Barriers to the Implementation of On-Grid Photovoltaic Systems in Ecuador
Abstract
:1. Introduction
2. Methodology
2.1. Research Location
2.2. Research Focus
2.3. Methodologícal Process
3. Results
3.1. Most Recurrent Barriers to the Implementation of PVs in Urban Environments
3.1.1. Literature Review
- B1: Lack of management of PV waste
- B2: Impact on biodiversity
- B3: Land occupation for PVs
- B4: Lack of knowledge among professionals and users
- B5: Lack of social acceptance
- B6: Absence of specific policies
- B7: Lack of effectiveness in regulations
- B8: High initial cost of PV systems
- B9: Perceived long-term profitability
- B10: Lack of financing
- B11: Absence of electric rates for PV systems
- B12: Aesthetic considerations
- B13: Ineffectiveness in design, such as lack of standards and codes
- B14: Low efficiency of solar panels
- B15: High maintenance and component replacement costs
- B16: Inadequate electrical grid infrastructure.
3.1.2. Preliminary Survey
- R1: Government Incentives
- R4: Government-Subsidized Rates
- R6: Permitting and Administrative Processes
- R9: Distribution and Operational Power Grids
- R12: Technical Issues
- R14: Dissemination.
3.2. Statistical Analysis
Average Score
3.3. Proposal for Reducing Identified Barriers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ministerio de Energía y Minas. Balance Energético Nacional 2021. Available online: https://www.recursosyenergia.gob.ec/wp-content/uploads/2022/08/Balance_Energe%CC%81tico_Nacional_2021-VF_opt.pdf (accessed on 6 July 2024).
- Ministerio de Energía y Minas del Ecuador. El Domingo 28 de Abril no Habrá Cortes de Energía en todo el Ecuador—Ministerio de Energia y Minas. Available online: https://www.recursosyenergia.gob.ec/el-domingo-28-de-abril-no-habra-cortes-de-energia-en-todo-el-ecuador/ (accessed on 9 October 2024).
- Ministerio de Energía y Recursos Naturales No Renovables. Plan Maestro de Electricidad—Corporación Eléctrica del Ecuador. Available online: https://www.celec.gob.ec/plan-maestro-de-electricidad/ (accessed on 9 October 2024).
- International Energy Agency. Renewables 2024. Analysis and Forecast to 2030. 2024. Available online: www.iea.org (accessed on 13 October 2024).
- Yajamín, G.S.I.; Carrión, D.F.C.; Gualán, D.F.V.; Zurita, R.C.B.; Carrion, H.D.C. Evaluación de la actualidad de los sistemas fotovoltaicos en Ecuador: Avances, desafíos y perspectivas. Cienc. Lat. Rev. Científica Multidiscip. 2023, 7, 9493–9509. [Google Scholar] [CrossRef]
- Agencia de Regulación y Control de Energía y Recursos Naturales No Renovables. Panorama eléctrico 2024. Available online: https://controlrecursosyenergia.gob.ec/wp-content/uploads/downloads/2024/03/PanoramaElectricoXXI-Marzo-Baja.pdf/ (accessed on 6 July 2024).
- Global Solar Atlas. Mapa Solar Global. 2024. Available online: https://globalsolaratlas.info/map?c=11.523088,8.173828,3 (accessed on 6 July 2024).
- Zalamea-León, E.; Mena-Campos, J.; Barragán-Escandón, A.; Parra-González, D.; Méndez-Santos, P. Urban Photovoltaic Potential of Inclined Roofing for Buildings in Heritage Centers in Equatorial Areas. J. Green Build. 2018, 13, 45–69. [Google Scholar] [CrossRef]
- Lino Toala, E.J. Análisis del Potencial Energético Solar Para el Sistema de Bombeo de Agua Para la Comuna Joa. March 2024. Available online: https://repositorio.unesum.edu.ec/bitstream/53000/6186/1/LINO%20TOALA%20ELVIS%20JEFFERSON.pdf (accessed on 9 October 2024).
- Naciones Unidas Ecuador. Sustainable Development Goal 7: Energía Asequible y no Contaminante|Naciones Unidas en Ecuador. Available online: https://ecuador.un.org/es/sdgs/7 (accessed on 9 October 2024).
- Barragán-Escandón, E.A.; Zalamea-León, E.F.; Terrados-Cepeda, J.; Vanegas-Peralta, P. Energy self-supply estimation in intermediate cities. Renew. Sustain. Energy Rev. 2020, 129, 109913. [Google Scholar] [CrossRef]
- Tapia, M.; Ramos, L.; Heinemann, D.; Zondervans, E. Evaluación del Potencial Fotovoltaico en Tejados en el Cantón Quito. Perfiles 2023, 1, 47–56. [Google Scholar] [CrossRef]
- Zalamea-león, E.; Mena-campos, J.; Moscoso-Cordero, S.; Barragán-escandón, A.; Mendez-Santos, P. Perspectivas de cubiertas fotovoltaicas y arquitectura en contextos urbanos patrimoniales. Archit. City Environ. 2018, 13, 301–324. [Google Scholar] [CrossRef]
- Zambrano-Asanza, S.; Zalamea-León, E.F.; Barragán-Escandón, E.A.; Parra-González, A. Urban photovoltaic potential estimation based on architectural conditions, production-demand matching, storage and the incorporation of new eco-efficient loads. Renew. Energy 2019, 142, 224–238. [Google Scholar] [CrossRef]
- Spiru, P. Assessment of renewable energy generated by a hybrid system based on wind, hydro, solar, and biomass sources for decarbonizing the energy sector and achieving a sustainable energy transition. Energy Rep. 2023, 9, 167–174. [Google Scholar] [CrossRef]
- Reinoso Recalde, G.P. Obstáculos a la Transición Energética en Ecuador: El Caso de la Generación Eléctrica a Partir de Fuentes Fotovoltaicas. 2023. Available online: https://repositorio.uasb.edu.ec/bitstream/10644/9311/1/T4076-MCCSD-Reinoso-Obstaculos.pdf (accessed on 9 October 2024).
- Razmjoo, A.; Ghazanfari, A.; Østergaard, P.A.; Abedi, S. Design and Analysis of Grid-Connected Solar Photovoltaic Systems for Sustainable Development of Remote Areas. Energies 2023, 16, 3181. [Google Scholar] [CrossRef]
- Icaza-Alvarez, D.; Jurado, F.; Flores, C.; Ortiz, G.R. Ecuadorian electrical system: Current status, renewable energy and projections. Heliyon 2023, 9, e16010. [Google Scholar] [CrossRef]
- Ley Orgánica de Eficiencia Energética, Suplemento Oficial Año II—Nº 449. 2019. Available online: https://www.recursosyenergia.gob.ec/wp-content/uploads/2022/12/20190319-S_R_O_449_19_MARZO_LEY-ORGANICA-DE-EFICIENCIA-ENERGETICA.pdf, (accessed on 9 October 2024).
- Barragan Escandon, E.A.; Espinoza Abad, J.L. Políticas para la Promoción de las Energías Renovables en el Ecuador. In Energías Renovables en el Ecuador: Situación Actual, Tendencias y Perspectivas; Universidad De Cuenca: Cuenca, Ecuador, 2015; pp. 1–28. [Google Scholar]
- Barragán-Escandón, A.; Jara-Nieves, D.; Romero-Fajardo, I.; Zalamea-Leon, E.F.; Serrano-Guerrero, X. Barriers to renewable energy expansion: Ecuador as a case study. Energy Strategy Rev. 2022, 43, 100903. [Google Scholar] [CrossRef]
- Putrus, G.A.; Bentley, E.; Binns, R.; Jiang, T.; Johnston, D. Smart grids: Energising the future. Int. J. Environ. Stud. 2013, 70, 691–701. [Google Scholar] [CrossRef]
- Rodríguez-Segura, F.J.; Osorio-Aravena, J.C.; Frolova, M.; Terrados-Cepeda, J.; Muñoz-Cerón, E. Social acceptance of renewable energy development in southern Spain: Exploring tendencies, locations, criteria and situations. Energy Policy 2022, 173, 113356. [Google Scholar] [CrossRef]
- Marzouk, M.A.; Salheen, M.A.; Fischer, L.K. Functionalizing building envelopes for greening and solar energy: Between theory and the practice in Egypt. Front. Environ. Sci. 2022, 10, 1056382. [Google Scholar] [CrossRef]
- Bunda, N.; Sunio, V.; Palmero, S.S.; Tabañag, I.D.F.; Reyes, D.J.; Ligot, E. Stage model of the process of solar photovoltaic adoption by residential households in the Philippines. Clean. Responsible Consum. 2023, 9, 100114. [Google Scholar] [CrossRef]
- Padmanathan, K.; Govindarajan, U.; Ramachandaramurthy, V.K.; Rajagopalan, A.; Pachaivannan, N.; Sowmmiya, U.; Padmanaban, S.; Holm-Nielsen, J.B.; Xavier, S.; Periasamy, S.K. A sociocultural study on solar photovoltaic energy system in India: Stratification and policy implication. J. Clean. Prod. 2019, 216, 461–481. [Google Scholar] [CrossRef]
- Lu, Y.; Chang, R.; Shabunko, V.; Yee, A.T.L. The implementation of building-integrated photovoltaics in Singapore: Drivers versus barriers. Energy 2019, 168, 400–408. [Google Scholar] [CrossRef]
- Nwokocha, C.O.; Okoro, U.K.; Usoh, C.I. Photovoltaics in Nigeria—Awareness, attitude and expected benefit based on a qualitative survey across regions. Renew. Energy 2018, 116, 176–182. [Google Scholar] [CrossRef]
- Eleftheriadis, I.M.; Anagnostopoulou, E.G. Identifying barriers in the diffusion of renewable energy sources. Energy Policy 2015, 80, 153–164. [Google Scholar] [CrossRef]
- Malkewitz, C.P.; Schwall, P.; Meesters, C.; Hardt, J. Estimating reliability: A comparison of Cronbach’s α, McDonald’s ωt and the greatest lower bound. Soc. Sci. Humanit. Open 2023, 7, 100368. [Google Scholar] [CrossRef]
- Ahmed, T.Z.; Mohamed, A.; Ahmed, M.E.; Abdalgader, A.O.E.; Hassan-Sayed, M.G. Investigating energy policies to boost grid-connected rooftop solar PV in Sudan. Clean Energy 2023, 7, 994–1005. [Google Scholar] [CrossRef]
- Rathore, N.; Panwar, N.L. Strategic overview of management of future solar photovoltaic panel waste generation in the Indian context. Waste Manag. Res. J. A Sustain. Circ. Econ. 2022, 40, 504–518. [Google Scholar] [CrossRef]
- Adhikari, R.S.; Aste, N.; Del Pero, C.; Leonforte, F.; Sfolcini, F.; Diab, K. Photovoltaics in Circular Economy: Future PV Waste Projections for Different Scenarios. In Proceedings of the 2023 International Conference on Clean Electrical Power (ICCEP), Terrasini, Italy, 27–29 June 2023; pp. 903–910. [Google Scholar]
- Winkler, C. Implementing solar photovoltaic systems in buildings: A case of systemic innovation in the construction sector. Constr. Innov. 2023, 24, 102–123. [Google Scholar] [CrossRef]
- Sharmeela, C.; Sanjeevikumar, P.; Sivaraman, P.; Joseph, M. IoT, Machine Learning and Blockchain Technologies for Renewable Energy and Modern Hybrid Power Systems; CRC Press: Boca Raton, FL, USA, 2023; pp. 121–148. [Google Scholar] [CrossRef]
- Bartoszewicz-Burczy, H. Barriers for Large Integration of PV and Onshore Wind Energy in the Distribution Network on the Selected European Union Electricity Markets. Stud. Ecol. Bioethicae 2022, 20, 66–77. [Google Scholar] [CrossRef]
- Guzman, L.; Henao, A. Are the current incentives sufficient to drive the use of solar PV in the Colombian residential sector?—An analysis from the perspective of the game theory. Energy Strat. Rev. 2022, 40, 100816. [Google Scholar] [CrossRef]
- Braeuer, F.; Kleinebrahm, M.; Naber, E.; Scheller, F.; McKenna, R. Optimal system design for energy communities in multi-family buildings: The case of the German Tenant Electricity Law. Appl. Energy 2021, 305, 117884. [Google Scholar] [CrossRef]
- Sysko-Romańczuk, S.; Kluj, G.; Hawrysz, L.; Rokicki, Ł.; Robak, S. Scalable Microgrid Process Model: The Results of an Off-Grid Household Experiment. Energies 2021, 14, 7139. [Google Scholar] [CrossRef]
- Islami, M.S.; Urmee, T.; Kumara, I.N.S. Developing a framework to increase solar photovoltaic microgrid penetration in the tropical region: A case study in Indonesia. Sustain. Energy Technol. Assess. 2021, 47, 101311. [Google Scholar] [CrossRef]
- Lazdins, R.; Mutule, A.; Zalostiba, D. PV Energy Communities—Challenges and Barriers from a Consumer Perspective: A Literature Review. Energies 2021, 14, 4873. [Google Scholar] [CrossRef]
- Maghrabie, H.M.; Elsaid, K.; Sayed, E.T.; Abdelkareem, M.A.; Wilberforce, T.; Olabi, A. Building-integrated photovoltaic/thermal (BIPVT) systems: Applications and challenges. Sustain. Energy Technol. Assess. 2021, 45, 101151. [Google Scholar] [CrossRef]
- Shafique, M.; Luo, X.; Zuo, J. Photovoltaic-green roofs: A review of benefits, limitations, and trends. Sol. Energy 2020, 202, 485–497. [Google Scholar] [CrossRef]
- Elbeheiry, N.; Amer, A.; Elgazar, S.; Shukri, S.; Metry, M.; Balog, R.S. Techno-Economic Evaluation of Residential PV Systems in Oil/Gas-Rich Economies: A Case Study of Qatar & Texas. In Proceedings of the 2020 2nd International Conference on Photovoltaic Science and Technologies (PVCon), Ankara, Turkey, 30 November–2 December 2020. [Google Scholar]
- Garlet, T.B.; Ribeiro, J.L.D.; Savian, F.d.S.; Siluk, J.C.M. Paths and barriers to the diffusion of distributed generation of photovoltaic energy in southern Brazil. Renew. Sustain. Energy Rev. 2019, 111, 157–169. [Google Scholar] [CrossRef]
- Mateus, R.; Silva, S.M.; de Almeida, M.G. Environmental and cost life cycle analysis of the impact of using solar systems in energy renovation of Southern European single-family buildings. Renew. Energy 2019, 137, 82–92. [Google Scholar] [CrossRef]
- Afxentis, S.; Chatzigeorgiou, N.; Efthymiou, V.; Papageorgiou, I.; Armenakis, A.; Papagiannis, G.; Christoforidis, G.; Sancho, J.; Rodrigues, H.; Casimiro, C.; et al. Technical Assessment of Coupled PV and Battery Systems—A Case Study from the Mediterranean Region. In Proceedings of the 2019 1st International Conference on Energy Transition in the Mediterranean Area (SyNERGY MED), Cagliari, Italy, 28–30 May 2019. [Google Scholar]
- Eales, A.; Alsop, A.; Frame, D.; Strachan, S.; Galloway, S. Assessing the Market for Solar Photovoltaic (PV) Microgrids in Malawi. Hapres J. Sustain. Res. 2020, 2, e200008. [Google Scholar] [CrossRef]
- White, L.V. Increasing residential solar installations in California: Have local permitting processes historically driven differences between cities? Energy Policy 2019, 124, 46–53. [Google Scholar] [CrossRef]
- Sarker, T.; Haram, M.H.S.M.; Ramasamy, G.; Al Farid, F.; Mansor, S. Solar Photovoltaic Home Systems in Malaysia: A Comprehensive Review and Analysis. Energies 2023, 16, 7718. [Google Scholar] [CrossRef]
- Osorio-Aravena, J.C.; de la Casa, J.; Töfflinger, J.A.; Muñoz-Cerón, E. Identifying barriers and opportunities in the deployment of the residential photovoltaic prosumer segment in Chile. Sustain. Cities Soc. 2021, 69, 102824. [Google Scholar] [CrossRef]
- dos Santos, L.; Iano, Y.; Loschi, H.; Nascimento, D.; Razmjooy, N.; Chuma, E.; Bertolassi, C. EMC Issues in Grid-Connected Photovoltaic Systems: The Brazilian Regulatory and Standardization Scenario. Smart Innov. Syst. Technol. 2021, 233, 687–694. [Google Scholar] [CrossRef]
- D’Adamo, I.; Gastaldi, M.; Morone, P.; Ozturk, I. Economics and policy implications of residential photovoltaic systems in Italy’s developed market. Util. Policy 2022, 79, 101437. [Google Scholar] [CrossRef]
- Lopez, L. Removing Fuel Subsidies without Political Backlash: An Alternative to the Present Approach in Ecuador. The Bulletin, A Blog by the Brandt School fo Public Policy, Erfurt, 13 May 2022. Available online: https://thebulletin.brandtschool.de/removing-fuel-subsidies-without-political-backlash-an-alternative-to-the-present-approach-in-ecuador (accessed on 6 July 2024).
Technologies | Country | #Barriers | #Respondents | Main Barriers | Reference |
---|---|---|---|---|---|
PV power plants | Spain | 1 | 329 | Lack of social acceptance | [23] |
Residential building envelope for PVs | Egypt | 4 | 20 | High initial cost, lack of knowledge, lack of confidence in the quality of PV systems, high maintenance cost. | [24] |
PVs in residential buildings | Philippines | 3 | 234 | High initial cost and lack of knowledge. | [25] |
PVs on residential areas | India | 4 | 443 | Lack of governmental political support, the challenge of changing behaviors, institutional structures, and high initial cost. | [26] |
PVs on Buildings | Singapore | 18 | 99 | High initial costs, long payback period, low energy conversion efficiency of PV systems, difficulty integrating PV systems into the grid, unclear maintenance procedures, and lack of knowledge. | [27] |
PV power plants | Nigeria | 2 | 740 | Lack of awareness and information. | [28] |
Research | Reference | Barriers Analyzed | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | B10 | B11 | B12 | B13 | B14 | B15 | B16 | ||
A1 | [31] | X | X | X | |||||||||||||
A2 | [32] | X | |||||||||||||||
A3 | [23] | X | |||||||||||||||
A4 | [33] | X | |||||||||||||||
A5 | [34] | X | X | ||||||||||||||
A6 | [24] | X | X | X | X | ||||||||||||
A7 | [35] | X | X | X | |||||||||||||
A8 | [36] | X | X | X | X | ||||||||||||
A9 | [37] | X | X | ||||||||||||||
A10 | [38] | X | X | X | |||||||||||||
A11 | [39] | X | X | X | X | X | |||||||||||
A12 | [40] | X | X | X | |||||||||||||
A13 | [41] | X | X | X | X | X | |||||||||||
A14 | [42] | X | X | X | X | X | |||||||||||
A15 | [43] | X | X | X | |||||||||||||
A16 | [17] | X | X | X | X | X | X | ||||||||||
A17 | [44] | X | X | ||||||||||||||
A18 | [45] | X | X | X | X | X | |||||||||||
A19 | [46] | X | X | X | |||||||||||||
A20 | [47] | X | X | X | |||||||||||||
A21 | [48] | X | X | ||||||||||||||
A22 | [26] | X | X | X | X | ||||||||||||
A23 | [27] | X | X | X | X | X | X | X | |||||||||
A24 | [49] | X | X | ||||||||||||||
A25 | [50] | X | X | X | |||||||||||||
A26 | [51] | X | X | X | |||||||||||||
A27 | [52] | X | X | ||||||||||||||
A28 | [53] | X | X | ||||||||||||||
A29 | [54] | X | X | X | |||||||||||||
Total | 3 | 1 | 1 | 10 | 3 | 7 | 10 | 19 | 10 | 5 | 2 | 1 | 9 | 5 | 4 | 2 |
Type | Code | Barriers | Description | Reference |
---|---|---|---|---|
Environmental | B1 | Lack of management of PV waste | It refers to the need to develop and implement strategies for the recycling or proper disposal of solar panels at the end of their useful life. | [32] |
Social | B4 | Lack of knowledge among professionals | It points to the need for specialized training for professionals who install and maintain PV systems, as well as informing end-users on how to maximize the benefits of these systems. | [24,25] |
B5 | Lack of social acceptance | It indicates the resistance of communities or individuals to adopt PV systems due to various concerns or negative perceptions. | [23] | |
Policies and regulations | B6 | Lack of policies | It refers to the absence of government guidelines to support the implementation of PV systems. | [38] |
B7 | Absence of government guidelines | Existing regulations that do not adequately promote the adoption of PVs | [34] | |
Profitability barriers | B8 | High initial cost | It represents the initial investment required for the acquisition and installation of PV systems | [31] |
B9 | Perceived long-term profitability | Expectation of sustainable profits over time | [36] | |
B10 | Financial restrictions | Limited financial resources for projects or needs | [41] | |
B15 | High maintenance and/or replacement costs for PV system components | It involves associated costs with regular maintenance and replacement required throughout the system’s lifespan. | [42] | |
Technical barriers | B13 | Ineffectiveness of PVs design | PV design that fails to meet objectives or satisfy operational or strategic needs | [34] |
B14 | Low efficiency of PV panels | It points to the current limitations in PV technology that affect the amount of electrical energy that can be generated from solar radiation | [27] |
Survey | Barriers | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | R10 | R11 | R12 | R13 | R14 | |
E1-A | X | X | ||||||||||||
E2-P | X | X | ||||||||||||
E3-Pr | X | X | ||||||||||||
E4-A | X | X | ||||||||||||
E5-Pr | X | X | X | X | X | |||||||||
E6-P | X | X | X | X | ||||||||||
E7-Pr | X | X | X | X | X | |||||||||
E8-Pr | X | X | X | |||||||||||
E9-Pr | X | X | X | X | ||||||||||
E10-P | X | X | X | X | ||||||||||
E11-A | X | X | X | X | ||||||||||
E12-Pr | X | X | X | X | X | |||||||||
E13-A | X | X | X | |||||||||||
E14-Pr | X | X | X | |||||||||||
E15-P | X | X | X | |||||||||||
Total | 6 | 1 | 3 | 4 | 4 | 6 | 1 | 2 | 4 | 1 | 3 | 4 | 4 | 5 |
Parameters | Overall | Private Personal | Public Personal | Academic Personal |
---|---|---|---|---|
k | 17 | 17 | 17 | 17 |
16.4 | 18.78 | 16.6 | 11.29 | |
68.37 | 77.55 | 67.49 | 34.41 | |
0.808 | 0.805 | 0.800 | 0.714 | |
Grade | Good | Good | Good | Acceptable |
Likert Scale | Strongly Disagree | Disagree | Neutral | Agree | Strongly Agree | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||||||||
Barriers | Pi | Fi | Pi | Fi | Pi | Fi | Pi | Fi | Pi | Fi | Σ | Pm |
B1 | 4 | 0.08 | 6 | 0.12 | 8 | 0.16 | 13 | 0.26 | 19 | 0.38 | 50 | 3.7 |
B4 | 2 | 0.04 | 6 | 0.12 | 9 | 0.18 | 20 | 0.40 | 13 | 0.26 | 50 | 3.7 |
B5 | 6 | 0.12 | 6 | 0.12 | 11 | 0.22 | 17 | 0.34 | 10 | 0.2 | 50 | 3.4 |
B6 | 2 | 0.04 | 6 | 0.12 | 11 | 0.22 | 14 | 0.28 | 17 | 0.34 | 50 | 3.8 |
B7 | 1 | 0.02 | 3 | 0.06 | 8 | 0.16 | 18 | 0.36 | 20 | 0.4 | 50 | 4.1 |
B8 | 0 | 0.00 | 4 | 0.08 | 7 | 0.14 | 14 | 0.28 | 25 | 0.5 | 50 | 4.2 |
B9 | 1 | 0.02 | 8 | 0.16 | 9 | 0.18 | 19 | 0.38 | 13 | 0.26 | 50 | 3.7 |
B10 | 0 | 0.00 | 3 | 0.06 | 6 | 0.12 | 22 | 0.44 | 19 | 0.38 | 50 | 4.1 |
B15 | 3 | 0.06 | 14 | 0.28 | 16 | 0.32 | 11 | 0.22 | 6 | 0.12 | 50 | 3.1 |
B13 | 6 | 0.12 | 9 | 0.18 | 17 | 0.34 | 11 | 0.22 | 7 | 0.14 | 50 | 3.1 |
B14 | 7 | 0.14 | 12 | 0.24 | 16 | 0.32 | 10 | 0.20 | 5 | 0.1 | 50 | 2.9 |
R1 | 1 | 0.02 | 3 | 0.06 | 11 | 0.22 | 16 | 0.32 | 19 | 0.38 | 50 | 4 |
R4 | 1 | 0.02 | 2 | 0.04 | 9 | 0.18 | 13 | 0.26 | 25 | 0.5 | 50 | 4.2 |
R6 | 1 | 0.02 | 0 | 0.00 | 8 | 0.16 | 22 | 0.44 | 19 | 0.38 | 50 | 4.2 |
R9 | 1 | 0.02 | 3 | 0.06 | 7 | 0.14 | 23 | 0.46 | 16 | 0.32 | 50 | 4 |
R12 | 6 | 0.12 | 15 | 0.30 | 13 | 0.26 | 8 | 0.16 | 8 | 0.16 | 50 | 2.9 |
R14 | 0 | 0.00 | 4 | 0.08 | 9 | 0.18 | 15 | 0.30 | 22 | 0.44 | 50 | 4.1 |
Barriers | Improve Proposals |
---|---|
Higher initial costs (B8) |
|
Subsidized tariffs (R4) |
|
Processing and permits (R6) |
|
Lack of effectiveness of regulations (B7) |
|
Diffusion (R14) |
|
Financial restrictions (B10) |
|
Distribution and operation power grids (R9) |
|
Government incentives (R1) |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mogrovejo-Narvaez, M.; Barragán-Escandón, A.; Zalamea-León, E.; Serrano-Guerrero, X. Barriers to the Implementation of On-Grid Photovoltaic Systems in Ecuador. Sustainability 2024, 16, 9466. https://doi.org/10.3390/su16219466
Mogrovejo-Narvaez M, Barragán-Escandón A, Zalamea-León E, Serrano-Guerrero X. Barriers to the Implementation of On-Grid Photovoltaic Systems in Ecuador. Sustainability. 2024; 16(21):9466. https://doi.org/10.3390/su16219466
Chicago/Turabian StyleMogrovejo-Narvaez, Mateo, Antonio Barragán-Escandón, Esteban Zalamea-León, and Xavier Serrano-Guerrero. 2024. "Barriers to the Implementation of On-Grid Photovoltaic Systems in Ecuador" Sustainability 16, no. 21: 9466. https://doi.org/10.3390/su16219466
APA StyleMogrovejo-Narvaez, M., Barragán-Escandón, A., Zalamea-León, E., & Serrano-Guerrero, X. (2024). Barriers to the Implementation of On-Grid Photovoltaic Systems in Ecuador. Sustainability, 16(21), 9466. https://doi.org/10.3390/su16219466