RSC Adv. 2011, 1, 625–631. [Google Scholar] [CrossRef]
- Gao, Y.; He, D.; Wu, L.; Wang, Z.; Yao, Y.; Huang, Z.-H.; Yang, H.; Wang, M.-X. Porous and ultrafine nitrogen-doped carbon nanofibers from bacterial cellulose with superior adsorption capacity for adsorption removal of low-concentration 4-chlorophenol. Chem. Eng. J. 2021, 420, 127411. [Google Scholar] [CrossRef]
- Shen, L.; Wang, J.; Li, Z.; Fan, L.; Chen, R.; Wu, X.; Li, J.; Zeng, W. A high-efficiency Fe2O3@ Microalgae composite for heavy metal removal from aqueous solution. J. Water Process Eng. 2020, 33, 101026. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, B.; Cheng, Q.; Li, X.; Li, Z. Removal of toxic heavy metal ions (Pb, Cr, Cu, Ni, Zn, Co, Hg, and Cd) from waste batteries or lithium cells using nanosized metal oxides: A review. J. Nanosci. Nanotechnol. 2020, 20, 7231–7254. [Google Scholar] [CrossRef]
- Guo, T.; Yao, M.-S.; Lin, Y.-H.; Nan, C.-W. A comprehensive review on synthesis methods for transition-metal oxide nanostructures. CrystEngComm 2015, 17, 3551–3585. [Google Scholar] [CrossRef]
- Xu, P.; Zeng, G.M.; Huang, D.L.; Feng, C.L.; Hu, S.; Zhao, M.H.; Lai, C.; Wei, Z.; Huang, C.; Xie, G.X. Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total Environ. 2012, 424, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Li, X.; Tang, J.; Zhou, Y.; Lin, Q.; Xiao, R.; Zhang, M. Characterization of goethite-fulvic acid composites and their impact on the immobility of Pb/Cd in soil. Chemosphere 2019, 222, 556–563. [Google Scholar] [CrossRef]
- Nalbandian, M.J.; Zhang, M.; Sanchez, J.; Choa, Y.-H.; Nam, J.; Cwiertny, D.M.; Myung, N.V. Synthesis and optimization of Fe2O3 nanofibers for chromate adsorption from contaminated water sources. Chemosphere 2016, 144, 975–981. [Google Scholar] [CrossRef]
- Shi, S.; Xu, C.; Wang, X.; Xie, Y.; Wang, Y.; Dong, Q.; Zhu, L.; Zhang, G.; Xu, D. Electrospinning fabrication of flexible Fe3O4 fibers by sol-gel method with high saturation magnetization for heavy metal adsorption. Mater. Des. 2020, 186, 108298. [Google Scholar] [CrossRef]
- Lin, S.; Xu, M.; Zhang, W.; Hua, X.; Lin, K. Quantitative effects of amination degree on the magnetic iron oxide nanoparticles (MIONPs) using as adsorbents to remove aqueous heavy metal ions. J. Hazard. Mater. 2017, 335, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zeng, G.M.; Huang, D.L.; Yan, M.; Chen, M.; Lai, C.; Jiang, H.; Wu, H.P.; Chen, G.M.; Wan, J. Fabrication of reduced glutathione functionalized iron oxide nanoparticles for magnetic removal of Pb (II) from wastewater. J. Taiwan Inst. Chem. Eng. 2017, 71, 165–173. [Google Scholar] [CrossRef]
- Jia, C.; Zhao, J.; Lei, L.; Kang, X.; Lu, R.; Chen, C.; Li, S.; Zhao, Y.; Yang, Q.; Chen, Z. Novel magnetically separable anhydride-functionalized Fe3O4@ SiO2@ PEI-NTDA nanoparticles as effective adsorbents: Synthesis, stability and recyclable adsorption performance for heavy metal ions. RSC Adv. 2019, 9, 9533–9545. [Google Scholar] [CrossRef]
- Zhang, J.; Zhai, S.; Li, S.; Xiao, Z.; Song, Y.; An, Q.; Tian, G. Pb (II) removal of Fe3O4@ SiO2–NH2 core–shell nanomaterials prepared via a controllable sol–gel process. Chem. Eng. J. 2013, 215, 461–471. [Google Scholar] [CrossRef]
- Zhu, H.; Jia, S.; Wan, T.; Jia, Y.; Yang, H.; Li, J.; Yan, L.; Zhong, C. Biosynthesis of spherical Fe3O4/bacterial cellulose nanocomposites as adsorbents for heavy metal ions. Carbohydr. Polym. 2011, 86, 1558–1564. [Google Scholar] [CrossRef]
- Cao, X.; Alabresm, A.; Chen, Y.P.; Decho, A.W.; Lead, J. Improved metal remediation using a combined bacterial and nanoscience approach. Sci. Total Environ. 2020, 704, 135378. [Google Scholar] [CrossRef]
- Chen, X.; Cui, J.; Xu, X.; Sun, B.; Zhang, L.; Dong, W.; Chen, C.; Sun, D. Bacterial cellulose/attapulgite magnetic composites as an efficient adsorbent for heavy metal ions and dye treatment. Carbohydr. Polym. 2020, 229, 115512. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Yang, S. Simultaneous removal of Co (II) and 1-naphthol by core–shell structured Fe3O4@ cyclodextrin magnetic nanoparticles. Carbohydr. Polym. 2014, 114, 521–529. [Google Scholar] [CrossRef]
- Ebrahimpour, E.; Kazemi, A. Mercury (II) and lead (II) ions removal using a novel thiol-rich hydrogel adsorbent; PHPAm/Fe3O4@ SiO2-SH polymer nanocomposite. Environ. Sci. Pollut. Res. 2023, 30, 13605–13623. [Google Scholar] [CrossRef]
- Mallakpour, S.; Tukhani, M.; Hussain, C.M. Sustainable plant and microbes-mediated preparation of Fe3O4 nanoparticles and industrial application of its chitosan, starch, cellulose, and dextrin-based nanocomposites as catalysts. Int. J. Biol. Macromol. 2021, 179, 429–447. [Google Scholar] [CrossRef] [PubMed]
- Siddeeg, S.M.; Amari, A.; Tahoon, M.A.; Alsaiari, N.S.; Rebah, F.B. Removal of meloxicam, piroxicam and Cd+2 by Fe3O4/SiO2/glycidyl methacrylate-S-SH nanocomposite loaded with laccase. Alex. Eng. J. 2020, 59, 905–914. [Google Scholar] [CrossRef]
- Mu, Y.; Jia, F.; Ai, Z.; Zhang, L. Iron oxide shell mediated environmental remediation properties of nano zero-valent iron. Environ. Sci. Nano 2017, 4, 27–45. [Google Scholar] [CrossRef]
- Crane, R.A.; Scott, T.B. Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. J. Hazard. Mater. 2012, 211, 112–125. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Dwivedi, R.P.; ALOthman, Z.A.; Mola, G.T. Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. J. King Saud Univ.-Sci. 2019, 31, 257–269. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Meng, J.; Liu, X.; Xu, J.; Wang, F.; Brookes, P. Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd (II), Pb (II), and As (III) in aqueous solution and soil. J. Hazard. Mater. 2018, 344, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.M. Assessing the Use and Application of Zero-Valent Iron Nanoparticle Technology for Remediation at Contaminated Sites; Jackson State University: Jackson, MS, USA, 2009. [Google Scholar]
- Lv, X.; Xu, J.; Jiang, G.; Tang, J.; Xu, X. Highly active nanoscale zero-valent iron (nZVI)–Fe3O4 nanocomposites for the removal of chromium (VI) from aqueous solutions. J. Colloid Interface Sci. 2012, 369, 460–469. [Google Scholar] [CrossRef]
- Ken, D.S.; Sinha, A. Recent developments in surface modification of nano zero-valent iron (nZVI): Remediation, toxicity and environmental impacts. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100344. [Google Scholar] [CrossRef]
- Wu, N.; Wei, H.; Zhang, L. Efficient removal of heavy metal ions with biopolymer template synthesized mesoporous titania beads of hundreds of micrometers size. Environ. Sci. Technol. 2012, 46, 419–425. [Google Scholar] [CrossRef]
- Hu, J.; Shipley, H.J. Regeneration of spent TiO2 nanoparticles for Pb (II), Cu (II), and Zn (II) removal. Environ. Sci. Pollut. Res. 2013, 20, 5125–5137. [Google Scholar] [CrossRef]
- Kong, E.D.H.; Chau, J.H.F.; Lai, C.W.; Khe, C.S.; Sharma, G.; Kumar, A.; Siengchin, S.; Sanjay, M.R. GO/TiO2-related nanocomposites as photocatalysts for pollutant removal in wastewater treatment. Nanomaterials 2022, 12, 3536. [Google Scholar] [CrossRef] [PubMed]
- Klapiszewski, Ł.; Siwińska-Stefańska, K.; Kołodyńska, D. Preparation and characterization of novel TiO2/lignin and TiO2-SiO2/lignin hybrids and their use as functional biosorbents for Pb (II). Chem. Eng. J. 2017, 314, 169–181. [Google Scholar] [CrossRef]
- Gebru, K.A.; Das, C. Removal of Pb (II) and Cu (II) ions from wastewater using composite electrospun cellulose acetate/titanium oxide (TiO2) adsorbent. J. Water Process Eng. 2017, 16, 1–13. [Google Scholar] [CrossRef]
- Maleki, A.; Hayati, B.; Najafi, F.; Gharibi, F.; Joo, S.W. Heavy metal adsorption from industrial wastewater by PAMAM/TiO2 nanohybrid: Preparation, characterization and adsorption studies. J. Mol. Liq. 2016, 224, 95–104. [Google Scholar] [CrossRef]
- Ali, F.; Khan, S.B.; Kamal, T.; Alamry, K.A.; Asiri, A.M. Chitosan-titanium oxide fibers supported zero-valent nanoparticles: Highly efficient and easily retrievable catalyst for the removal of organic pollutants. Sci. Rep. 2018, 8, 6260. [Google Scholar] [CrossRef] [PubMed]
- Razzaz, A.; Ghorban, S.; Hosayni, L.; Irani, M.; Aliabadi, M. Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. J. Taiwan Inst. Chem. Eng. 2016, 58, 333–343. [Google Scholar] [CrossRef]
- Chen, J.; Yu, M.; Wang, C.; Feng, J.; Yan, W. Insight into the synergistic effect on selective adsorption for heavy metal ions by a polypyrrole/TiO2 composite. Langmuir 2018, 34, 10187–10196. [Google Scholar] [CrossRef]
- Zhang, X.; Sathiyaseelan, A.; Naveen, K.V.; Lu, Y.; Wang, M.-H. Research progress in green synthesis of manganese and manganese oxide nanoparticles in biomedical and environmental applications—A review. Chemosphere 2023, 337, 139312. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.; Liu, Y.; Xiao, D. Preparation of manganese oxides coated porous carbon and its application for lead ion removal. Carbohydr. Polym. 2019, 219, 306–315. [Google Scholar] [CrossRef]
- Islam, M.A.; Morton, D.W.; Johnson, B.B.; Mainali, B.; Angove, M.J. Manganese oxides and their application to metal ion and contaminant removal from wastewater. J. Water Process Eng. 2018, 26, 264–280. [Google Scholar] [CrossRef]
- Dinh, V.-P.; Le, N.-C.; Nguyen, N.-T.; Tran, Q.-T.; Nguyen, V.-D.; Luu, A.-T.; Hung, N.Q.; Tap, T.D.; Ho, T.-H. Determination of cobalt in seawater using neutron activation analysis after preconcentration by adsorption onto γ-MnO2 nanomaterial. J. Chem. 2018, 2018, 9126491. [Google Scholar] [CrossRef]
- Ashrafi, A.; Rahbar-Kelishami, A.; Shayesteh, H. Highly efficient simultaneous ultrasonic assisted adsorption of Pb (II) by Fe3O4@ MnO2 core-shell magnetic nanoparticles: Synthesis and characterization, kinetic, equilibrium, and thermodynamic studies. J. Mol. Struct. 2017, 1147, 40–47. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Khalifa, M.A.; Al-sherady, M.A.; Mohamed, A.K.; El-Demerdash, F.M. A novel multifunctional sandwiched activated carbon between manganese and tin oxides nanoparticles for removal of divalent metal ions. Powder Technol. 2019, 351, 169–177. [Google Scholar] [CrossRef]
- Dong, L.; Zhu, Z.; Ma, H.; Qiu, Y.; Zhao, J. Simultaneous adsorption of lead and cadmium on MnO2-loaded resin. J. Environ. Sci. 2010, 22, 225–229. [Google Scholar] [CrossRef]
- Zhang, J.; Han, J.; Wang, M.; Guo, R. Fe3O4/PANI/MnO2 core–shell hybrids as advanced adsorbents for heavy metal ions. J. Mater. Chem. A 2017, 5, 4058–4066. [Google Scholar] [CrossRef]
- Yasa, S.; Aydin, O.; Al-Bujasim, M.; Birol, B.; Gencten, M. Recycling valuable materials from the cathodes of spent lithium-ion batteries: A comprehensive review. J. Energy Storage 2023, 73, 109073. [Google Scholar] [CrossRef]
- Creixell, N.T. Resource, Recycling and Waste Challenges for Storage Resources in a 100% Renewable Economy; Universitat Politècnica de Catalunya: Barcelona, Spain, 2018. [Google Scholar]
- Gao, S.-J.; Liu, W.-F.; Fu, D.-J.; Liu, X.-G. Research progress on recovering the components of spent Li-ion batteries. New Carbon Mater. 2022, 37, 435–460. [Google Scholar] [CrossRef]
- Sobianowska-Turek, A.; Urbańska, W.; Janicka, A.; Zawiślak, M.; Matla, J. The necessity of recycling of waste li-ion batteries used in electric vehicles as objects posing a threat to human health and the environment. Recycling 2021, 6, 35. [Google Scholar] [CrossRef]
- Dutta, T.; Kim, K.-H.; Deep, A.; Szulejko, J.E.; Vellingiri, K.; Kumar, S.; Kwon, E.E.; Yun, S.-T. Recovery of nanomaterials from battery and electronic wastes: A new paradigm of environmental waste management. Renew. Sustain. Energy Rev. 2018, 82, 3694–3704. [Google Scholar] [CrossRef]
- Jha, M.K.; Kumari, A.; Jha, A.K.; Kumar, V.; Hait, J.; Pandey, B.D. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone. Waste Manag. 2013, 33, 1890–1897. [Google Scholar] [CrossRef]
- Xu, L.; Chen, C.; Huo, J.-B.; Chen, X.; Yang, J.-C.E.; Fu, M.-L. Iron hydroxyphosphate composites derived from waste lithium-ion batteries for lead adsorption and Fenton-like catalytic degradation of methylene blue. Environ. Technol. Innov. 2019, 16, 100504. [Google Scholar] [CrossRef]
- Chen, S.; Li, Z.; Belver, C.; Gao, G.; Guan, J.; Guo, Y.; Li, H.; Ma, J.; Bedia, J.; Wójtowicz, P. Comparison of the behavior of ZVI/carbon composites from both commercial origin and from spent Li-ion batteries and mill scale for the removal of ibuprofen in water. J. Environ. Manag. 2020, 264, 110480. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Feng, X.; Wang, R.; Wei, W.; Luo, S.; Zheng, R.; Yang, D.; Mi, H.; Chen, H. High-efficiency core-shell magnetic heavy-metal absorbents derived from spent-LiFePO4 Battery. J. Hazard. Mater. 2021, 402, 123583. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Li, Z.; Chen, S.; Gu, W. Zero-valent iron supported on expanded graphite from spent lithium-ion battery anodes and ferric chloride for the degradation of 4-chlorophenol in water. Chemosphere 2022, 290, 133381. [Google Scholar] [CrossRef]
- Jiao, M.; Zhang, Q.; Ye, C.; Gao, R.; Dai, L.; Zhou, G.; Cheng, H.-M. Isolating contiguous Fe atoms by forming a Co–Fe intermetallic catalyst from spent lithium-ion batteries to regulate activity for zinc–air batteries. ACS Nano 2022, 16, 13223–13231. [Google Scholar] [CrossRef]
- Pietrzyk-Thel, P.; Osial, M.; Pregowska, A.; Abramowicz, M.; Nguyen, T.P.; Urbańska, W.; Giersig, M. SPIONs doped with cobalt from the Li-ion battery acid leaching waste as a photocatalyst for tetracycline degradation-synthesis, characterization, DFT studies, and antibiotic treatment. Desalination Water Treat. 2023, 305, 155–173. [Google Scholar] [CrossRef]
- Darezereshki, E.; Vakylabad, A.B.; Hassanzadeh, A.; Niedoba, T.; Surowiak, A.; Koohestani, B. Hydrometallurgical synthesis of nickel nano-sulfides from spent lithium-ion batteries. Minerals 2021, 11, 419. [Google Scholar] [CrossRef]
- Sandhya, C.P.; John, B.; Gouri, C. Synthesis, characterization and electrochemical evaluation of mixed oxides of nickel and cobalt from spent lithium-ion cells. RSC Adv. 2016, 6, 114192–114197. [Google Scholar] [CrossRef]
- Shin, S.-M.; Lee, D.-W.; Wang, J.-P. Fabrication of nickel nanosized powder from linio2 from spent lithium-ion battery. Metals 2018, 8, 79. [Google Scholar] [CrossRef]
- Assefi, M.; Maroufi, S.; Yamauchi, Y.; Sahajwalla, V. Core–shell nanocatalysts of Co3O4 and NiO shells from new (discarded) resources: Sustainable recovery of cobalt and nickel from spent lithium-ion batteries, Ni–Cd batteries, and LCD panel. ACS Sustain. Chem. Eng. 2019, 7, 19005–19014. [Google Scholar] [CrossRef]
- Wu, J.; Guo, G.; Zhu, J.; Cheng, Y.; Cheng, X. Study on the synthesis of NiCo2O4 as lithium-ion battery anode using spent LiNi0.6Co0.2Mn0.2O2 batteries. Ionics 2021, 27, 3793–3800. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Y.; Wen, B.; Liu, X.; Wang, Y.; Du, F.; Ma, M.; Li, L.; Yang, G.; Ding, S. Recovered cobalt-nickel sulfide from spent lithium-ion batteries as an advanced anode material toward sodium-ion batteries. J. Alloys Compd. 2023, 956, 170328. [Google Scholar] [CrossRef]
- Jian-wei, G.; Qiong, W.; Zhao, M. Exhaust emissions of diesel engines with nano-copper additives. Appl. Nanosci. 2020, 10, 1045–1052. [Google Scholar] [CrossRef]
- Bakshi, M.; Kumar, A. Applications of copper nanoparticles in plant protection and pollution sensing: Toward promoting sustainable agriculture. In Copper Nanostructures: Next-Generation of Agrochemicals for Sustainable Agroecosystems; Elsevier: Amsterdam, The Netherlands, 2022; pp. 393–413. [Google Scholar]
- Zhang, W.; Liu, Z.; Xu, C.; He, W.; Li, G.; Huang, J.; Zhu, H. Preparing graphene oxide–copper composite material from spent lithium ion batteries and catalytic performance analysis. Res. Chem. Intermed. 2018, 44, 5075–5089. [Google Scholar] [CrossRef]
- Sena, S.D.S.; da Cruz, J.C.; de Carvalho Teixeira, A.P.; Lopes, R.P. Cr(VI) reduction and adsorption by bimetallic nanoparticles from Li-ion batteries. Environ. Sci. Pollut. Res. 2020, 27, 39211–39221. [Google Scholar] [CrossRef]
- Subramanyan, K.; Akshay, M.; Lee, Y.S.; Aravindan, V. Fabrication of Na-Ion Full-Cells using Carbon-Coated Na3V2 (PO4) 2O2F Cathode with Conversion Type CuO Nanoparticles from Spent Li-Ion Batteries. Small Methods 2022, 6, 2200257. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.-C.; Li, X.-G.; Shi, S.-X.; Wang, Y.-S.; Lyu, X.-J.; Li, G.-Y.; Zhu, X.-N.; Wang, Z. Eco-friendly strategy for advanced recycling waste copper from spent lithium-ion batteries: Preparation of micro-nano copper powder. Sep. Purif. Technol. 2023, 322, 124277. [Google Scholar] [CrossRef]
- da Cruz, J.C.; Silva, R.M.E.; da Silva, G.T.S.T.; Mascaro, L.H.; Ribeiro, C. Recycling spent batteries to green innovation: A CuCo-based composite as an electrocatalyst for CO2 reduction. Sustain. Energy Fuels 2024, 8, 3104–3112. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, K.; Zhang, X.; Peng, C.; Jiang, Y.; Chen, W. Aluminum separation by sulfuric acid leaching-solvent extraction from Al-bearing LiFePO4/C powder for recycling of Fe/P. Waste Manag. 2022, 144, 303–312. [Google Scholar] [CrossRef]
- Zhang, Z.; Qiu, J.; Yu, M.; Jin, C.; Yang, B.; Guo, G. Performance of Al-doped LiNi1/3Co1/3Mn1/3O2 synthesized from spent lithium ion batteries by sol-gel method. Vacuum 2020, 172, 109105. [Google Scholar] [CrossRef]
- Chernyaev, A.; Zhang, J.; Seisko, S.; Louhi-Kultanen, M.; Lundström, M. Fe3+ and Al3+ removal by phosphate and hydroxide precipitation from synthetic NMC Li-ion battery leach solution. Sci. Rep. 2023, 13, 21445. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Qin, Q.; Zhang, H.; Chen, X.; Luo, L.; Li, G.; Zheng, S.; Li, P. Novel Technology for the Removal of Fe and Al from Spent Li-Ion Battery Leaching Solutions by a Precipitation–Complexation Process. ACS Sustain. Chem. Eng. 2022, 10, 13702–13709. [Google Scholar] [CrossRef]
- de Bruin-Dickason, C.; Budnyk, S.; Piątek, J.; Jenei, I.-Z.; Budnyak, T.M.; Slabon, A. Valorisation of used lithium-ion batteries into nanostructured catalysts for green hydrogen from boranes. Mater. Adv. 2020, 1, 2279–2285. [Google Scholar] [CrossRef]
- Junior, A.B.B.; Stopic, S.; Friedrich, B.; Tenório, J.A.S.; Espinosa, D.C.R. Cobalt recovery from Li-ion battery recycling: A critical review. Metals 2021, 11, 1999. [Google Scholar] [CrossRef]
- Mansur, M.B.; Guimarães, A.S.; Petraniková, M. An overview on the recovery of cobalt from end-of-life lithium ion batteries. Miner. Process. Extr. Metall. Rev. 2022, 43, 489–509. [Google Scholar] [CrossRef]
- Yao, L.; Xi, Y.; Xi, G.; Feng, Y. Synthesis of cobalt ferrite with enhanced magnetostriction properties by the sol−gel−hydrothermal route using spent Li-ion battery. J. Alloys Compd. 2016, 680, 73–79. [Google Scholar] [CrossRef]
- Moura, M.N.; Barrada, R.V.; Almeida, J.R.; Moreira, T.F.M.; Schettino, M.A.; Freitas, J.C.C.; Ferreira, S.A.D.; Lelis, M.F.F.; Freitas, M.B.J.G. Synthesis, characterization and photocatalytic properties of nanostructured CoFe2O4 recycled from spent Li-ion batteries. Chemosphere 2017, 182, 339–347. [Google Scholar] [CrossRef]
- Aboelazm, E.A.; Ali, G.A.; Algarni, H.; Yin, H.; Zhong, Y.L.; Chong, K.F. Magnetic electrodeposition of the hierarchical cobalt oxide nanostructure from spent lithium-ion batteries: Its application as a supercapacitor electrode. J. Phys. Chem. C 2018, 122, 12200–12206. [Google Scholar] [CrossRef]
- Lugani, Y.; Kauldhar, B.S.; Kaur, N.; Sooch, B.S. Phenotypic Characterization and Synthesis of Extracellular Catecholase from a Newly Isolated Bacterium pseudomonas sp. BSC-6. Braz. Arch. Biol. Technol. 2019, 62, e19180360. [Google Scholar] [CrossRef]
- Dhiman, S.; Gupta, B. Co3O4 nanoparticles synthesized from waste Li-ion batteries as photocatalyst for degradation of methyl blue dye. Environ. Technol. Innov. 2021, 23, 101765. [Google Scholar] [CrossRef]
- Behura, R.; Sakthivel, R.; Das, N. Synthesis of cobalt ferrite nanoparticles from waste iron ore tailings and spent lithium ion batteries for photo/sono-catalytic degradation of Congo red. Powder Technol. 2021, 386, 519–527. [Google Scholar] [CrossRef]
- Min, X.; Guo, M.; Liu, L.; Li, L.; Gu, J.-N.; Liang, J.; Chen, C.; Li, K.; Jia, J.; Sun, T. Synthesis of MnO2 derived from spent lithium-ion batteries via advanced oxidation and its application in VOCs oxidation. J. Hazard. Mater. 2021, 406, 124743. [Google Scholar] [CrossRef] [PubMed]
- Vakylabad, A.B.; Darezereshki, E.; Hassanzadeh, A. Selective Recovery of Cobalt and Fabrication of Nano-Co3S4 from Pregnant Leach Solution of Spent Lithium-Ion Batteries. J. Sustain. Metall. 2021, 7, 1027–1044. [Google Scholar] [CrossRef]
- Chaudhary, V.; Lakhera, P.; Shrivastav, V.; Kumar, P.; Deep, A. Nanoporous carbon/cobalt composite derived from end-of-life lithium cobalt oxide-type lithium-ion batteries for supercapacitor applications. Ind. Eng. Chem. Res. 2022, 61, 18492–18502. [Google Scholar] [CrossRef]
- Nshizirungu, T.; Rana, M.; Khan, M.I.H.; Jo, Y.T.; Park, J.-H. Innovative green approach for recovering Co2O3 nanoparticles and Li2CO3 from spent lithium-ion batteries. J. Hazard. Mater. Adv. 2023, 9, 100242. [Google Scholar] [CrossRef]
- Balqis, F.; Irmawati, Y.; Geng, D.; Nugroho, F.A.A.; Sumboja, A. Nanostructured Ball-Milled Ni–Co–Mn Oxides from Spent Li-Ion Batteries as Electrocatalysts for Oxygen Evolution Reaction. ACS Appl. Nano Mater. 2023, 7, 18138–18145. [Google Scholar] [CrossRef]
- Ash, S. Mineral Commodity Summaries 2019; US Geological Survey: Reston, VA, USA, 2019. [Google Scholar]
- Winslow, K.M.; Laux, S.J.; Townsend, T.G. A review on the growing concern and potential management strategies of waste lithium-ion batteries. Resour. Conserv. Recycl. 2018, 129, 263–277. [Google Scholar] [CrossRef]
- Mylarappa, M.; Lakshmi, V.V.; Mahesh, K.V.; Nagaswarupa, H.; Raghavendra, N. A facile hydrothermal recovery of nano sealed MnO2 particle from waste batteries: An advanced material for electrochemical and environmental applications. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2016; Volume 149, p. 012178. [Google Scholar]
- Natarajan, S.; Anantharaj, S.; Tayade, R.J.; Bajaj, H.C.; Kundu, S. Recovered spinel MnCo2O4 from spent lithium-ion batteries for enhanced electrocatalytic oxygen evolution in alkaline medium. Dalton Trans. 2017, 46, 14382–14392. [Google Scholar] [CrossRef]
- Nascimento, M.A.; Cruz, J.C.; Rodrigues, G.D.; de Oliveira, A.F.; Lopes, R.P. Synthesis of polymetallic nanoparticles from spent lithium-ion batteries and application in the removal of reactive blue 4 dye. J. Clean. Prod. 2018, 202, 264–272. [Google Scholar] [CrossRef]
- Rahmat, M.; Rehman, A.; Rahmat, S.; Bhatti, H.N.; Iqbal, M.; Khan, W.S.; Jamil, Y.; Bajwa, S.Z.; Sarwar, Y.; Rasul, S. Laser ablation assisted preparation of MnO2 nanocolloids from waste battery cell powder: Evaluation of physico-chemical, electrical and biological properties. J. Mol. Struct. 2019, 1191, 284–290. [Google Scholar] [CrossRef]
- Hao, J.; Meng, X.; Fang, S.; Cao, H.; Lv, W.; Zheng, X.; Liu, C.; Chen, M.; Sun, Z. MnO2-functionalized amorphous carbon sorbents from spent lithium-ion batteries for highly efficient removal of cadmium from aqueous solutions. Ind. Eng. Chem. Res. 2020, 59, 10210–10220. [Google Scholar] [CrossRef]
- Yao, Z.; Huang, Z.; Song, Q.; Tang, Y.; Qiu, R.; Ruan, J. Recovery nano-flake (100 nm thickness) of zero-valent manganese from spent lithium-ion batteries. J. Clean. Prod. 2021, 278, 123867. [Google Scholar] [CrossRef]
- Chen, X.; Deng, F.; Liu, X.; Cui, K.-P.; Weerasooriya, R. Hydrothermal synthesis of MnO2/Fe(0) composites from Li-ion battery cathodes for destructing sulfadiazine by photo-Fenton process. Sci. Total Environ. 2021, 774, 145776. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.; Li, Q.; Cartmell, S.; Ferrara, S.; Deng, Z.D.; Xiao, J. Lithium and lithium ion batteries for applications in microelectronic devices: A review. J. Power Sources 2015, 286, 330–345. [Google Scholar] [CrossRef]
- Swain, B. Recovery and recycling of lithium: A review. Sep. Purif. Technol. 2017, 172, 388–403. [Google Scholar] [CrossRef]
- Santana, I.L.; Moreira, T.F.M.; Lelis, M.F.F.; Freitas, M.B.J.G. Photocatalytic properties of Co3O4/LiCoO2 recycled from spent lithium-ion batteries using citric acid as leaching agent. Mater. Chem. Phys. 2017, 190, 38–44. [Google Scholar] [CrossRef]
- Fan, E.; Li, L.; Zhang, X.; Bian, Y.; Xue, Q.; Wu, J.; Wu, F.; Chen, R. Selective recovery of Li and Fe from spent lithium-ion batteries by an environmentally friendly mechanochemical approach. ACS Sustain. Chem. Eng. 2018, 6, 11029–11035. [Google Scholar] [CrossRef]
- Shangguan, E.; Fu, S.; Wu, S.; Wang, Q.; Wu, C.; Li, J.; Cai, X.; Chang, Z.; Wang, Z.; Li, Q.; et al. Evolution of spent LiFePO4 powders into LiFePO4/C/FeS composites: A facile and smart approach to make sustainable anodes for alkaline Ni-Fe secondary batteries. J. Power Sources 2018, 403, 38–48. [Google Scholar] [CrossRef]
- Song, W.; Liu, J.; You, L.; Wang, S.; Zhou, Q.; Gao, Y.; Yin, R.; Xu, W.; Guo, Z. Re-synthesis of nano-structured LiFePO4/graphene composite derived from spent lithium-ion battery for booming electric vehicle application. J. Power Sources 2019, 419, 192–202. [Google Scholar] [CrossRef]
- Zhang, Y.; Hao, T.; Huang, X.; Duan, J.; Meng, Q.; Wang, D.; Lin, Y.; Xu, M.; Dong, P. Synthesis of high performance nano-over-lithiated oxide coated LiNi0.6Co0.2Mn0.2O2 from spent lithium ion batteries. Mater. Res. Express 2019, 6, 085521. [Google Scholar] [CrossRef]
- Natarajan, S.; Subramani, K.; Lee, Y.-S.; Sathish, M.; Aravindan, V. Sandwich layered Li0.32Al0.68MnO2(OH)2 from spent Li-ion battery to build high-performance supercapacitor: Waste to energy storage approach. J. Alloys Compd. 2020, 827, 154336. [Google Scholar] [CrossRef]
- Joo, S.; Shim, H.-W.; Choi, J.-J.; Lee, C.-G.; Kim, D.-G. A method of synthesizing lithium hydroxide nanoparticles using lithium sulfate from spent batteries by 2-step precipitation method. Korean J. Met. Mater. 2020, 58, 286–291. [Google Scholar] [CrossRef]
- Arif, A.; Xu, M.; Rashid, J.; Saraj, C.S.; Li, W.; Akram, B.; Hu, B. Efficient recovery of lithium cobaltate from spent lithium-ion batteries for oxygen evolution reaction. Nanomaterials 2021, 11, 3343. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, Z.-Y.; Zhang, F.-S. Synthesis of graphene and recovery of lithium from lithiated graphite of spent Li-ion battery. Waste Manag. 2021, 124, 283–292. [Google Scholar] [CrossRef]
- Schauerman, C.M.; Ganter, M.J.; Gaustad, G.; Babbitt, C.W.; Raffaelle, R.P.; Landi, B.J. Recycling single-wall carbon nanotube anodes from lithium ion batteries. J. Mater. Chem. 2012, 22, 12008–12015. [Google Scholar] [CrossRef]
- Natarajan, S.; Lakshmi, D.S.; Bajaj, H.C.; Srivastava, D.N. Recovery and utilization of graphite and polymer materials from spent lithium-ion batteries for synthesizing polymer–graphite nanocomposite thin films. J. Environ. Chem. Eng. 2015, 3 Pt A, 2538–2545. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, X.; Wu, F.; Yao, Y.; Yuan, Y.; Bi, X.; Luo, X.; Shahbazian-Yassar, R.; Zhang, C.; Amine, K. Mesocarbon Microbead Carbon-Supported Magnesium Hydroxide Nanoparticles: Turning Spent Li-ion Battery Anode into a Highly Efficient Phosphate Adsorbent for Wastewater Treatment. ACS Appl. Mater. Interfaces 2016, 8, 21315–21325. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, S.; Ede, S.R.; Bajaj, H.C.; Kundu, S. Environmental benign synthesis of reduced graphene oxide (rGO) from spent lithium-ion batteries (LIBs) graphite and its application in supercapacitor. Colloids Surf. A Physicochem. Eng. Asp. 2018, 543, 98–108. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, H.; Xue, R.; Yue, L.; Li, Q.; Liu, H.; Yang, W.; Wang, X.; Yang, W. In-situ facile synthesis of flower shaped NiS2@regenerative graphene oxide derived from waste dry battery nano-composites for high-performance supercapacitors. J. Energy Storage 2020, 31, 101630. [Google Scholar] [CrossRef]
- Azam, M.G.; Kabir, M.H.; Shaikh, M.A.A.; Ahmed, S.; Mahmud, M.; Yasmin, S. A rapid and efficient adsorptive removal of lead from water using graphene oxide prepared from waste dry cell battery. J. Water Process Eng. 2022, 46, 102597. [Google Scholar] [CrossRef]
- Kumar, K.Y.; Prashanth, M.; Shanavaz, H.; Parashuram, L.; Alharethy, F.; Jeon, B.-H.; Devi, V.A.; Raghu, M. Spent Li-ion batteries derived synthesis of boron doped RGO-Bi2WO6 for photocatalytic degradation of antibiotics. Appl. Surf. Sci. Adv. 2024, 19, 100569. [Google Scholar] [CrossRef]
- Xie, Z.; Zhang, D.; Yang, B.; Qu, T.; Liang, F. Regulation of high value-added carbon nanomaterials by DC arc plasma using graphite anodes from spent lithium-ion batteries. Waste Manag. 2024, 174, 88–95. [Google Scholar] [CrossRef]
- Zhu, X.; Xiao, J.; Chen, Y.; Tang, L.; Hou, H.; Yao, Z.; Zhang, Z.; Zhong, Q. A high-performance nano-Sn/G@C composite anode prepared by waste carbon residue from spent Lithium-ion batteries. Chem. Eng. J. 2022, 450, 138113. [Google Scholar] [CrossRef]
- Bejigo, K.S.; Natarajan, S.; Bhunia, K.; Elumalai, V.; Kim, S.-J. Recycling of value-added products from spent lithium-ion batteries for oxygen reduction and methanol oxidation reactions. J. Clean. Prod. 2023, 384, 135520. [Google Scholar] [CrossRef]
- Ding, Y.; Cano, Z.P.; Yu, A.; Lu, J.; Chen, Z. Automotive Li-ion batteries: Current status and future perspectives. Electrochem. Energy Rev. 2019, 2, 1–28. [Google Scholar] [CrossRef]
- Faunce, T.A.; Prest, J.; Su, D.; Hearne, S.J.; Iacopi, F. On-grid batteries for large-scale energy storage: Challenges and opportunities for policy and technology. MRS Energy Sustain. 2018, 5, E11. [Google Scholar] [CrossRef]
- He, X.; Zhang, X. A comprehensive review of supercapacitors: Properties, electrodes, electrolytes and thermal management systems based on phase change materials. J. Energy Storage 2022, 56, 106023. [Google Scholar] [CrossRef]
- Chitre, A.; Freake, D.; Lander, L.; Edge, J.; Titirici, M.M. Towards a more sustainable lithium-ion battery future: Recycling libs from electric vehicles. Batter. Supercaps 2020, 3, 1126–1136. [Google Scholar] [CrossRef]
Energy Storage System | Mechanism and Efficiency | Limitations | Recent Advancements |
---|---|---|---|
System to store compressed air (CAES) | Accumulating energy through air compression and storing it in chambers under the ground. Efficiency: 42–54% [18] | Requires specific geological formations, high initial costs, relatively low efficiency [20] | Hybrid CAES systems integrating renewable energy, adiabatic CAES designs, using abandoned mines and aquifers [21] |
Pumped Hydroelectric Storage | Pumping water to a higher level and discharging it through turbines. Efficiency: 70–85% [24] | Needs large geographic areas with suitable elevation, potential environmental impact on ecosystems, high construction costs [25] | Variable speed pump turbines, using existing water bodies, development of small-scale systems [25] |
Lead–Acid Batteries | Using chemical reactions between lead and sulfuric acid to store and release energy. Efficiency: 70–80% [32] | Heavy, low energy density, sensitive to temperature variations, limited cycle life, environmental concerns, and depth of discharge [31,33] | Advanced lead–carbon batteries, efficient recycling methods to mitigate environmental impact [27,31] |
Lithium-Ion Batteries (LIBs) | Lithium-ion batteries use lithium ions between the cathode and anode, offering high energy density, fast charging, long cycle life, and 85–95% efficiency depending on configuration and usage [34]. | Safety concerns include overheating, thermal runaway, limited lifespan from degradation, environmental impact due to rare materials, reduced capacity in extreme temperatures, and high production costs [34]. | Nanotechnology enhances energy capacity, cycle life, and safety. Nanoparticles like nickel, cobalt, and aluminum improve thermal stability, charge rates, and overall performance by reducing internal resistance and overheating risks [34,35]. |
Nanoparticle Type | Examples | Mechanism of Action | Advantages | Achieved Performance | References |
---|---|---|---|---|---|
Metallic Nanoparticles | Nickel (Ni) | High surface area, enhances electron transport, reduces resistance, and stabilizes SEI layer. | Improves fast charging and discharging rates, high power densities, and enhanced stability. | Charge capacity of 253.1 mAh/g at 3.7 C discharge, retains 80% capacity after 20 cycles. | [37,38,39,40] |
Cobalt (Co) | Catalytic properties enhance redox reactions and heat dissipation. | Improves battery stability by reducing overheating, enhancing charge-discharge rates, and safety. | Specific capacity of 274 mAh/g, enhances thermal stability, and prevents thermal runaway. | [36,41] | |
Aluminum (Al) | Creates conductive networks, reduces mechanical stress, and acts as a catalyst for redox reactions. | Reduces weight, improves mechanical integrity, boosts overall energy efficiency, and increases battery life. | Theoretical capacity of 993 mAh/g and improves power density and battery lifespan. | [42,43,44] | |
Hybrid (Ni-Co-Al) | Combines high conductivity and thermal stability. | Achieves superior battery performance with high capacity, enhanced conductivity, and mechanical strength. | NMC811 shows 80% Ni content, 10% Co, and 10% Mn, achieving superior energy and power performance in EVs. | [45,46,47] | |
Carbon-Based Nanoparticles | Graphene | Large surface area, high conductivity, structural robustness, and temperature conductivity. | Boosts electron transport and facilitates fast lithium-ion movement, enhances cycle stability and energy density. | Graphene anodes show capacities as high as 1513.2 mAh/g and maintain 260.3 mAh/g after 1100 cycles. | [36,48,49,50] |
Carbon Nanotubes (CNTs) | High electron mobility, provides active sites for lithium storage, improves safety by dissipating heat and reducing dendrites. | Enhances energy density, provides mechanical stability, prevents overheating and cracking. | CNT-enhanced batteries maintain structural integrity and performance over long charge/discharge cycles, showing high-capacity retention. | [36,48] | |
Carbon Nanofibers (CNFs) | High electrical conductivity and mechanical strength, providing continuous pathways for electron movement. | Facilitates rapid electron transport, improves energy efficiency, and reduces internal resistance. | CNFs improve specific capacity and provide enhanced power capabilities. | [36,51,52] | |
Other Nanoparticles | Transition Metal Oxides (e.g., MnO2, TiO2) | Undergoes conversion reactions allowing higher capacity storage and enhances electron transport. | Boosts capacity, thermal stability, and battery safety. | MnO shows high specific capacities and improved battery stability, with excellent potential for cost-effective applications. | [35,45,55] |
Polymer-based Nanoparticles | Provides flexible structure for lithium-ion storage and intercalation, improves ion conductivity, and electrochemical stability. | Increases specific capacity, enhances thermal stability, and reduces the overall weight of the battery while maintaining performance. | Silicon polymer matrix composites maintain 90% capacity after 500 cycles, showing significant potential for long-term use. | [59] | |
Silicon Nanoparticles | High lithium-ion storage capability with significant volume expansion accommodated by flexible matrices. | Achieves superior capacity compared to traditional graphite anodes, provides higher energy storage. | Gravimetric capacity of 4200 mAh/g with over 90% retention over 500 cycles. | [60,61] | |
Vanadium Sulfide (VS2) | Layered structure facilitates rapid lithium-ion diffusion and provides high specific capacities. | Enhances charge and discharge rates, allows for high lithium-ion diffusion rates. | Intercalation improved capacity from 80 mAh/g to 130 mAh/g. | [57,58] |
Nano-Composition of Lithium-Ion Batteries | Thermal Analysis Tools Used | Characteristics of Enhanced/Results of Study | References |
---|---|---|---|
Li4Ti5O12/TiO2 nanocomposite | DSC | Improved thermal stability, Exceptional rate capability Cycling stability | [100] |
Nanosized delithiated LiFePO4, LCO | DSC | Thermal stability of the material was dependent on their structural stability. Nanosized LCO demonstrated reduced thermal stability due to its propensity for oxygen release. | [99] |
LiMn2O4 nanoparticles | DSC | Exhibits a relatively low surface energy Enhanced stability against particle coarsening and reactivity with water | [101] |
Nanosized CoO anode material | TGA | Detection of excess oxygen content Enhanced energy storage capacity | [103] |
Paraffin-based nanocomposites (graphene or hexagonal boron-nitride nanosheets) | TCA | Improved the thermal conductivity Overall thermal performance of battery was not substantially enhanced | [111] |
Nano-Li4Ti5O12 powders synthesized with acrylic acid, lithium nitrate, and tetrabutyl titanate | TGA-DTA-XRD-SEM | Excellent electrochemical performance Effective rate execution with a capacity of 122 mAh/g charge at 10 C | [110] |
Nanosized TiO2 filler with ceramics integrated along with electrolyte of PVC-PEMA made up polymeric gel composite | DSC-TGA-FTIR-SEM | Improved ionic conductivity Enhanced thermal stability Enhanced Li+ ion transference number Better interfacial properties with metallic lithium anode Improved electrochemical performance | [116] |
Nanocrystalline carbon coated LiFePO4 cathode material | TG—DSC-FESEM -TEM—XRD—Raman Spectroscopy—FTIR—Moss-Bauer spectroscopy | Good cyclic performance and rate capability High power and high energy densities Excellent initial discharge capacity | [118] |
LiCoPO4 nanoparticles for Li-ion battery cathode material | TGA-XRD-FESEM | Enhanced electrochemical performance Increased initial discharge capacity. | [121] |
Carbon Nano Fibers (CNFs) coated with LiFePO4 particles | TG-DTA-Raman-XRD, SEM, XPS | Enhanced electrochemical performance Higher specific capacity | [122] |
CoFe2O4 nanoparticles from waste Li-ion batteries | TGA-DSC-DTA-CV-EIS-XRD-SEM-FTIR | Enhanced electrochemical properties Higher capacitance Thermally stable | [108] |
Nanosized anode of Co3O4 recycled from spent LIBs | TGA/DTA-XRD-SEM | 760.9 mA h g−1 of capacity to discharge capacity 99.7% of efficiency towards Coulomb Outstanding cycling performance 442.3 mA h g−1 of capacity to reverse reaction | [109] |
Nanostructured, porous and flexible Co3O4 electrodes for LIB anode | DSC-TGA-XRD-SEM-TEM | High energy density High specific capacity Large surface area as well as reduced distances for ionic and charge transport | [123] |
Nanoparticles of iron lithium phosphate coated with carbon (LiFePO4/C) | TGA-DTA-DSC-XRD-FESEM-TEM-CV-Raman | Improved electronic conductivity Increase in rate capability. High discharge capacity | [124] |
LiMn0.5Ni0.5O2 (layered) LiMn0.4Ni0.4Co0.2O2 (layered) LiMn0.33Ni0.33Co0.33O2 (layered) Spinel LiMn1.5Ni0.5O4 as cutting-edge LIB cathode | TGA-ARC-TGA-XRD-MS-Raman-FTIR-ICP | Excellent electrochemical performance Enhanced energy density and cycle life Thermal stability and weight loss cathode stability maintained after numerous recharge cycles | [119] |
Mineral | Material Name | Method | Application | Reference |
---|---|---|---|---|
Iron | Iron hydrophosphate composites | Hydrothermal treatment | Removal of organic dyes | [228] |
Zero-valent iron/carbon (ZVI/C) | Carbothermic and ball milling | Removal of Ibuprofen | [229] | |
Magnetic material Mm@SiO2 | Alkaline leaching | Removal of heavy metal pollutants | [230] | |
Zero-valent iron-supported graphite composite | Acid treatment and carbothermal reduction | 4-chlorophenol | [231] | |
CoFe (cobalt ferrous) nanoparticles | Reduction at 800 °C | Cathode for Zn-air batteries | [232] | |
Co-doped SPIONs | Acid and peroxide treatment, Precipitation | Removal of pharmaceuticals, dyes and organics | [233] | |
Nickel | Nickel and cobalt oxides | Chemical precipitation and microwave heating | Electrical performance | [235] |
Nickel nanoparticles | Leaching and reduction (hydrazine monohydrate & NaoH) | - | [236] | |
NiO nanomaterials | Hydrometallurgy and precipitation | Removal of methylene blue and organics | [237] | |
Nickel nano sulfide | Hydrometallurgy and thermal treatment in the presence of xanthates | - | [234] | |
NiCo2O4 nanosphere | Hydrometallurgy and sol–gel methods | Anode material | [238] | |
CoNi-MOF composites | Hydrothermal and sulfidation | Anode material | [239] | |
Copper | Graphene oxide-copper composites | Calcination and adsorption | Photodegradation of methylene blue dye | [242] |
Bimetallic Cu and Co nanoparticles | Acid leaching and reduction | Hexavalent chromium removal | [243] | |
CuO nanoparticles | Fabrication | CuO anode for sodium ion full cells | [244] | |
Nano copper | Reduction | Value added product | [245] | |
Copper-cobalt composite | Deposition fabrication | Catalyzing electrochemical reduction | [246] | |
Aluminum | Al-doped LiNi1/3-xCo1/3Mn1/3AlxO2 | Sol–gel and calcination method | Cathode material | [248] |
Trivalent iron and aluminum | Acid leaching and phosphate hydroxide precipitation | - | [249] | |
Al(PO3)3 | Precipitation and phytate complexation | - | [250] | |
Cobalt | Nano-Co3O4 | Hydrometallurgical process | Anode material | [206] |
Cobalt ferrite (CoFe2O4) magnetic material | Sol–gel and sintering | Automotive sensors | [254] | |
Spinel-type cobalt ferrite | Co-precipitation method | Methyl blue removal | [255] | |
Co2O3 nanostructures | Magnetic electrodeposition | Electrode material | [256] | |
Core-shell Co3O4 nanoshells | Hydrometallurgy and precipitation | Methyl blue & organics decomposition | [237] | |
Nano-Co3O4 | Sol–gel method | Anode material | [257] | |
Bimetallic cobalt and copper nanoparticle | Acid leaching, reduction, and thermal treatment | Cr(VI) removal | [243] | |
Co3O4 photocatalyst nanoparticle | Leaching and precipitation | Methyl blue removal | [258] | |
Cobalt ferrite nanoparticles (CoFe2O4 NPs) | Co-precipitation | Photo/sono- catalytic degradation of the Congo red dye | [259] | |
Nanosized cobalt species | Mechanochemical reaction | Value added material | [260] | |
Nano Co3S4 powder | Selective extraction and ammonium precipitation | Electrical conductivity | [261] | |
Nanoporous carbon/cobalt (NPC@Co) composites | Leaching, precipitation, and nitrogen exposure | Supercapacitor application | [262] | |
Co2O3 | Subcritical water-assisted leaching and calcination | Industrial application | [263] | |
Ni-Co-Mn oxides | Mechanochemical process | Electrocatalyst | [264] | |
Manganese | Nano-sealed MnO2 particles | Reductive leaching | Photocatalytic degradation of dyes | [267] |
Polymetallic (Cu, Co, Ni, & Mn) nanoparticle | Acid extraction and reduction | Removal of reactive blue 4 dye | [269] | |
MnO2 nanocolloids | Laser ablation technique | Antimicrobial agents and electrical properties | [270] | |
AG@MnO2 nanomaterial | Ball milling | Treating wastewater | [271] | |
Manganese nano-flakes | Vacuum reduction, gasification-condensation technology | Value added material | [272] | |
MnO2/Fe(0) nanocomposites | Hydrothermal method | Sulfadiazine degradation | [273] | |
Transition metal-doped MnO2 nanorods | Advanced oxidation | Catalyst | [260] | |
Lithium | Co3O4/LiCoO2 particles | Green leaching through citric acid | Photocatalyst | [276] |
Li and Fe particles | Mechanochemical approach using oxalic acid and ball milling | Product | [277] | |
LiFePO4/C/FeS composites | Ball milling | Anode for battery with Ni-Fe | [278] | |
Composite of RGO/LiFePO4 | Hummer’s reduction and hydrothermal method | Li-ion batteries | [279] | |
Nanosized LiNi0.6Co0.2Mn0.2O2 coated with overlithiated oxide | Precipitation and thermal processing | Value added product | [280] | |
Lithioporite (Li0.32Al0.68MnO2(OH)2/orange peel nanoporous carbon composite) | Leaching, co-precipitation, and thermal processing | Cathode material | [281] | |
Lithium hydroxide nanoparticle | Two-step precipitation | Oxygen evolution reaction in water splitting | [283] | |
Graphite | Single-walled carbon nanotube | Thermal and acidic treatment | Li+ coin cells | [284] |
Graphene nanomaterial | Sonication-assisted liquid phase exfoliation method | Product | [287] | |
Polymer-graphite nanocomposites thin films | Intercalation technique | Product | [286] | |
Mesocarbon microbead-supported magnesium hydroxide nanoparticles | Graphite separation and magnesium oxide treatment | Phosphate adsorbent | [287] | |
Reduced graphene oxides | Hummer’s method | Supercapacitance | [288] | |
Nano-structured LiFePO4/graphene composites | Closed-loop synthesis | Electrical applications | [279] | |
Nano regenerative graphene oxide-NiS2 | Two-step hydrothermal method | Super capacitance | [289] | |
Graphene-oxide nanomaterial | Hummer’s method | Removal of lead contamination | [290] | |
Nano-Sn/G@C (nano-Sn/Graphite@Carbon) composite | Roasting and carbothermal reduction | Anode material | [293] | |
Co3O4/rGO | Lixivation and oxidation | Catalytic activity | [294] | |
Reduced graphene oxide doped with boron (RGO-Bi2WO6) nanocomposites | Hummer’s method | Photocatalytic degradation of antibiotics in water | [291] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asamoah, G.A.; Korsah, M.; Jeyasundar, P.G.S.A.; Ahmed, M.; Lau, S.Y.; Danquah, M.K. Nanotechnology-Based Lithium-Ion Battery Energy Storage Systems. Sustainability 2024, 16, 9231. https://doi.org/10.3390/su16219231
Asamoah GA, Korsah M, Jeyasundar PGSA, Ahmed M, Lau SY, Danquah MK. Nanotechnology-Based Lithium-Ion Battery Energy Storage Systems. Sustainability. 2024; 16(21):9231. https://doi.org/10.3390/su16219231
Chicago/Turabian StyleAsamoah, George Adu, Maame Korsah, Parimala Gnana Soundari Arockiam Jeyasundar, Meraj Ahmed, Sie Yon Lau, and Michael K. Danquah. 2024. "Nanotechnology-Based Lithium-Ion Battery Energy Storage Systems" Sustainability 16, no. 21: 9231. https://doi.org/10.3390/su16219231
APA StyleAsamoah, G. A., Korsah, M., Jeyasundar, P. G. S. A., Ahmed, M., Lau, S. Y., & Danquah, M. K. (2024). Nanotechnology-Based Lithium-Ion Battery Energy Storage Systems. Sustainability, 16(21), 9231. https://doi.org/10.3390/su16219231