Waste-Cooking-Oil-Derived Polyols to Produce New Sustainable Rigid Polyurethane Foams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Bio-Based Polyols
2.2.1. Epoxidation
2.2.2. Oxirane Rings’ Opening
2.3. Polyurethane Foam Production
2.4. Characterization
2.4.1. H-NMR Analysis
2.4.2. Fourier-Transform Infrared Spectroscopy
2.4.3. Gel Permeation Chromatography
2.4.4. Morphological Analysis
2.4.5. Density Measurement
2.4.6. Thermal Analysis
2.4.7. Compression Tests
3. Results and Discussions
3.1. Characterization of EOs and POs
3.2. Foam Characterization
3.2.1. Morphological Analysis
3.2.2. Density Measurement
3.2.3. FTIR Analysis
3.2.4. Thermal Analysis
3.2.5. Compression Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polyurethane Global Market Volume 2015–2030. Available online: https://www.statista.com/statistics/720341/global-polyurethane-market-size-forecast/ (accessed on 9 October 2024).
- Khatoon, H.; Iqbal, S.; Irfan, M.; Darda, A.; Rawat, N.K. A Review on the Production, Properties and Applications of Non-Isocyanate Polyurethane: A Greener Perspective. Prog. Org. Coat. 2021, 154, 106124. [Google Scholar] [CrossRef]
- Werlinger, F.; Caballero, M.P.; Trofymchuk, O.S.; Flores, M.E.; Moreno-Villoslada, I.; Cruz-Martínez, F.D.L.; Castro-Osma, J.A.; Tejeda, J.; Martínez, J.; Lara-Sánchez, A. Turning Waste into Resources. Efficient Synthesis of Biopolyurethanes from Used Cooking Oils and CO2. J. CO2 Util. 2024, 79, 102659. [Google Scholar] [CrossRef]
- Campana, F.; Brufani, G.; Mauriello, F.; Luque, R.; Vaccaro, L. Green Polyurethanes from Bio-Based Building Blocks: Recent Advances and Applications. Green Synth. Catal. 2024, S2666554924000875. [Google Scholar] [CrossRef]
- Delavarde, A.; Savin, G.; Derkenne, P.; Boursier, M.; Morales-Cerrada, R.; Nottelet, B.; Pinaud, J.; Caillol, S. Sustainable Polyurethanes: Toward New Cutting-Edge Opportunities. Prog. Polym. Sci. 2024, 151, 101805. [Google Scholar] [CrossRef]
- Rayung, M.; Ghani, N.A.; Hasanudin, N. A Review on Vegetable Oil-Based Non Isocyanate Polyurethane: Towards a Greener and Sustainable Production Route. RSC Adv. 2024, 14, 9273–9299. [Google Scholar] [CrossRef] [PubMed]
- Phung Hai, T.A.; Tessman, M.; Neelakantan, N.; Samoylov, A.A.; Ito, Y.; Rajput, B.S.; Pourahmady, N.; Burkart, M.D. Renewable Polyurethanes from Sustainable Biological Precursors. Biomacromolecules 2021, 22, 1770–1794. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; De Hoop, C.F.; Xie, J.; Wu, Q.; Boldor, D.; Qi, J. High Bio-Content Polyurethane (PU) Foam Made from Bio-Polyol and Cellulose Nanocrystals (CNCs) via Microwave Liquefaction. Mater. Des. 2018, 138, 11–20. [Google Scholar] [CrossRef]
- Szpiłyk, M.; Lubczak, R.; Walczak, M.; Lubczak, J. Polyol and Polyurethane Foam from Cellulose Hydrolysate. J. Chem. Technol. Biotechnol. 2021, 96, 881–889. [Google Scholar] [CrossRef]
- Szpiłyk, M.; Lubczak, R.; Lubczak, J. The Biodegradable Cellulose-Derived Polyol and Polyurethane Foam. Polym. Test. 2021, 100, 107250. [Google Scholar] [CrossRef]
- Prociak, A.; Rojek, P.; Pawlik, H. Flexible Polyurethane Foams Modified with Natural Oil Based Polyols. J. Cell. Plast. 2012, 48, 489–499. [Google Scholar] [CrossRef]
- Kong, X.; Zhao, L.; Curtis, J.M. Polyurethane Nanocomposites Incorporating Biobased Polyols and Reinforced with a Low Fraction of Cellulose Nanocrystals. Carbohydr. Polym. 2016, 152, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Marcovich, N.E.; Kurańska, M.; Prociak, A.; Malewska, E.; Kulpa, K. Open Cell Semi-Rigid Polyurethane Foams Synthesized Using Palm Oil-Based Bio-Polyol. Ind. Crops Prod. 2017, 102, 88–96. [Google Scholar] [CrossRef]
- Prociak, A.; Kurańska, M.; Cabulis, U.; Ryszkowska, J.; Leszczyńska, M.; Uram, K.; Kirpluks, M. Effect of Bio-Polyols with Different Chemical Structures on Foaming of Polyurethane Systems and Foam Properties. Ind. Crops Prod. 2018, 120, 262–270. [Google Scholar] [CrossRef]
- Kurańska, M.; Polaczek, K.; Auguścik-Królikowska, M.; Prociak, A.; Ryszkowska, J. Open-Cell Rigid Polyurethane Bio-Foams Based on Modified Used Cooking Oil. Polymer 2020, 190, 122164. [Google Scholar] [CrossRef]
- Kurańska, M.; Leszczyńska, M.; Kubacka, J.; Prociak, A.; Ryszkowska, J. Effects of Modified Used Cooking Oil on Structure and Properties of Closed-Cell Polyurethane Foams. J. Polym. Env. 2020, 28, 2780–2788. [Google Scholar] [CrossRef]
- Prociak, A.; Kurańska, M.; Uram, K.; Wójtowicz, M. Bio-Polyurethane Foams Modified with a Mixture of Bio-Polyols of Different Chemical Structures. Polymers 2021, 13, 2469. [Google Scholar] [CrossRef] [PubMed]
- Coman, A.E.; Peyrton, J.; Hubca, G.; Sarbu, A.; Gabor, A.R.; Nicolae, C.A.; Iordache, T.V.; Averous, L. Synthesis and Characterization of Renewable Polyurethane Foams Using Different Biobased Polyols from Olive Oil. Eur. Polym. J. 2021, 149, 110363. [Google Scholar] [CrossRef]
- Polaczek, K.; Kurańska, M.; Prociak, A. Open-Cell Bio-Polyurethane Foams Based on Bio-Polyols from Used Cooking Oil. J. Clean. Prod. 2022, 359, 132107. [Google Scholar] [CrossRef]
- Doke, R.B.; Paraskar, P.M.; Rajput, Y.N.; Kulkarni, R.D. Synthesis and Characterization of Green Polyurethane Coatings Derived from Niger-Seed-Oil-Based Polyesteramide Polyols. Eur. J. Lipid Sci. Technol. 2022, 124, 2100171. [Google Scholar] [CrossRef]
- Vijayan, J.G.; Chandrashekar, A.; Ag, J.; Prabhu, T.N.; Kalappa, P. Polyurethane and Its Composites Derived from Bio-Sources: Synthesis, Characterization and Adsorption Studies. Polym. Polym. Compos. 2022, 30, 096739112211103. [Google Scholar] [CrossRef]
- Xu, Q.; Lin, J.; Jiang, G. Synthesis, Characterization and Properties of Soybean Oil-Based Polyurethane. Polymers 2022, 14, 2201. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Dave, M.; Wilkes, G.L. Characterization of Flexible Polyurethane Foams Based on Soybean-based Polyols. J. Appl. Polym. Sci. 2009, 112, 299–308. [Google Scholar] [CrossRef]
- Chavarro Gomez, J.; Zakaria, R.; Aung, M.M.; Mokhtar, M.N.; Yunus, R.B. Characterization of Novel Rigid-Foam Polyurethanes from Residual Palm Oil and Algae Oil. J. Mater. Res. Technol. 2020, 9, 16303–16316. [Google Scholar] [CrossRef]
- Asare, M.A.; De Souza, F.M.; Gupta, R.K. Waste to Resource: Synthesis of Polyurethanes from Waste Cooking Oil. Ind. Eng. Chem. Res. 2022, 61, 18400–18411. [Google Scholar] [CrossRef]
- Kaikade, D.S.; Sabnis, A.S. Polyurethane Foams from Vegetable Oil-Based Polyols: A Review. Polym. Bull. 2023, 80, 2239–2261. [Google Scholar] [CrossRef] [PubMed]
- Petrović, Z.S.; Wan, X.; Bilić, O.; Zlatanić, A.; Hong, J.; Javni, I.; Ionescu, M.; Milić, J.; Degruson, D. Polyols and Polyurethanes from Crude Algal Oil. J. Am. Oil Chem. Soc. 2013, 90, 1073–1078. [Google Scholar] [CrossRef]
- Kumar, S.; Hablot, E.; Moscoso, J.L.G.; Obeid, W.; Hatcher, P.G.; DuQuette, B.M.; Graiver, D.; Narayan, R.; Balan, V. Polyurethanes Preparation Using Proteins Obtained from Microalgae. J. Mater. Sci. 2014, 49, 7824–7833. [Google Scholar] [CrossRef]
- Patil, C.K.; Jirimali, H.D.; Paradeshi, J.S.; Chaudhari, B.L.; Alagi, P.K.; Hong, S.C.; Gite, V.V. Synthesis of Biobased Polyols Using Algae Oil for Multifunctional Polyurethane Coatings. Green Mater. 2018, 6, 165–177. [Google Scholar] [CrossRef]
- Patil, C.K.; Jirimali, H.D.; Paradeshi, J.S.; Chaudhari, B.L.; Alagi, P.K.; Mahulikar, P.P.; Hong, S.C.; Gite, V.V. Chemical Transformation of Renewable Algae Oil to Polyetheramide Polyols for Polyurethane Coatings. Prog. Org. Coat. 2021, 151, 106084. [Google Scholar] [CrossRef]
- Phung Hai, T.A.; Neelakantan, N.; Tessman, M.; Sherman, S.D.; Griffin, G.; Pomeroy, R.; Mayfield, S.P.; Burkart, M.D. Flexible Polyurethanes, Renewable Fuels, and Flavorings from a Microalgae Oil Waste Stream. Green Chem. 2020, 22, 3088–3094. [Google Scholar] [CrossRef]
- Peyrton, J.; Chambaretaud, C.; Sarbu, A.; Avérous, L. Biobased Polyurethane Foams Based on New Polyol Architectures from Microalgae Oil. ACS Sustain. Chem. Eng. 2020, 8, 12187–12196. [Google Scholar] [CrossRef]
- Ranjbar, S.; Malcata, F.X. Challenges and Prospects for Sustainable Microalga-Based Oil: A Comprehensive Review, with a Focus on Metabolic and Genetic Engineering. Fuel 2022, 324, 124567. [Google Scholar] [CrossRef]
- Sawpan, M.A. Polyurethanes from Vegetable Oils and Applications: A Review. J Polym. Res. 2018, 25, 184. [Google Scholar] [CrossRef]
- Cargill. BiOH Soy-Based Polyols and Polymers. Available online: https://www.cargill.com/bioindustrial/foams (accessed on 24 August 2024).
- BASF. Sovermol, Natural-Oil Polyols. Available online: https://www.basf.com/us/en/products/General-Business-Topics/dispersions/Products/sovermol (accessed on 24 August 2024).
- Macalino, A.; Salen, V.; Reyes, L. Castor Oil Based Polyurethanes: Synthesis and Characterization. IOP Conf. Ser. Mater. Sci. Eng. 2017, 229, 012016. [Google Scholar] [CrossRef]
- Bresolin, D.; Valério, A.; De Oliveira, D.; Lenzi, M.K.; Sayer, C.; De Araújo, P.H.H. Polyurethane Foams Based on Biopolyols from Castor Oil and Glycerol. J. Polym. Environ. 2018, 26, 2467–2475. [Google Scholar] [CrossRef]
- Saha, P.; Khomlaem, C.; Aloui, H.; Kim, B.S. Biodegradable Polyurethanes Based on Castor Oil and Poly (3-Hydroxybutyrate). Polymers 2021, 13, 1387. [Google Scholar] [CrossRef]
- De Oliveira, B.P.; Balieiro, L.C.S.; Maia, L.S.; Zanini, N.C.; Teixeira, E.J.O.; Da Conceição, M.O.T.; Medeiros, S.F.; Mulinari, D.R. Eco-Friendly Polyurethane Foams Based on Castor Polyol Reinforced with Açaí Residues for Building Insulation. J. Mater. Cycles Waste Manag. 2022, 24, 553–568. [Google Scholar] [CrossRef]
- Emeka-Chioke, E.A.; Orie, K.J.; Nsude, O.P.; Udeozo, P.I.; Onyia, S. Comparative Studies on the Physico-Mechanical Properties of Polyurethane Foams Derived from Bio-Based Polyols. Asian Res. J. Curr. Sci. 2024, 6, 13–22. [Google Scholar]
- Carriço, C.; Fraga, T.; Carvalho, V.; Pasa, V. Polyurethane Foams for Thermal Insulation Uses Produced from Castor Oil and Crude Glycerol Biopolyols. Molecules 2017, 22, 1091. [Google Scholar] [CrossRef]
- Kim, H.J.; Jin, X.; Choi, J.W. Investigation of Bio-Based Rigid Polyurethane Foams Synthesized with Lignin and Castor Oil. Sci. Rep. 2024, 14, 13490. [Google Scholar] [CrossRef]
- Repecka Alves, L.; Miraveti Carriello, G.; Manassés Pegoraro, G.; Moraes, C.E.; De Lourdes Rezende, M.; De Menezes, A.J. Green Polyurethane Foams: Replacing Petrochemical Polyol with Castor Oil through Factorial Design. J. Polym. Res. 2024, 31, 227. [Google Scholar] [CrossRef]
- Ionescu, M.; Radojčić, D.; Wan, X.; Shrestha, M.L.; Petrović, Z.S.; Upshaw, T.A. Highly Functional Polyols from Castor Oil for Rigid Polyurethanes. Eur. Polym. J. 2016, 84, 736–749. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, S.H.; Oh, K.W. Bio-Based Polyurethane Foams with Castor Oil Based Multifunctional Polyols for Improved Compressive Properties. Polymers 2021, 13, 576. [Google Scholar] [CrossRef]
- Su, Y.; Ma, S.; Wang, B.; Xu, X.; Feng, H.; Hu, K.; Zhang, W.; Zhou, S.; Weng, G.; Zhu, J. High-Performance Castor Oil-Based Polyurethane Thermosets: Facile Synthesis and Properties. React. Funct. Polym. 2023, 183, 105496. [Google Scholar] [CrossRef]
- Hejna, A.; Kirpluks, M.; Kosmela, P.; Cabulis, U.; Haponiuk, J.; Piszczyk, Ł. The Influence of Crude Glycerol and Castor Oil-Based Polyol on the Structure and Performance of Rigid Polyurethane-Polyisocyanurate Foams. Ind. Crops Prod. 2017, 95, 113–125. [Google Scholar] [CrossRef]
- Omrani, I. High Performance Biobased Pour-in-Place Rigid Polyurethane Foams from Facile Prepared Castor Oil-Based Polyol: Good Compatibility with Pentane Series Blowing Agent. J. Cell. Plast. 2022, 58, 449–466. [Google Scholar] [CrossRef]
- Pinto, R.C.; Pereira, P.H.F.; Maia, L.S.; Silva, T.L.S.E.; Faria, M.I.S.D.; Rosa, D.S.; Mulinari, D.R. A Promising Use of Kimberlite Clay on Sustainable Polyurethane Foams. Appl. Clay Sci. 2024, 258, 107472. [Google Scholar] [CrossRef]
- Desroches, M.; Escouvois, M.; Auvergne, R.; Caillol, S.; Boutevin, B. From Vegetable Oils to Polyurethanes: Synthetic Routes to Polyols and Main Industrial Products. Polym. Rev. 2012, 52, 38–79. [Google Scholar] [CrossRef]
- Kurańska, M.; Benes, H.; Polaczek, K.; Trhlikova, O.; Walterova, Z.; Prociak, A. Effect of Homogeneous Catalysts on Ring Opening Reactions of Epoxidized Cooking Oils. J. Clean. Prod. 2019, 230, 162–169. [Google Scholar] [CrossRef]
- Kurańska, M.; Prociak, A. The Influence of Rapeseed Oil-Based Polyols on the Foaming Process of Rigid Polyurethane Foams. Ind. Crops Prod. 2016, 89, 182–187. [Google Scholar] [CrossRef]
- Zieleniewska, M.; Leszczyński, M.K.; Kurańska, M.; Prociak, A.; Szczepkowski, L.; Krzyżowska, M.; Ryszkowska, J. Preparation and Characterisation of Rigid Polyurethane Foams Using a Rapeseed Oil-Based Polyol. Ind. Crops Prod. 2015, 74, 887–897. [Google Scholar] [CrossRef]
- Uram, K.; Prociak, A.; Kuranska, M. Influence of the Chemical Structure of Rapeseed Oil-Based Polyols on Selected Properties of Polyurethane Foams. Polimery 2020, 65, 698–707. [Google Scholar] [CrossRef]
- Leszczyńska, M.; Malewska, E.; Ryszkowska, J.; Kurańska, M.; Gloc, M.; Leszczyński, M.K.; Prociak, A. Vegetable Fillers and Rapeseed Oil-Based Polyol as Natural Raw Materials for the Production of Rigid Polyurethane Foams. Materials 2021, 14, 1772. [Google Scholar] [CrossRef]
- Kairytė, A.; Vaitkus, S.; Vėjelis, S.; Pundienė, I. A Study of Rapeseed Oil-Based Polyol Substitution with Bio-Based Products to Obtain Dimensionally and Structurally Stable Rigid Polyurethane Foam. J. Polym. Env. 2018, 26, 3834–3847. [Google Scholar] [CrossRef]
- Soloi, S.; Majid, R.A.; Rahmat, A.R. Novel Palm Oil Based Polyols with Amide Functionality. Int. J. Sci. 2018, 37, 74–86. [Google Scholar]
- Jin, Y.; Hu, X.; Wu, C.; Zong, R.; Liu, S.; Shentu, B. Influence of Palm Oil-Based Polyols on the Microstructure and Properties of Bio-Based Flexible Polyurethane Foams. Biomass Conv. Bioref. 2023, 13, 987–999. [Google Scholar] [CrossRef]
- Lee, C.S.; Ooi, T.L.; Chuah, C.H.; Ahmad, S. Rigid Polyurethane Foam Production from Palm Oil-Based Epoxidized Diethanolamides. J. Am. Oil Chem. Soc. 2007, 84, 1161–1167. [Google Scholar] [CrossRef]
- Tu, Y.; Suppes, G.J.; Hsieh, F. Water-blown Rigid and Flexible Polyurethane Foams Containing Epoxidized Soybean Oil Triglycerides. J. Appl. Polym. Sci. 2008, 109, 537–544. [Google Scholar] [CrossRef]
- Yang, F.; Yu, H.; Deng, Y.; Xu, X. Synthesis and Characterization of Different Soybean Oil-Based Polyols with Fatty Alcohol and Aromatic Alcohol. e-Polymers 2021, 21, 491–499. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Deng, J.; Zhong, Y.; Zhao, P.; Li, H.; Zhang, T. Synthesis of Waste Soybean Oil-Based Waterborne Polyurethane for Exploration of Its Green and Various Application. Ind. Crops Prod. 2024, 216, 118733. [Google Scholar] [CrossRef]
- Prociak, A. Heat-insulating properties of rigid polyurethane foams synthesized with use of vegetable oils—based polyols. Polimery 2008, 53, 195–200. [Google Scholar] [CrossRef]
- Enderus, N.F.; Tahir, S.M. Green Waste Cooking Oil-Based Rigid Polyurethane Foam. IOP Conf. Ser Mater. Sci. Eng. 2017, 271, 012062. [Google Scholar] [CrossRef]
- Cabulis, U.; Ivdre, A. Recent Developments in the Sustainability of the Production of Polyurethane Foams from Polyols Based on the First- to the Fourth-Generation of Biomass Feedstock. Curr. Opin. Green Sustain. Chem. 2023, 44, 100866. [Google Scholar] [CrossRef]
- Malewska, E.; Kurańska, M.; Tenczyńska, M.; Prociak, A. Application of Modified Seed Oils of Selected Fruits in the Synthesis of Polyurethane Thermal Insulating Materials. Materials 2023, 17, 158. [Google Scholar] [CrossRef]
- Qin, Z.-H.; Fridrihsone, A.; Mou, J.-H.; Pomilovskis, R.; Godina, D.; Miao, Y.; Liu, Z.; Tsang, C.-W.; Zhang, L.; Xu, C.; et al. Valorisation of Food Waste into Bio-Based Polyurethane Rigid Foams: From Experimental Investigation to Techno-Economic Analysis. Chem. Eng. J. 2024, 493, 152680. [Google Scholar] [CrossRef]
- Vegetable Oils Consumption Worldwide. 2023/2024. Available online: https://www.statista.com/statistics/263937/vegetable-oils-global-consumption/ (accessed on 24 August 2024).
- European Biomass Industry Association Used Cooking Oil. Available online: https://www.eubia.org/cms/wiki-biomass/biomass-resources/challenges-related-to-biomass/used-cooking-oil-recycling/ (accessed on 24 August 2024).
- Lopresto, C.G.; De Paola, M.G.; Calabrò, V. Importance of the Properties, Collection, and Storage of Waste Cooking Oils to Produce High-Quality Biodiesel—An Overview. Biomass Bioenergy 2024, 189, 107363. [Google Scholar] [CrossRef]
- Onn, M.; Jalil, M.J.; Mohd Yusoff, N.I.S.; Edward, E.B.; Wahit, M.U. A Comprehensive Review on Chemical Route to Convert Waste Cooking Oils to Renewable Polymeric Materials. Ind. Crops Prod. 2024, 211, 118194. [Google Scholar] [CrossRef]
- Kuranska, M.; Polaczek, K.; Auguscik-Krolikowska, M.; Prociak, A.; Ryszkowska, J. Open-Cell Polyurethane Foams Based on Modified Used Cooking Oil. Polimery 2020, 65, 216–225. [Google Scholar] [CrossRef]
- Kurańska, M.; Malewska, E. Waste Cooking Oil as Starting Resource to Produce Bio-Polyol—Analysis of Transesteryfication Process Using Gel Permeation Chromatography. Ind. Crops Prod. 2021, 162, 113294. [Google Scholar] [CrossRef]
- Kurańska, M.; Malewska, E.; Polaczek, K.; Prociak, A.; Kubacka, J. A Pathway toward a New Era of Open-Cell Polyurethane Foams—Influence of Bio-Polyols Derived from Used Cooking Oil on Foams Properties. Materials 2020, 13, 5161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Kessler, M.R. Bio-Based Polyurethane Foam Made from Compatible Blends of Vegetable-Oil-Based Polyol and Petroleum-Based Polyol. ACS Sustain. Chem. Eng. 2015, 3, 743–749. [Google Scholar] [CrossRef]
- Hu, Y.H.; Gao, Y.; Wang, D.N.; Hu, C.P.; Zu, S.; Vanoverloop, L.; Randall, D. Rigid Polyurethane Foam Prepared from a Rape Seed Oil Based Polyol. J. Appl. Polym. Sci. 2002, 84, 591–597. [Google Scholar] [CrossRef]
- Fan, H.; Tekeei, A.; Suppes, G.J.; Hsieh, F. Rigid Polyurethane Foams Made from High Viscosity Soy-polyols. J. Appl. Polym. Sci. 2013, 127, 1623–1629. [Google Scholar] [CrossRef]
- Kurańska, M.; Benes, H.; Kockova, O.; Kucała, M.; Malewska, E.; Schmidt, B.; Michałowski, S.; Zemła, M.; Prociak, A. Rebiopolyols—New Components for the Synthesis of Polyurethane Biofoams in Line with the Circular Economy Concept. Chem. Eng. J. 2024, 490, 151504. [Google Scholar] [CrossRef]
- Polo, M.L.; Russell-White, K.; Vaillard, S.E.; Ríos, L.; Meira, G.R.; Estenoz, D.A.; Spontón, M.E. Bio-Based Polyester-Polyurethane Foams: Synthesis and Degradability by Aspergillus Niger and Aspergillus Clavatus. Biodegradation 2024, 35, 315–327. [Google Scholar] [CrossRef]
- Tu, Y.; Kiatsimkul, P.; Suppes, G.; Hsieh, F. Physical Properties of Water-blown Rigid Polyurethane Foams from Vegetable Oil-based Polyols. J Appl. Polym. Sci 2007, 105, 453–459. [Google Scholar] [CrossRef]
- Annisa, A.N.; Widayat, W. A Review of Bio-Lubricant Production from Vegetable Oils Using Esterification Transesterification Process. MATEC Web Conf. 2018, 156, 06007. [Google Scholar] [CrossRef]
- Miyake, Y.; Yokomizo, K.; Matsuzaki, N. Rapid Determination of Iodine Value by 1H Nuclear Magnetic Resonance Spectroscopy. J. Am. Oil Chem. Soc. 1998, 75, 15–19. [Google Scholar] [CrossRef]
- Cappello, M.; Strangis, G.; Cinelli, P.; Camodeca, C.; Filippi, S.; Polacco, G.; Seggiani, M. From Waste Vegetable Oil to a Green Compatibilizer for HDPE/PA6 Blends. Polymers 2023, 15, 4178. [Google Scholar] [CrossRef] [PubMed]
- Kurańska, M.; Beneš, H.; Prociak, A.; Trhlíková, O.; Walterová, Z.; Stochlińska, W. Investigation of Epoxidation of Used Cooking Oils with Homogeneous and Heterogeneous Catalysts. J. Clean. Prod. 2019, 236, 117615. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, J.J.; Zhang, J.X. Polyols Prepared from Ring-Opening Epoxidized Soybean Oil by a Castor Oil-Based Fatty Diol. Int. J. Polym. Sci. 2015, 2015, 529235. [Google Scholar] [CrossRef]
- Dai, H.; Yang, L.; Lin, B.; Wang, C.; Shi, G. Synthesis and Characterization of the Different Soy-Based Polyols by Ring Opening of Epoxidized Soybean Oil with Methanol, 1,2-Ethanediol and 1,2-Propanediol. J. Am. Oil Chem. Soc. 2009, 86, 261–267. [Google Scholar] [CrossRef]
- Peyrton, J.; Avérous, L. Structure-Properties Relationships of Cellular Materials from Biobased Polyurethane Foams. Mater. Sci. Eng. R Rep. 2021, 145, 100608. [Google Scholar] [CrossRef]
- Caddeo, S.; Baino, F.; Ferreira, A.M.; Sartori, S.; Novajra, G.; Ciardelli, G.; Vitale-Brovarone, C. Collagen/Polyurethane-Coated Bioactive Glass: Early Achievements towards the Modelling of Healthy and Osteoporotic Bone. Key Eng. Mater. 2014, 631, 184–189. [Google Scholar] [CrossRef]
- Kirpluks, M.; Cabulis, U.; Avots, A. Flammability of Bio-Based Rigid Polyurethane Foam as Sustainable Thermal Insulation Material. In Insulation Materials in Context of Sustainability; Almusaed, A., Almssad, A., Eds.; InTech: Rijeka, Croatia, 2016; ISBN 978-953-51-2624-9. [Google Scholar]
- Zieleniewska, M.; Auguścik, M.; Prociak, A.; Rojek, P.; Ryszkowska, J. Polyurethane-Urea Substrates from Rapeseed Oil-Based Polyol for Bone Tissue Cultures Intended for Application in Tissue Engineering. Polym. Degrad. Stab. 2014, 108, 241–249. [Google Scholar] [CrossRef]
- Pretsch, T.; Jakob, I.; Müller, W. Hydrolytic Degradation and Functional Stability of a Segmented Shape Memory Poly(Ester Urethane). Polym. Degrad. Stab. 2009, 94, 61–73. [Google Scholar] [CrossRef]
- Kirpluks, M.; Cabulis, U.; Ivdre, A.; Kuranska, M.; Zieleniewska, M.; Auguscik, M. Mechanical and Thermal Properties of High-Density Rigid Polyurethane Foams from Renewable Resources. J. Renew. Mater. 2016, 4, 86–100. [Google Scholar] [CrossRef]
- Askari, F.; Barikani, M.; Barmar, M.; Shokrolahi, F.; Vafayan, M. Study of Thermal Stability and Degradation Kinetics of Polyurethane–Ureas by Thermogravimetry. Iran. Polym. J. 2015, 24, 783–789. [Google Scholar] [CrossRef]
- Chattopadhyay, D.K.; Webster, D.C. Thermal Stability and Flame Retardancy of Polyurethanes. Prog. Polym. Sci. 2009, 34, 1068–1133. [Google Scholar] [CrossRef]
- Gondaliya, A.; Nejad, M. Lignin as a Partial Polyol Replacement in Polyurethane Flexible Foam. Molecules 2021, 26, 2302. [Google Scholar] [CrossRef]
- Hatakeyama, H.; Matsumura, H.; Hatakeyama, T. Glass Transition and Thermal Degradation of Rigid Polyurethane Foams Derived from Castor Oil–Molasses Polyols. J. Therm. Anal. Calorim. 2013, 111, 1545–1552. [Google Scholar] [CrossRef]
- Morales-Cerrada, R.; Tavernier, R.; Caillol, S. Fully Bio-Based Thermosetting Polyurethanes from Bio-Based Polyols and Isocyanates. Polymers 2021, 13, 1255. [Google Scholar] [CrossRef]
- Ji, D.; Fang, Z.; He, W.; Luo, Z.; Jiang, X.; Wang, T.; Guo, K. Polyurethane Rigid Foams Formed from Different Soy-Based Polyols by the Ring Opening of Epoxidised Soybean Oil with Methanol, Phenol, and Cyclohexanol. Ind. Crops Prod. 2015, 74, 76–82. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, C.; Li, J.; Li, Y.-J.; Xu, S. Fabricating Coconut Palm-Based Rigid Polyurethane Foam with Enhanced Compressive Strength Using Biomass Waste. Polymer 2024, 310, 127472. [Google Scholar] [CrossRef]
Sample | Polyol | Water (g) | Polycat 34 (g) | Tegostab 8870 (g) | Kosmos 19 (g) | Desmodur N7300 (g) | Bio-Based Content (%) |
---|---|---|---|---|---|---|---|
PUF-1 | PO1 | 15 | 5 | 1.5 | - | 402.2 | 74.1 |
PUF-2 | PO2 | 15 | 5 | 1.5 | - | 424.6 | 74.2 |
PUF-3 | PO3 | 15 | 5 | 1.5 | - | 432.0 | 73.9 |
PUF-4 | PO3 | 15 | 5 | 1.5 | 1 | 432.0 | 73.7 |
PUF-5 | PO3 | 15 | 5 | 1.5 | 2 | 432.0 | 73.6 |
PUF-6 | PO3 | 8 | 5 | 1.5 | 1 | 282.8 | 75.4 |
PUF-7 | PO3 | 4 | 5 | 1.5 | 1 | 197.6 | 77.1 |
PUF-8 | EO3 | 15 | 5 | 1.5 | 1 | 432.0 | 73.7 |
Sample | (mol/mol) | (mol/mol) | EP (%) | (g/mol) |
---|---|---|---|---|
WCO | 3.67 | - | - | 882.0 |
EO1 | 1.66 | 1.99 | 54 | 906.9 |
EO2 | 0.77 | 2.90 | 79 | 922.1 |
EO3 | 0.40 | 3.24 | 88 | 932.7 |
Sample | (g/mol) | (mol OH/mol) | (mol OH/g) | (mg KOH/g) |
---|---|---|---|---|
PO1 | 1113 | 3.98 | 3.58 × 10−3 | 200.7 |
PO2 | 1224 | 5.80 | 4.75 × 10−3 | 266.2 |
PO3 | 1266 | 6.48 | 5.13 × 10−3 | 287.6 |
Sample | Polyol | Density (kg/m−3) |
---|---|---|
PUF-1 | PO1 | 207.5 |
PUF-2 | PO2 | 297.2 |
PUF-3 | PO3 | 179.3 |
PUF-4 | PO3 | 230.0 |
PUF-5 | PO3 | 179.6 |
PUF-6 | PO3 | 296.7 |
PUF-7 | PO3 | 300.8 |
PUF-8 | EO3 | 184.1 |
PUF-9 | PO3 | n.d. |
PUF-10 | PO3 | 145.2 |
Sample | Water (php) | Tonset (°C) | T5% (°C) |
---|---|---|---|
PUF-1 | 15 | 201.2 | 279.2 |
PUF-2 | 15 | 199.6 | 280.2 |
PUF-3 | 15 | 214.2 | 283.2 |
PUF-4 | 15 | 211.1 | 263.7 |
PUF-5 | 15 | 207.7 | 253.2 |
PUF-6 | 8 | 204.2 | 255.7 |
PUF-7 | 4 | 199.2 | 246.2 |
PUF-8 | 15 | 229.6 | 281.7 |
Sample | Polyol | Density (kg/m−3) | Young’s Modulus (MPa) | Compression Strength (MPa) |
---|---|---|---|---|
PUF-1 | PO1 | 207.5 | 8.59 | 0.586 |
PUF-2 | PO2 | 297.2 | 9.42 | 0.873 |
PUF-3 | PO3 | 179.3 | 12.38 | 0.723 |
PUF-4 | PO3 | 230.0 | 13.77 | 0.980 |
PUF-5 | PO3 | 179.6 | 9.36 | 0.782 |
PUF-6 | PO3 | 296.7 | 10.83 | 1.091 |
PUF-7 | PO3 | 300.8 | 12.98 | 0.908 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cappello, M.; Filippi, S.; Rossi, D.; Cinelli, P.; Anguillesi, I.; Camodeca, C.; Orlandini, E.; Polacco, G.; Seggiani, M. Waste-Cooking-Oil-Derived Polyols to Produce New Sustainable Rigid Polyurethane Foams. Sustainability 2024, 16, 9456. https://doi.org/10.3390/su16219456
Cappello M, Filippi S, Rossi D, Cinelli P, Anguillesi I, Camodeca C, Orlandini E, Polacco G, Seggiani M. Waste-Cooking-Oil-Derived Polyols to Produce New Sustainable Rigid Polyurethane Foams. Sustainability. 2024; 16(21):9456. https://doi.org/10.3390/su16219456
Chicago/Turabian StyleCappello, Miriam, Sara Filippi, Damiano Rossi, Patrizia Cinelli, Irene Anguillesi, Caterina Camodeca, Elisabetta Orlandini, Giovanni Polacco, and Maurizia Seggiani. 2024. "Waste-Cooking-Oil-Derived Polyols to Produce New Sustainable Rigid Polyurethane Foams" Sustainability 16, no. 21: 9456. https://doi.org/10.3390/su16219456
APA StyleCappello, M., Filippi, S., Rossi, D., Cinelli, P., Anguillesi, I., Camodeca, C., Orlandini, E., Polacco, G., & Seggiani, M. (2024). Waste-Cooking-Oil-Derived Polyols to Produce New Sustainable Rigid Polyurethane Foams. Sustainability, 16(21), 9456. https://doi.org/10.3390/su16219456