Innovative Soil Management Strategies for Sustainable Agriculture
Abstract
:1. Introduction
- The advantages of precision agriculture over traditional agriculture
- The importance of soil management for improving soil health
- The role of organic farming in ensuring food security
- The advantages and threats of using nanotechnology in sustainable agriculture
- Mutual relations between soil management and climate change.
2. Materials and Methods
3. Soil Management in Precision Agriculture
3.1. Ground Sensors
3.2. Remote Sensing
3.3. GNSS (GPS)
3.4. Perspectives and Limitations
4. Soil Health
4.1. Term and Context
4.2. Soil Health Indicators
4.3. What Next?
5. Soil in Organic Farming
OF System | Main Finding or Recommendation Related to Soil Sustainability | References |
---|---|---|
Swards grown under organic management | Perennial plants influenced SOC content. | [160] |
“Green manure” (mulching) in the crop rotation | The recommendation is to apply the aboveground mass of perennials in a combined manner. | [155] |
Organically grown agricultural swards and their mixtures | It is recommended to increase biodiversity by establishing organically grown multi-component long-lived swards. | [156] |
Organic crop rotation with legumes | Red clover created more favourable environmental conditions in the soil. | [158,159] |
Forage legumes in OA | Positive effect on topsoil SOC stocks. | [161] |
6. Nanoparticles (NPs) in Sustainable Agriculture
6.1. General Characteristics of NPs
6.2. Advantages of Using NPs in Sustainable Agriculture
6.3. Nanoparticles and Their Potential Ecological Effects
7. Climate Change
7.1. Salinity
7.2. Erosion
7.3. Soil Biodiversity
8. Conclusions
Funding
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture—Drivers and Triggers for Transformation; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- World Population Clock: 8.2 Billion People (LIVE, 2024)—Worldometer. Available online: https://www.worldometers.info/world-population/#table-historical (accessed on 16 September 2024).
- Yousef, H.A.; Fahmy, H.M.; Arafa, F.N.; Abd Allah, M.Y.; Tawfik, Y.M.; El Halwany, K.K.; El-Ashmanty, B.A.; Al-anany, F.S.; Mohamed, M.A.; Bassily, M.E. Nanotechnology in Pest Management: Advantages, Applications, and Challenges. Int. J. Trop. Insect Sci. 2023, 43, 1387–1399. [Google Scholar] [CrossRef]
- Farmery, A.K.; Allison, E.H.; Andrew, N.L.; Troell, M.; Voyer, M.; Campbell, B.; Eriksson, H.; Fabinyi, M.; Song, A.M.; Steenbergen, D. Blind Spots in Visions of a “Blue Economy” Could Undermine the Ocean’s Contribution to Eliminating Hunger and Malnutrition. One Earth 2021, 4, 28–38. [Google Scholar] [CrossRef]
- Meemken, E.M.; Qaim, M. Organic Agriculture, Food Security, and the Environment. Annu. Rev. Resour. Econ. 2018, 10, 39–63. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Bouma, J. Soil Sensing: A New Paradigm for Agriculture. Agric. Syst. 2016, 148, 71–74. [Google Scholar] [CrossRef]
- Zhao, J.; Zhou, N. Impact of Human Health on Economic Growth under the Constraint of Environment Pollution. Technol. Forecast. Soc. Chang. 2021, 169, 120828. [Google Scholar] [CrossRef]
- Jahanger, A.; Usman, M.; Murshed, M.; Mahmood, H.; Balsalobre-Lorente, D. The Linkages between Natural Resources, Human Capital, Globalization, Economic Growth, Financial Development, and Ecological Footprint: The Moderating Role of Technological Innovations. Resour. Policy 2022, 76, 102569. [Google Scholar] [CrossRef]
- Muhie, S.H. Novel Approaches and Practices to Sustainable Agriculture. J. Agric. Food Res. 2022, 10, 100446. [Google Scholar] [CrossRef]
- Clunes, J.; Valle, S.; Dörner, J.; Martínez, O.; Pinochet, D.; Zúñiga, F.; Blum, W.E.H. Soil Fragility: A Concept to Ensure a Sustainable Use of Soils. Ecol. Indic. 2022, 139, 108969. [Google Scholar] [CrossRef]
- Krol, D.J.; Forrestal, P.J.; Wall, D.; Lanigan, G.J.; Sanz-Gomez, J.; Richards, K.G. Nitrogen Fertilisers with Urease Inhibitors Reduce Nitrous Oxide and Ammonia Losses, While Retaining Yield in Temperate Grassland. Sci. Total Environ. 2020, 725, 138329. [Google Scholar] [CrossRef]
- Paungfoo-Lonhienne, C.; Redding, M.; Pratt, C.; Wang, W. Plant Growth Promoting Rhizobacteria Increase the Efficiency of Fertilisers While Reducing Nitrogen Loss. J. Environ. Manag. 2019, 233, 337–341. [Google Scholar] [CrossRef]
- Popović, T.; Mijović, S.; Pajović Šćepanović, R.; Raičević, D. Analysis of Possibilities of Reducing the Quantity of Mineral Fertilizer Application Using Different Types of Organic Fertilizers in Cardinal Grape Variety. Agric. For. 2020, 66, 261. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Naresh, R.K.; Mandal, A.; Singh, R.; Dhaliwal, M.K. Dynamics and Transformations of Micronutrients in Agricultural Soils as Influenced by Organic Matter Build-up: A Review. Environ. Sustain. Indic. 2019, 1–2, 100007. [Google Scholar] [CrossRef]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for Keeping the Food System within Environmental Limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef]
- EUR-Lex—52022DC0230—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A230%3AFIN (accessed on 16 September 2024).
- Schebesta, H.; Bernaz, N.; Macchi, C. The European Union Farm to Fork Strategy: Sustainability and Responsible Business in the Food Supply Chain. Eur. Food Feed. Law. Rev. 2020, 15, 420–427. [Google Scholar] [CrossRef]
- EUR-Lex—52020DC0381—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0381 (accessed on 19 September 2024).
- Goyal, V.; Rani, D.; Ritika; Mehrotra, S.; Deng, C.; Wang, Y. Unlocking the Potential of Nano-Enabled Precision Agriculture for Efficient and Sustainable Farming. Plants 2023, 12, 3744. [Google Scholar] [CrossRef] [PubMed]
- Zain, M.; Ma, H.; Ur Rahman, S.; Nuruzzaman, M.; Chaudhary, S.; Azeem, I.; Mehmood, F.; Duan, A.; Sun, C. Nanotechnology in Precision Agriculture: Advancing towards Sustainable Crop Production. Plant Physiol. Biochem. 2024, 206, 108244. [Google Scholar] [CrossRef]
- Ndaba, B.; Roopnarain, A.; Rama, H.; Maaza, M. Biosynthesized Metallic Nanoparticles as Fertilizers: An Emerging Precision Agriculture Strategy. J. Integr. Agric. 2022, 21, 1225–1242. [Google Scholar] [CrossRef]
- Gamage, A.; Gangahagedara, R.; Gamage, J.; Jayasinghe, N.; Kodikara, N.; Suraweera, P.; Merah, O. Role of Organic Farming for Achieving Sustainability in Agriculture. Farming Syst. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Sargani, G.R.; Ihtisham, M.; Khayyam, M.; Ismail, S. Current Progress and Future Prospects of Agriculture Technology: Gateway to Sustainable Agriculture. Sustainability 2021, 13, 4883. [Google Scholar] [CrossRef]
- Takahashi, K.; Muraoka, R.; Otsuka, K. Technology Adoption, Impact, and Extension in Developing Countries’ Agriculture: A Review of the Recent Literature. Agric. Econ. 2020, 51, 31–45. [Google Scholar] [CrossRef]
- Jansson, J.K.; Hofmockel, K.S. Soil Microbiomes and Climate Change. Nat. Rev. Microbiol. 2019, 18, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Placidi, P.; Morbidelli, R.; Fortunati, D.; Papini, N.; Gobbi, F.; Scorzoni, A. Monitoring Soil and Ambient Parameters in the Iot Precision Agriculture Scenario: An Original Modeling Approach Dedicated to Low-Cost Soil Water Content Sensors. Sensors 2021, 21, 5110. [Google Scholar] [CrossRef]
- Ferrari, R. Writing Narrative Style Literature Reviews. Med. Writ. 2015, 24, 230–235. [Google Scholar] [CrossRef]
- Argento, F.; Anken, T.; Abt, F.; Vogelsanger, E.; Walter, A.; Liebisch, F. Site-Specific Nitrogen Management in Winter Wheat Supported by Low-Altitude Remote Sensing and Soil Data. Precis. Agric. 2021, 22, 364–386. [Google Scholar] [CrossRef]
- Monteiro, A.; Santos, S.; Gonçalves, P. Precision Agriculture for Crop and Livestock Farming—Brief Review. Animals 2021, 11, 2345. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Bramley, R.G.V.; Ouzman, J.; Gobbett, D.L. Regional Scale Application of the Precision Agriculture Thought Process to Promote Improved Fertilizer Management in the Australian Sugar Industry. Precis. Agric. 2019, 20, 362–378. [Google Scholar] [CrossRef]
- Thompson, N.M.; Bir, C.; Widmar, D.A.; Mintert, J.R. Farmer perceptions of precision agriculture technology benefits. J. Agric. Appl. Econ. 2019, 51, 142–163. [Google Scholar] [CrossRef]
- Devlin, M.; Brodie, J. Nutrients and Eutrophication. Geogr. Environ. 2023, 4, 75–100. [Google Scholar] [CrossRef]
- Picetti, R.; Deeney, M.; Pastorino, S.; Miller, M.R.; Shah, A.; Leon, D.A.; Dangour, A.D.; Green, R. Nitrate and Nitrite Contamination in Drinking Water and Cancer Risk: A Systematic Review with Meta-Analysis. Environ. Res. 2022, 210, 112988. [Google Scholar] [CrossRef] [PubMed]
- Menegat, S.; Ledo, A.; Tirado, R. Greenhouse Gas Emissions from Global Production and Use of Nitrogen Synthetic Fertilisers in Agriculture. Sci. Rep. 2022, 12, 14490. [Google Scholar] [CrossRef]
- Pradipta, A.; Soupios, P.; Kourgialas, N.; Doula, M.; Dokou, Z.; Makkawi, M.; Alfarhan, M.; Tawabini, B.; Kirmizakis, P.; Yassin, M. Remote Sensing, Geophysics, and Modeling to Support Precision Agriculture—Part 1: Soil Applications. Water 2022, 14, 1158. [Google Scholar] [CrossRef]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision Agriculture Techniques and Practices: From Considerations to Applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef]
- Shaheb, M.d.R.; Sarker, A.; Shearer, S.A.; Shaheb, M.d.R.; Sarker, A.; Shearer, S.A. Precision Agriculture for Sustainable Soil and Crop Management. In Soil Science—Emerging Technologies, Global Perspectives and Applications; IntechOpen: Rijeka, Croatia, 2022. [Google Scholar] [CrossRef]
- Ahmadi, A.; Emami, M.; Daccache, A.; He, L.; Barbero, F. Soil Properties Prediction for Precision Agriculture Using Visible and Near-Infrared Spectroscopy: A Systematic Review and Meta-Analysis. Agronomy 2021, 11, 433. [Google Scholar] [CrossRef]
- Huuskonen, J.; Oksanen, T. Soil Sampling with Drones and Augmented Reality in Precision Agriculture. Comput. Electron. Agric. 2018, 154, 25–35. [Google Scholar] [CrossRef]
- Yin, H.; Cao, Y.; Marelli, B.; Zeng, X.; Mason, A.J.; Cao, C.; Yin, H.; Mason, A.J.; Cao, C.; Cao, Y.; et al. Soil Sensors and Plant Wearables for Smart and Precision Agriculture. Adv. Mater. 2021, 33, 2007764. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.N.; Shaikh, A.J.; Khan, A.; Awais, H.; Bakar, E.A.; Othman, A.R. Smart Sensing with Edge Computing in Precision Agriculture for Soil Assessment and Heavy Metal Monitoring: A Review. Agriculture 2021, 11, 475. [Google Scholar] [CrossRef]
- Guerrero, A.; De Neve, S.; Mouazen, A.M. Current Sensor Technologies for in Situ and On-Line Measurement of Soil Nitrogen for Variable Rate Fertilization: A Review. Adv. Agron. 2021, 168, 1–38. [Google Scholar] [CrossRef]
- Higgins, S.; Schellberg, J.; Bailey, J.S. Improving Productivity and Increasing the Efficiency of Soil Nutrient Management on Grassland Farms in the UK and Ireland Using Precision Agriculture Technology. Eur. J. Agron. 2019, 106, 67–74. [Google Scholar] [CrossRef]
- Smolka, M.; Puchberger-Enengl, D.; Bipoun, M.; Klasa, A.; Kiczkajlo, M.; Śmiechowski, W.; Sowiński, P.; Krutzler, C.; Keplinger, F.; Vellekoop, M.J. A Mobile Lab-on-a-Chip Device for on-Site Soil Nutrient Analysis. Precis. Agric. 2017, 18, 152–168. [Google Scholar] [CrossRef]
- Križanović, V.; Grgić, K.; Spišić, J.; Žagar, D. An Advanced Energy-Efficient Environmental Monitoring in Precision Agriculture Using LoRa-Based Wireless Sensor Networks. Sensors 2023, 23, 6332. [Google Scholar] [CrossRef] [PubMed]
- Thakur, D.; Kumar, Y.; Kumar, A.; Singh, P.K. Applicability of Wireless Sensor Networks in Precision Agriculture: A Review Abbreviations APTEEN Adaptive Periodic Threshold-Sensitive Energy Efficient Sensor Network Protocol AMSR-E Advanced Microwave Scanning Radiometer for the Earth Observing System. Wirel. Pers. Commun. 2019, 107, 471–512. [Google Scholar] [CrossRef]
- Rogovska, N.; Laird, D.A.; Chiou, C.P.; Bond, L.J. Development of Field Mobile Soil Nitrate Sensor Technology to Facilitate Precision Fertilizer Management. Precis. Agric. 2019, 20, 40–55. [Google Scholar] [CrossRef]
- Mukherjee, A.; Misra, S.; Raghuwanshi, N.S. A Survey of Unmanned Aerial Sensing Solutions in Precision Agriculture. J. Netw. Comput. Appl. 2019, 148, 102461. [Google Scholar] [CrossRef]
- Phang, S.K.; Chiang, T.H.A.; Happonen, A.; Chang, M.M.L. From Satellite to UAV-Based Remote Sensing: A Review on Precision Agriculture. IEEE Access 2023, 11, 127057–127076. [Google Scholar] [CrossRef]
- Singh, P.; Pandey, P.C.; Petropoulos, G.P.; Pavlides, A.; Srivastava, P.K.; Koutsias, N.; Deng, K.A.K.; Bao, Y. Hyperspectral Remote Sensing in Precision Agriculture: Present Status, Challenges, and Future Trends. In Hyperspectral Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2020; pp. 121–146. [Google Scholar] [CrossRef]
- Khanal, S.; Kushal, K.C.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote Sensing in Agriculture—Accomplishments, Limitations, and Opportunities. Remote Sens. 2020, 12, 3783. [Google Scholar] [CrossRef]
- Liu, J.; Xiang, J.; Jin, Y.; Liu, R.; Yan, J.; Wang, L. Boost Precision Agriculture with Unmanned Aerial Vehicle Remote Sensing and Edge Intelligence: A Survey. Remote Sens. 2021, 13, 4387. [Google Scholar] [CrossRef]
- Martos, V.; Ahmad, A.; Cartujo, P.; Ordoñez, J. Ensuring Agricultural Sustainability through Remote Sensing in the Era of Agriculture 5.0. Appl. Sci. 2021, 11, 5911. [Google Scholar] [CrossRef]
- Angelopoulou, T.; Tziolas, N.; Balafoutis, A.; Zalidis, G.; Bochtis, D. Remote Sensing Techniques for Soil Organic Carbon Estimation: A Review. Remote Sens. 2019, 11, 676. [Google Scholar] [CrossRef]
- Paustian, K.; Collier, S.; Baldock, J.; Burgess, R.; Creque, J.; DeLonge, M.; Dungait, J.; Ellert, B.; Frank, S.; Goddard, T.; et al. Quantifying Carbon for Agricultural Soil Management: From the Current Status toward a Global Soil Information System. In Carbon Management; Taylor and Francis Ltd.: Abingdon, UK, 2019; pp. 567–587. [Google Scholar] [CrossRef]
- Louw, A.S.; Chen, X.; Avtar, R. Assessing the Accuracy of an Infrared-Converted Drone Camera with Orange-Cyan-NIR Filter for Vegetation and Environmental Monitoring. Remote Sens. Appl. 2024, 35, 101229. [Google Scholar] [CrossRef]
- Lu, M.; Wang, H.; Xu, J.; Wei, Z.; Li, Y.; Hu, J.; Tian, S. A Vis/NIRS Device for Evaluating Leaf Nitrogen Content Using K-Means Algorithm and Feature Extraction Methods. Comput. Electron. Agric. 2024, 225, 109301. [Google Scholar] [CrossRef]
- Amanor, I.N.; Ricardo, O.A.; Noguchi, N. Assessment of Remote Sensing in Measuring Soil Parameters for Precision Tillage. J. Terramechanics 2024, 113–114, 100973. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Kopačková, V. Detecting Vegetation Stress as a Soil Contamination Proxy: A Review of Optical Proximal and Remote Sensing Techniques. Int. J. Environ. Sci. Technol. 2019, 16, 2511–2524. [Google Scholar] [CrossRef]
- Sahabiev, I.; Smirnova, E.; Giniyatullin, K. Spatial Prediction of Agrochemical Properties on the Scale of a Single Field Using Machine Learning Methods Based on Remote Sensing Data. Agronomy 2021, 11, 2266. [Google Scholar] [CrossRef]
- Shahriari, M.; Delbari, M.; Afrasiab, P.; Pahlavan-Rad, M.R. Predicting Regional Spatial Distribution of Soil Texture in Floodplains Using Remote Sensing Data: A Case of Southeastern Iran. Catena 2019, 182, 104149. [Google Scholar] [CrossRef]
- Nijak, M.; Skrzypczyński, P.; Ćwian, K.; Zawada, M.; Szymczyk, S.; Wojciechowski, J. On the Importance of Precise Positioning in Robotised Agriculture. Remote Sens. 2024, 16, 985. [Google Scholar] [CrossRef]
- Perez-Ruiz, M.; Martínez-Guanter, J.; Upadhyaya, S.K. High-Precision GNSS for Agricultural Operations. In GPS and GNSS Technology in Geosciences; Elsevier: Amsterdam, The Netherlands, 2021; pp. 299–335. [Google Scholar] [CrossRef]
- Kowalczyk, W.Z.; Hadas, T. A Comparative Analysis of the Performance of Various GNSS Positioning Concepts Dedicated to Precision Agriculture. Rep. Geod. Geoinform. 2024, 117, 11–20. [Google Scholar] [CrossRef]
- Lange, A.F.; Peake, J. Precision Agriculture. In Position, Navigation, and Timing Technologies in the 21st Century; John Wiley & Sons: Hoboken, NJ, USA, 2020; Volume 2, pp. 1735–1747. [Google Scholar] [CrossRef]
- Tayebi, A.; Gómez, J.; Fernández, M.; de Adana, F.S.; Gutiérrez, O. Low-Cost Experimental Application of Real-Time Kinematic Positioning for Increasing the Benefits in Cereal Crops. Int. J. Agric. Biol. Eng. 2021, 14, 194–199. [Google Scholar] [CrossRef]
- Barna, R.; Tóth, K.; Nagy, M.Z.; Solymosi, K. Technical Characteristics of Global Navigation Satellite Systems and Their Role in Precision Agriculture. J. Agric. Inform. 2020, 11, 52–66. [Google Scholar] [CrossRef]
- Radočaj, D.; Jurišić, M.; Gašparović, M. The Role of Remote Sensing Data and Methods in a Modern Approach to Fertilization in Precision Agriculture. Remote Sens. 2022, 14, 778. [Google Scholar] [CrossRef]
- Wołejko, E.; Jabłońska-Trypuć, A.; Wydro, U.; Butarewicz, A.; Łozowicka, B. Soil Biological Activity as an Indicator of Soil Pollution with Pesticides—A Review. Appl. Soil Ecol. 2020, 147, 103356. [Google Scholar] [CrossRef]
- Maja, M.M.; Ayano, S.F. The Impact of Population Growth on Natural Resources and Farmers’ Capacity to Adapt to Climate Change in Low-Income Countries. Earth Syst. Environ. 2021, 5, 271–283. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The Concept and Future Prospects of Soil Health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- Powlson, D.S. Is ‘Soil Health’ Meaningful as a Scientific Concept or as Terminology? Soil Use Manag. 2021, 37, 403. [Google Scholar] [CrossRef]
- Baveye, P.C. Soil Health at a Crossroad. Soil Use Manag. 2021, 37, 215. [Google Scholar] [CrossRef]
- Lal, R.; Rattan Lal, C. Managing Soils for Resolving the Conflict between Agriculture and Nature: The Hard Talk. Eur. J. Soil Sci. 2020, 71, 1–9. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Thelwall, M.; Orduna-Malea, E.; Delgado López-Cózar, E. Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: A Multidisciplinary Comparison of Coverage via Citations. Scientometrics 2021, 126, 871–906. [Google Scholar] [CrossRef]
- “Google” Mokslinčius. Available online: https://scholar.google.com/ (accessed on 1 September 2024).
- Chen, Y. Withdrawal of European Soil Framework Directive: Reasons and Recommendations. J. Sustain. Dev. 2019, 13, 1. [Google Scholar] [CrossRef]
- Zeiss, R.; Eisenhauer, N.; Orgiazzi, A.; Rillig, M.; Buscot, F.; Jones, A.; Lehmann, A.; Reitz, T.; Smith, L.; Guerra, C.A. Challenges of and Opportunities for Protecting European Soil Biodiversity. Conserv. Biol. 2022, 36, e13930. [Google Scholar] [CrossRef]
- Panagos, P.; Broothaerts, N.; Ballabio, C.; Orgiazzi, A.; De Rosa, D.; Borrelli, P.; Liakos, L.; Vieira, D.; Van Eynde, E.; Arias Navarro, C.; et al. How the EU Soil Observatory Is Providing Solid Science for Healthy Soils. Eur. J. Soil Sci. 2024, 75, e13507. [Google Scholar] [CrossRef]
- Veenstra, J.; Coquet, Y.; Melot, R.; Walter, C. A European Stakeholder Survey on Soil Science Skills for Sustainable Agriculture. Eur. J. Soil Sci. 2024, 75, e13449. [Google Scholar] [CrossRef]
- Fetting, C. The European Green Deal. ESDN Report. 2020. Available online: https://www.newcaets.org/wp-content/uploads/2021/09/NATF-France-July-2021.pdf (accessed on 27 August 2024).
- ESDAC—European Commission. Available online: https://esdac.jrc.ec.europa.eu/ (accessed on 27 August 2024).
- EUSO—ESDAC—European Commission. Available online: https://esdac.jrc.ec.europa.eu/euso (accessed on 27 August 2024).
- Panagos, P.; Van Liedekerke, M.; Borrelli, P.; Köninger, J.; Ballabio, C.; Orgiazzi, A.; Lugato, E.; Liakos, L.; Hervas, J.; Jones, A.; et al. European Soil Data Centre 2.0: Soil Data and Knowledge in Support of the EU Policies. Eur. J. Soil Sci. 2022, 73, e13315. [Google Scholar] [CrossRef]
- European Soil Partnership: European Soil Partnership. Available online: https://www.europeansoilpartnership.org/ (accessed on 31 August 2024).
- Soil Strategy—European Commission. Available online: https://environment.ec.europa.eu/topics/soil-and-land/soil-strategy_en (accessed on 31 August 2024).
- The United Nations Sustainable Development Goals. Available online: https://Sdgs.Un.Org/Goals/Goal2 (accessed on 23 October 2024).
- The Paris Climate Agreement. Available online: https://unfccc.int/sites/default/files/resource/parisagreement_publication.pdf (accessed on 23 October 2024).
- The United States Department of Agriculture. Soil Health Principles. Available online: https://Www.Usda.Gov/Peoples-Garden/Soil-Health (accessed on 23 October 2024).
- The African Union Agenda 2063. Available online: https://au.int/en/agenda2063/overview (accessed on 23 October 2024).
- The Latin American Declaration on Sustainable Agriculture and Climate Change. Available online: https://www.mockcop.org/the-latin-american-declaration-is-here/ (accessed on 23 October 2024).
- Van Leeuwen, J.P.; Saby, N.P.A.; Jones, A.; Louwagie, G.; Micheli, E.; Rutgers, M.; Schulte, R.P.O.; Spiegel, H.; Toth, G.; Creamer, R.E. Gap Assessment in Current Soil Monitoring Networks across Europe for Measuring Soil Functions. Environ. Res. Lett. 2017, 12, 124007. [Google Scholar] [CrossRef]
- Panagos, P.; Montanarella, L.; Barbero, M.; Schneegans, A.; Aguglia, L.; Jones, A. Soil Priorities in the European Union. Geoderma Reg. 2022, 29, e00510. [Google Scholar] [CrossRef]
- Pe’er, G.; Bonn, A.; Bruelheide, H.; Dieker, P.; Eisenhauer, N.; Feindt, P.H.; Hagedorn, G.; Hansjürgens, B.; Herzon, I.; Lomba, Â.; et al. Action Needed for the EU Common Agricultural Policy to Address Sustainability Challenges. People Nat. 2020, 2, 305–316. [Google Scholar] [CrossRef]
- Handayani, I.P.; Hale, C. Healthy Soils for Productivity and Sustainable Development in Agriculture. IOP Conf. Ser. Earth Environ. Sci. 2022, 1018, 012038. [Google Scholar] [CrossRef]
- Hu, Y.; Zhao, T.; Guo, Y.; Wang, M.; Brachhold, K.; Chu, C.; Hanson, A.; Kumar, S.; Lin, R.; Long, W.; et al. 100 Essential Questions for the Future of Agriculture. Mod. Agric. 2023, 1, 4–12. [Google Scholar] [CrossRef]
- Lal, R. Soil Health and Carbon Management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Lehman, R.M.; Cambardella, C.A.; Stott, D.E.; Acosta-Martinez, V.; Manter, D.K.; Buyer, J.S.; Maul, J.E.; Smith, J.L.; Collins, H.P.; Halvorson, J.J.; et al. Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation. Sustainability 2015, 7, 988–1027. [Google Scholar] [CrossRef]
- Vasu, D.; Tiwary, P.; Chandran, P.; Singh, S.K. Soil Quality for Sustainable Agriculture. In Nutrient Dynamics for Sustainable Crop Production; Springer: Berlin/Heidelberg, Germany, 2019; pp. 41–66. [Google Scholar] [CrossRef]
- Lal, R.; Rattan Lal, C. Digging Deeper: A Holistic Perspective of Factors Affecting Soil Organic Carbon Sequestration in Agroecosystems. Glob. Chang. Biol. 2018, 24, 3285–3301. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. A Simple Soil Organic Carbon Level Metric beyond the Organic Carbon-to-Clay Ratio. Soil Use Manag. 2023, 39, 1057–1067. [Google Scholar] [CrossRef]
- Wade, J.; Culman, S.W.; Logan, J.A.R.; Poffenbarger, H.; Demyan, M.S.; Grove, J.H.; Mallarino, A.P.; McGrath, J.M.; Ruark, M.; West, J.R. Improved Soil Biological Health Increases Corn Grain Yield in N Fertilized Systems across the Corn Belt. Sci. Rep. 2020, 10, 3917. [Google Scholar] [CrossRef]
- Dewi, R.K.; Fukuda, M.; Takashima, N.; Yagioka, A.; Komatsuzaki, M. Soil Carbon Sequestration and Soil Quality Change between No-Tillage and Conventional Tillage Soil Management after 3 and 11 Years of Organic Farming. Soil Sci. Plant Nutr. 2022, 68, 133–148. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Lavallee, J.M. Soil Organic Matter Formation, Persistence, and Functioning: A Synthesis of Current Understanding to Inform Its Conservation and Regeneration. Adv. Agron. 2022, 172, 1–66. [Google Scholar] [CrossRef]
- Laik, R.; Kumara, B.H.; Pramanick, B.; Singh, S.K.; Nidhi; Alhomrani, M.; Gaber, A.; Hossain, A. Labile Soil Organic Matter Pools Are Influenced by 45 Years of Applied Farmyard Manure and Mineral Nitrogen in the Wheat—Pearl Millet Cropping System in the Subtropical Condition. Agronomy 2021, 11, 2190. [Google Scholar] [CrossRef]
- Mhuireach, G.A.; Dietz, L.; Gillett, T. One or Many? Multi-Species Livestock Grazing Influences Soil Microbiome Community Structure and Antibiotic Resistance Potential. Front. Sustain. Food Syst. 2022, 6, 926824. [Google Scholar] [CrossRef]
- Kimmell, L.B.; Fagan, J.M.; Havrilla, C.A. Soil Restoration Increases Soil Health across Global Drylands: A Meta-Analysis. J. Appl. Ecol. 2023, 60, 1939–1951. [Google Scholar] [CrossRef]
- Nunes, M.R.; Karlen, D.L.; Moorman, T.B. Tillage Intensity Effects on Soil Structure Indicators—A US Meta-Analysis. Sustainability 2020, 12, 2071. [Google Scholar] [CrossRef]
- Loaiza Puerta, V.; Pujol Pereira, E.I.; Wittwer, R.; van der Heijden, M.; Six, J. Improvement of Soil Structure through Organic Crop Management, Conservation Tillage and Grass-Clover Ley. Soil Tillage Res. 2018, 180, 1–9. [Google Scholar] [CrossRef]
- Ye, R.; Parajuli, B.; Szogi, A.A.; Sigua, G.C.; Ducey, T.F. Soil Health Assessment after 40 Years of Conservation and Conventional Tillage Management in Southeastern Coastal Plain Soils. Soil Sci. Soc. Am. J. 2021, 85, 1214–1225. [Google Scholar] [CrossRef]
- Mulatu, G. Influence of Conservation Agriculture on Certain Soil Qualities Both Physical and Chemical in Relation to Sustainable Agriculture Practices a Review. Int. J. Biochem. Biophys. Mol. Biol. 2024, 9, 1–13. [Google Scholar] [CrossRef]
- Krauss, M.; Berner, A.; Perrochet, F.; Frei, R.; Niggli, U.; Mäder, P. Enhanced Soil Quality with Reduced Tillage and Solid Manures in Organic Farming—A Synthesis of 15 Years. Sci. Rep. 2020, 10, 4403. [Google Scholar] [CrossRef] [PubMed]
- Sprunger, C.D.; Martin, T.; Mann, M. Systems with Greater Perenniality and Crop Diversity Enhance Soil Biological Health. Agric. Environ. Lett. 2020, 5, e20030. [Google Scholar] [CrossRef]
- Sellami, M.H.; Lavini, A. Advancements in Soil and Sustainable Agriculture. Soil Syst. 2023, 7, 98. [Google Scholar] [CrossRef]
- Pandao, M.R.; Jejal, A.D.; Shukla, E.P.; Prabhumitrareddy, S.; Rout, S.; Baral, K.; Bhadani, M. Unlocking the Benefits of Carbon Sequestration for Enhancing Soil Health. Int. J. Environ. Clim. Chang. 2023, 13, 1349–1359. [Google Scholar] [CrossRef]
- Jackson, R.B.; Lajtha, K.; Crow, S.E.; Hugelius, G.; Kramer, M.G.; Piñeiro, G. The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic Controls. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 419–445. [Google Scholar] [CrossRef]
- Lei, X.; Shen, Y.; Zhao, J.; Huang, J.; Wang, H.; Yu, Y.; Xiao, C. Root Exudates Mediate the Processes of Soil Organic Carbon Input and Efflux. Plants 2023, 12, 630. [Google Scholar] [CrossRef]
- Sokol, N.W.; Kuebbing, S.E.; Karlsen-Ayala, E.; Bradford, M.A. Evidence for the Primacy of Living Root Inputs, Not Root or Shoot Litter, in Forming Soil Organic Carbon. New Phytol. 2019, 221, 233–246. [Google Scholar] [CrossRef]
- Keller, A.B.; Brzostek, E.R.; Craig, M.E.; Fisher, J.B.; Phillips, R.P. Root-Derived Inputs Are Major Contributors to Soil Carbon in Temperate Forests, but Vary by Mycorrhizal Type. Ecol. Lett. 2021, 24, 626–635. [Google Scholar] [CrossRef]
- Dijkstra, F.A.; Zhu, B.; Cheng, W. Root Effects on Soil Organic Carbon: A Double-Edged Sword. New Phytol. 2021, 230, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Vosátka, M.; Cai, B.; Ding, J.; Lu, C.; Xu, J.; Yan, W.; Li, Y.; Liu, C. The Role of Arbuscular Mycorrhiza Fungi in the Decomposition of Fresh Residue and Soil Organic Carbon: A Mini-Review. Soil Sci. Soc. Am. J. 2019, 83, 511–517. [Google Scholar] [CrossRef]
- Yao, Y.; Dai, Q.; Gao, R.; Yi, X.; Wang, Y.; Hu, Z. Characteristics and Factors Influencing Soil Organic Carbon Composition by Vegetation Type in Spoil Heaps. Front. Plant Sci. 2023, 14, 1240217. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Xu, F. Root, Not Aboveground Litter, Controls Soil Carbon Storage under Grazing Exclusion across Grasslands Worldwide. Land. Degrad. Dev. 2021, 32, 3326–3337. [Google Scholar] [CrossRef]
- Sun, G.; Zhu-Barker, X.; Chen, D.; Liu, L.; Zhang, N.; Shi, C.; He, L.; Lei, Y. Responses of Root Exudation and Nutrient Cycling to Grazing Intensities and Recovery Practices in an Alpine Meadow: An Implication for Pasture Management. Plant Soil 2017, 416, 515–525. [Google Scholar] [CrossRef]
- Holman, J.D.; Obour, A.K.; Assefa, Y. Fallow Replacement Cover Crops in a Semi-Arid High Plains Cropping System. Crop Sci. 2021, 61, 3799–3814. [Google Scholar] [CrossRef]
- Shekoofa, A.; Safikhan, S.; Raper, T.B.; Butler, S.A. Allelopathic Impacts of Cover Crop Species and Termination Timing on Cotton Germination and Seedling Growth. Agronomy 2020, 10, 638. [Google Scholar] [CrossRef]
- Gütschow, M.; Bartkowski, B.; Felipe-Lucia, M.R. Farmers’ Action Space to Adopt Sustainable Practices: A Study of Arable Farming in Saxony. Reg. Environ. Chang. 2021, 21, 103. [Google Scholar] [CrossRef]
- Chen, S.; Wang, L.; Gao, J.; Zhao, Y.; Wang, Y.; Qi, J.; Peng, Z.; Chen, B.; Pan, H.; Wang, Z.; et al. Agricultural Management Drive Bacterial Community Assembly in Different Compartments of Soybean Soil-Plant Continuum. Front. Microbiol. 2022, 13, 868307. [Google Scholar] [CrossRef]
- Gagliardi, L.; Sportelli, M.; Fontanelli, M.; Sbrana, M.; Luglio, S.M.; Raffaelli, M.; Peruzzi, A. Effects of Conservation Agriculture Practices on Tomato Yield and Economic Performance. Agronomy 2023, 13, 1704. [Google Scholar] [CrossRef]
- Li, X.; Storkey, J.; Mead, A.; Shield, I.; Clark, I.; Ostler, R.; Roberts, B.; Dobermann, A. A New Rothamsted Long-Term Field Experiment for the Twenty-First Century: Principles and Practice. Agron. Sustain. Dev. 2023, 43, 60. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Cheng, Z.; Li, Y.; Wang, J.; Zhao, R.; Guo, Z.; Zhao, T.; Huang, L.; Qiu, C.; Shi, W.; et al. Mixed Organic and Inorganic Amendments Enhance Soil Microbial Interactions and Environmental Stress Resistance of Tibetan Barley on Plateau Farmland. J. Environ. Manag. 2023, 330, 117137. [Google Scholar] [CrossRef] [PubMed]
- Ray, R.L.; Griffin, R.W.; Fares, A.; Elhassan, A.; Awal, R.; Woldesenbet, S.; Risch, E. Soil CO2 Emission in Response to Organic Amendments, Temperature, and Rainfall. Sci. Rep. 2020, 10, 5849. [Google Scholar] [CrossRef] [PubMed]
- Bosco, S.; Volpi, I.; Antichi, D.; Ragaglini, G.; Frasconi, C. Greenhouse Gas Emissions from Soil Cultivated with Vegetables in Crop Rotation under Integrated, Organic and Organic Conservation Management in a Mediterranean Environment. Agronomy 2019, 9, 446. [Google Scholar] [CrossRef]
- Flesch, F.; Berger, P.; Robles-Vargas, D.; Santos-Medrano, G.E.; Rico-Martínez, R. Characterization and Determination of the Toxicological Risk of Biochar Using Invertebrate Toxicity Tests in the State of Aguascalientes, México. Appl. Sci. 2019, 9, 1706. [Google Scholar] [CrossRef]
- Lieke, T.; Zhang, X.; Steinberg, C.E.W.; Pan, B. Overlooked Risks of Biochars: Persistent Free Radicals Trigger Neurotoxicity in Caenorhabditis Elegans. Environ. Sci. Technol. 2018, 52, 7981–7987. [Google Scholar] [CrossRef]
- Antal, G.; Szabó, S.; Szarvas, P.; Holb, I.J. Yield and Cost–Benefit Analyses for Apple Scab Sanitation Practices in Integrated and Organic Apple Management Systems. Plants People Planet 2024, 6, 470–489. [Google Scholar] [CrossRef]
- Long, B.; Li, F.; Wang, K.; Huang, Y.; Yang, Y.; Xie, D. Impact of Plastic Film Mulching on Microplastic in Farmland Soils in Guangdong Province, China. Heliyon 2023, 9, e16587. [Google Scholar] [CrossRef] [PubMed]
- Lulandala, L.; Bargués-Tobella, A.; Masao, C.A.; Nyberg, G.; Ilstedt, U. Excessive Livestock Grazing Overrides the Positive Effects of Trees on Infiltration Capacity and Modifies Preferential Flow in Dry Miombo Woodlands. Land Degrad. Dev. 2022, 33, 581–595. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Li, Q.; Zhang, H.Y.; Hu, Y.Y.; Hou, S.L.; Wei, H.W.; Yin, J.X.; Xiao-Tao, L. The Impacts of Nutrient Addition and Livestock Exclosure on the Soil Nematode Community in a Degraded Grassland. Land Degrad. Dev. 2019, 30, 1574–1583. [Google Scholar] [CrossRef]
- Wang, X.; Ji, C.; Song, X.; Liu, Z.; Liu, Y.; Li, H.; Gao, Q.; Li, C.; Zheng, R.; Han, X.; et al. Biocontrol of Two Bacterial Inoculant Strains and Their Effects on the Rhizosphere Microbial Community of Field-Grown Wheat. Biomed Res. Int. 2021, 2021, 8835275. [Google Scholar] [CrossRef] [PubMed]
- Ashwin, R.; Bagyaraj, D.J.; Mohan Raju, B. Ameliorating the Drought Stress Tolerance of a Susceptible Soybean Cultivar, MAUS 2 through Dual Inoculation with Selected Rhizobia and AM Fungus. Fungal Biol. Biotechnol. 2023, 10, 10. [Google Scholar] [CrossRef]
- Christopher, J. Adoption of Sustainable Farming Practices in the United States: A Study on Farmer Behavior. Int. J. Agric. 2024, 9, 35–46. [Google Scholar] [CrossRef]
- Dubbert, C.; Abdulai, A.; Mohammed, S. Contract Farming and the Adoption of Sustainable Farm Practices: Empirical Evidence from Cashew Farmers in Ghana. Appl. Econ. Perspect. Policy 2023, 45, 487–509. [Google Scholar] [CrossRef]
- Sikandar, F.; Erokhin, V.; Xin, L.; Sidorova, M.; Ivolga, A.; Bobryshev, A. Sustainable Agriculture and Rural Poverty Eradication in Pakistan: The Role of Foreign Aid and Government Policies. Sustainability 2022, 14, 14751. [Google Scholar] [CrossRef]
- Dubey, P.K.; Singh, A.; Chaurasia, R.; Pandey, K.K.; Bundela, A.K.; Dubey, R.K.; Abhilash, P.C. Planet Friendly Agriculture: Farming for People and the Planet. Curr. Res. Environ. Sustain. 2021, 3, 100041. [Google Scholar] [CrossRef]
- Manono, B.O.; Moller, H.; Benge, J.; Carey, P.; Lucock, D.; Manhire, J. Assessment of Soil Properties and Earthworms in Organic and Conventional Farming Systems after Seven Years of Dairy Farm Conversions in New Zealand. Agroecol. Sustain. Food Syst. 2019, 43, 678–704. [Google Scholar] [CrossRef]
- Council Regulation (EC) No 834/2007 of 28 June 2007 on Organic Production and Labelling of Organic Products and Repealing Regulation (EEC) No 2092/91. Available online: https://eur-lex.europa.eu/eli/reg/2007/834/oj (accessed on 23 October 2024).
- Antczak, E. Analyzing Spatiotemporal Development of Organic Farming in Poland. Sustainability 2021, 13, 10399. [Google Scholar] [CrossRef]
- Organic Farming in the EU. A Decade of Organic Growth. In Agricultural Market Brief. N°20; January 2023. Available online: https://agriculture.ec.europa.eu/news/organic-farming-eu-decade-growth-2023-01-18_en (accessed on 23 October 2024).
- Kunlanit, B.; Butnan, S.; Vityakon, P. Land–Use Changes Influencing C Sequestration and Quality in Topsoil and Subsoil. Agronomy 2019, 9, 520. [Google Scholar] [CrossRef]
- Soni, R.; Gupta, R.; Agarwal, P.; Mishra, R. Organic Farming: A Sustainable Agricultural Practice. Vantage J. Themat. Anal. 2022, 3, 21–44. [Google Scholar] [CrossRef]
- Williams, D.M.; Blanco-Canqui, H.; Francis, C.A.; Galusha, T.D. Organic Farming and Soil Physical Properties: An Assessment after 40 Years. Agron. J. 2017, 109, 600–609. [Google Scholar] [CrossRef]
- Arlauskiene, A.; Jablonskyte-Rasce, D.; Slepetiene, A. Effect of Legume and Legume-Festulolium Mixture and Their Mulches on Cereal Yield and Soil Quality in Organic Farming. Arch. Agron. Soil Sci. 2020, 66, 1058–1073. [Google Scholar] [CrossRef]
- Slepetiene, A. Ecologically Grown Agricultural Swards as Factor for the Biodiversity and SOC Increasing. JOJ Wildl. Biodivers. 2023, 4, 555648. [Google Scholar]
- Barbieri, P.; Pellerin, S.; Nesme, T. Comparing Crop Rotations between Organic and Conventional Farming. Sci. Rep. 2017, 7, 13761. [Google Scholar] [CrossRef]
- Feiziene, D.; Feiza, V.; Povilaitis, V.; Putramentaite, A.; Janusauskaite, D.; Seibutis, V.; Slepetys, J. Soil Sustainability Changes in Organic Crop Rotations with Diverse Crop Species and the Share of Legumes. Acta Agric. Scand. B Soil. Plant Sci. 2016, 66, 36–51. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Organic Agriculture and Climate Change; Springer International Publishing: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Kühnel, A.; Garcia-Franco, N.; Wiesmeier, M.; Burmeister, J.; Hobley, E.; Kiese, R.; Dannenmann, M.; Kögel-Knabner, I. Controlling Factors of Carbon Dynamics in Grassland Soils of Bavaria between 1989 and 2016. Agric. Ecosyst. Environ. 2019, 280, 118–128. [Google Scholar] [CrossRef]
- Peigné, J.; Casagrande, M.; Payet, V.; David, C.; Sans, F.X.; Blanco-Moreno, J.M.; Cooper, J.; Gascoyne, K.; Antichi, D.; Bàrberi, P.; et al. How Organic Farmers Practice Conservation Agriculture in Europe. Renew. Agric. Food Syst. 2016, 31, 72–85. [Google Scholar] [CrossRef]
- Adamchak, R. Organic Farming. Encyclopedia Britannica. Available online: https://www.britannica.com/topic/organic-farming (accessed on 20 September 2024).
- Guenet, B.; Camino-Serrano, M.; Ciais, P.; Tifafi, M.; Maignan, F.; Soong, J.L.; Janssens, I.A. Impact of Priming on Global Soil Carbon Stocks. Glob. Chang. Biol. 2018, 24, 1873–1883. [Google Scholar] [CrossRef] [PubMed]
- Brüngel, R.; Rückert, J.; Müller, P.; Babick, F.; Friedrich, C.M.; Ghanem, A.; Hodoroaba, V.D.; Mech, A.; Weigel, S.; Wohlleben, W.; et al. NanoDefiner Framework and E-Tool Revisited According to the European Commission’s Nanomaterial Definition 2022/C 229/01. Nanomaterials 2023, 13, 990. [Google Scholar] [CrossRef]
- Shukla, K.; Mishra, V.; Singh, J.; Varshney, V.; Verma, R.; Srivastava, S. Nanotechnology in Sustainable Agriculture: A Double-edged Sword. J. Sci. Food Agric. 2024, 104, 5675–5688. [Google Scholar] [CrossRef]
- Sharma, R.; Kumar, V. Nano Enabled Agriculture for Sustainable Soil. Waste Manag. Bull. 2024, 2, 152–161. [Google Scholar] [CrossRef]
- Usman, M.; Farooq, M.; Wakeel, A.; Nawaz, A.; Cheema, S.A.; ur Rehman, H.; Ashraf, I.; Sanaullah, M. Nanotechnology in Agriculture: Current Status, Challenges and Future Opportunities. Sci. Total Environ. 2020, 721, 137778. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Saleh, N.B.; Byro, A.; Zepp, R.; Sahle-Demessie, E.; Luxton, T.P.; Ho, K.T.; Burgess, R.M.; Flury, M.; White, J.C.; et al. Nano-Enabled Pesticides for Sustainable Agriculture and Global Food Security. Nat. Nanotechnol. 2022, 17, 347–360. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhu, G.; Zhao, W.; Jiang, Y.; Wang, Q.; Wang, Q.; Rui, Y.; Zhang, P.; Gao, L. Engineered Nanomaterials for Improving the Nutritional Quality of Agricultural Products: A Review. Nanomaterials 2022, 12, 4219. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Shweta; Singh, S.; Singh, S.; Pandey, R.; Singh, V.P.; Sharma, N.C.; Prasad, S.M.; Dubey, N.K.; Chauhan, D.K. An Overview on Manufactured Nanoparticles in Plants: Uptake, Translocation, Accumulation and Phytotoxicity. Plant Physiol. Biochem. 2017, 110, 2–12. [Google Scholar] [CrossRef]
- Liu, R.; Lal, R. Potentials of Engineered Nanoparticles as Fertilizers for Increasing Agronomic Productions. Sci. Total Environ. 2015, 514, 131–139. [Google Scholar] [CrossRef]
- Ebbs, S.D.; Bradfield, S.J.; Kumar, P.; White, J.C.; Musante, C.; Ma, X. Accumulation of Zinc, Copper, or Cerium in Carrot (Daucus Carota) Exposed to Metal Oxide Nanoparticles and Metal Ions. Environ. Sci. Nano 2016, 3, 114–126. [Google Scholar] [CrossRef]
- Joshi, A.; Kaur, S.; Dharamvir, K.; Nayyar, H.; Verma, G. Multi-walled Carbon Nanotubes Applied through Seed-priming Influence Early Germination, Root Hair, Growth and Yield of Bread Wheat (Triticum aestivum L.). J. Sci. Food Agric. 2018, 98, 3148–3160. [Google Scholar] [CrossRef] [PubMed]
- Rojas, S.; Rodríguez-Diéguez, A.; Horcajada, P. Metal-Organic Frameworks in Agriculture. ACS Appl. Mater. Interfaces 2022, 14, 16983–17007. [Google Scholar] [CrossRef]
- Liu, B.; Fan, Y.; Li, H.; Zhao, W.; Luo, S.; Wang, H.; Guan, B.; Li, Q.; Yue, J.; Dong, Z.; et al. Control the Entire Journey of Pesticide Application on Superhydrophobic Plant Surface by Dynamic Covalent Trimeric Surfactant Coacervation. Adv. Funct. Mater. 2021, 31, 2006606. [Google Scholar] [CrossRef]
- Hayles, J.; Johnson, L.; Worthley, C.; Losic, D. Nanopesticides: A Review of Current Research and Perspectives. In New Pesticides and Soil Sensors; Elsevier: Amsterdam, The Netherlands, 2017; pp. 193–225. [Google Scholar] [CrossRef]
- Feng, J.; Shi, Y.; Yu, Q.; Sun, C.; Yang, G. Effect of Emulsifying Process on Stability of Pesticide Nanoemulsions. Colloids Surf. A Physicochem. Eng. Asp. 2016, 497, 286–292. [Google Scholar] [CrossRef]
- Liu, X.; He, B.; Xu, Z.; Yin, M.; Yang, W.; Zhang, H.; Cao, J.; Shen, J. A Functionalized Fluorescent Dendrimer as a Pesticide Nanocarrier: Application in Pest Control. Nanoscale 2015, 7, 445–449. [Google Scholar] [CrossRef]
- Malandrakis, A.A.; Kavroulakis, N.; Chrysikopoulos, C.V. Use of Copper, Silver and Zinc Nanoparticles against Foliar and Soil-Borne Plant Pathogens. Sci. Total Environ. 2019, 670, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Meng, Z.; Wang, Y.; Chen, W.; Sun, C.; Cui, B.; Cui, J.; Yu, M.; Zeng, Z.; Guo, S.; et al. Pollen Magnetofection for Genetic Modification with Magnetic Nanoparticles as Gene Carriers. Nat. Plants 2017, 3, 956–964. [Google Scholar] [CrossRef]
- Worrall, E.A.; Hamid, A.; Mody, K.T.; Mitter, N.; Pappu, H.R. Nanotechnology for Plant Disease Management. Agronomy 2018, 8, 285. [Google Scholar] [CrossRef]
- Rajput, V.D.; Singh, A.; Minkina, T.; Rawat, S.; Mandzhieva, S.; Sushkova, S.; Shuvaeva, V.; Nazarenko, O.; Rajput, P.; Komariah; et al. Nano-Enabled Products: Challenges and Opportunities for Sustainable Agriculture. Plants 2021, 10, 2727. [Google Scholar] [CrossRef]
- Abd Elwahab, H.M.; Darwish, Y.A.; Ezz El-Din, H.E.-D.A.; Othman, A.A.; Abdu-Allah, G.M. Comparison between the Toxicity of Nano and Bulk Formulations of Imidacloprid against Wheat Aphid, Bird Cherry-Oat Aphid, Rhopalosiphum padi L. J. Phytopathol. Dis. Manag. 2020, 7, 31–42. [Google Scholar]
- Sabbour, M.M.A. Pathogenicity of Imidacloprid and Its Nano against Rhyzopertha dominica (Coleoptera: Bostrichidae) under Laboratory and Store Conditions. IOBC/WPRS Bull. 2018, 130, 185–191. [Google Scholar]
- Sabbour, M.M.A. The Effect of Imidacloprid and Nano-Imidacloprid against Sitophilus granarius under Laboratory and Store Conditions. IOBC/WPRS Bull. 2018, 130, 192–198. [Google Scholar]
- Sabbour, M.M.; Abdel-Raheem, M.A. Nano Imidacloprid Efficacy against the Desert Locust, Schistocerca Gregaria under Laboratory and Semi Field Conditions. Der Pharma Chem. 2016, 8, 133–136. [Google Scholar]
- Sabry, A.H.; Salem, H.A.-N.; Metwally, H.M. Development of Imidacloprid and Indoxacarb Formulations to Nanoformulations and Their Efficacy against Spodoptera littoralis (Boisd). Bull. Natl. Res. Cent. 2021, 45, 16. [Google Scholar] [CrossRef]
- Peixoto, S.; Henriques, I.; Loureiro, S. Long-Term Effects of Cu(OH)2 Nanopesticide Exposure on Soil Microbial Communities. Environ. Pollut. 2021, 269, 116113. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Zhou, Z.; Niu, S.; Cao, C.; Li, X.; Shan, Y.; Huang, Q. Positive-Charge Functionalized Mesoporous Silica Nanoparticles as Nanocarriers for Controlled 2,4-Dichlorophenoxy Acetic Acid Sodium Salt Release. J. Agric. Food Chem. 2018, 66, 6594–6603. [Google Scholar] [CrossRef] [PubMed]
- Rebitski, E.P.; Darder, M.; Aranda, P. Layered Double Hydroxide/Sepiolite Hybrid Nanoarchitectures for the Controlled Release of Herbicides. Beilstein J. Nanotechnol. 2019, 10, 1679–1690. [Google Scholar] [CrossRef]
- Forini, M.M.L.; Pontes, M.S.; Antunes, D.R.; de Lima, P.H.C.; Santos, J.S.; Santiago, E.F.; Grillo, R. Nano-Enabled Weed Management in Agriculture: From Strategic Design to Enhanced Herbicidal Activity. Plant Nano Biol. 2022, 1, 100008. [Google Scholar] [CrossRef]
- de Lima, P.H.C.; Tavares, A.A.; de Lima Silva, S.M.; de Moura, M.R.; Aouada, F.A.; Grillo, R. Recent Advances on Nanohybrid Systems Constituting Clay–Chitosan with Organic Molecules—A Review. Appl. Clay Sci. 2022, 226, 106548. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, Z.; Chen, X.; Tian, Y.; Li, Y.; Wang, H.; Li, X.; Yu, X.; Cao, Y. Controlled Release of Herbicides by 2,4-D-, MCPA-, and Bromoxynil-Intercalated Hydrotalcite Nanosheets. Green Chem. 2021, 23, 4560–4566. [Google Scholar] [CrossRef]
- Wang, J.; Li, M.; Feng, J.; Yan, X.; Chen, H.; Han, R. Effects of TiO2-NPs Pretreatment on UV-B Stress Tolerance in Arabidopsis Thaliana. Chemosphere 2021, 281, 130809. [Google Scholar] [CrossRef]
- Soni, S.; Jha, A.B.; Dubey, R.S.; Sharma, P. Application of Nanoparticles for Enhanced UV-B Stress Tolerance in Plants. Plant Nano Biol. 2022, 2, 100014. [Google Scholar] [CrossRef]
- Rajput, V.D.; Minkina, T.; Kumari, A.; Harish; Singh, V.K.; Verma, K.K.; Mandzhieva, S.; Sushkova, S.; Srivastava, S.; Keswani, C. Coping with the Challenges of Abiotic Stress in Plants: New Dimensions in the Field Application of Nanoparticles. Plants 2021, 10, 1221. [Google Scholar] [CrossRef]
- Wu, X.; Hu, J.; Wu, F.; Zhang, X.; Wang, B.; Yang, Y.; Shen, G.; Liu, J.; Tao, S.; Wang, X. Application of TiO2 Nanoparticles to Reduce Bioaccumulation of Arsenic in Rice Seedlings (Oryza sativa L.): A Mechanistic Study. J. Hazard. Mater. 2021, 405, 124047. [Google Scholar] [CrossRef]
- Cai, F.; Wu, X.; Zhang, H.; Shen, X.; Zhang, M.; Chen, W.; Gao, Q.; White, J.C.; Tao, S.; Wang, X. Impact of TiO2 Nanoparticles on Lead Uptake and Bioaccumulation in Rice (Oryza sativa L.). NanoImpact 2017, 5, 101–108. [Google Scholar] [CrossRef]
- Jiang, M.; Dai, S.; Wang, B.; Xie, Z.; Li, J.; Wang, L.; Li, S.; Tan, Y.; Tian, B.; Shu, Q.; et al. Gold Nanoparticles Synthesized Using Melatonin Suppress Cadmium Uptake and Alleviate Its Toxicity in Rice. Environ. Sci. Nano 2021, 8, 1042–1056. [Google Scholar] [CrossRef]
- Rajput, V.D.; Minkina, T.; Upadhyay, S.K.; Kumari, A.; Ranjan, A.; Mandzhieva, S.; Sushkova, S.; Singh, R.K.; Verma, K.K. Nanotechnology in the Restoration of Polluted Soil. Nanomaterials 2022, 12, 769. [Google Scholar] [CrossRef]
- Jośko, I.; Oleszczuk, P.; Dobrzyńska, J.; Futa, B.; Joniec, J.; Dobrowolski, R. Long-Term Effect of ZnO and CuO Nanoparticles on Soil Microbial Community in Different Types of Soil. Geoderma 2019, 352, 204–212. [Google Scholar] [CrossRef]
- Lin, J.; Ma, K.; Chen, H.; Chen, Z.; Xing, B. Influence of Different Types of Nanomaterials on Soil Enzyme Activity: A Global Meta-Analysis. Nano Today 2022, 42, 101345. [Google Scholar] [CrossRef]
- Lead, J.R.; Batley, G.E.; Alvarez, P.J.J.; Croteau, M.; Handy, R.D.; McLaughlin, M.J.; Judy, J.D.; Schirmer, K. Nanomaterials in the Environment: Behavior, Fate, Bioavailability, and Effects—An Updated Review. Environ. Toxicol. Chem. 2018, 37, 2029–2063. [Google Scholar] [CrossRef]
- Singh, D.; Gurjar, B.R. Nanotechnology for Agricultural Applications: Facts, Issues, Knowledge Gaps, and Challenges in Environmental Risk Assessment. J. Environ. Manag. 2022, 322, 116033. [Google Scholar] [CrossRef]
- Tran, T.K.; Nguyen, M.K.; Lin, C.; Hoang, T.D.; Nguyen, T.C.; Lone, A.M.; Khedulkar, A.P.; Gaballah, M.S.; Singh, J.; Chung, W.J.; et al. Review on Fate, Transport, Toxicity and Health Risk of Nanoparticles in Natural Ecosystems: Emerging Challenges in the Modern Age and Solutions toward a Sustainable Environment. Sci. Total Environ. 2024, 912, 169331. [Google Scholar] [CrossRef]
- Kumah, E.A.; Fopa, R.D.; Harati, S.; Boadu, P.; Zohoori, F.V.; Pak, T. Human and Environmental Impacts of Nanoparticles: A Scoping Review of the Current Literature. BMC Public Health 2023, 23, 1059. [Google Scholar] [CrossRef] [PubMed]
- Bundschuh, M.; Filser, J.; Lüderwald, S.; McKee, M.S.; Metreveli, G.; Schaumann, G.E.; Schulz, R.; Wagner, S. Nanoparticles in the Environment: Where Do We Come from, Where Do We Go To? Environ. Sci. Eur. 2018, 30, 6. [Google Scholar] [CrossRef] [PubMed]
- Vali, S.; Majidiyan, N.; Yalsuyi, A.M.; Vajargah, M.F.; Prokić, M.D.; Faggio, C. Ecotoxicological Effects of Silver Nanoparticles (Ag-NPs) on Parturition Time, Survival Rate, Reproductive Success and Blood Parameters of Adult Common Molly (Poecilia Sphenops) and Their Larvae. Water 2022, 14, 144. [Google Scholar] [CrossRef]
- Shah, G.A.; Ahmed, J.; Iqbal, Z.; ul Hassan, F.; Rashid, M.I. Toxicity of NiO Nanoparticles to Soil Nutrient Availability and Herbage N Uptake from Poultry Manure. Sci. Rep. 2021, 11, 11540. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, H.; Fan, J.; Wang, X.; Sun, X.; Yang, L.; Zhang, S.; Xiang, Y.; Zhang, F. Crop Yield and Water Productivity under Salty Water Irrigation: A Global Meta-Analysis. Agric. Water Manag. 2021, 256, 107105. [Google Scholar] [CrossRef]
- Corwin, D.L. Climate Change Impacts on Soil Salinity in Agricultural Areas. Eur. J. Soil Sci. 2021, 72, 842–862. [Google Scholar] [CrossRef]
- Eswar, D.; Karuppusamy, R.; Chellamuthu, S. Drivers of Soil Salinity and Their Correlation with Climate Change. Curr. Opin. Environ. Sustain. 2021, 50, 310–318. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S.; Gaurav, A.K.; Srivastava, S.; Verma, J.P. Plant Growth-Promoting Bacteria: Biological Tools for the Mitigation of Salinity Stress in Plants. Front. Microbiol. 2020, 11, 523350. [Google Scholar] [CrossRef]
- Syed, A.; Sarwar, G.; Shah, S.H.; Muhammad, S. Soil Salinity Research in 21st Century in Pakistan: Its Impact on Availability of Plant Nutrients, Growth and Yield of Crops. Commun. Soil Sci. Plant Anal. 2021, 52, 183–200. [Google Scholar] [CrossRef]
- Zhang, W.W.; Chong, W.A.N.G.; Rui, X.U.E.; Wang, L.J. Effects of Salinity on the Soil Microbial Community and Soil Fertility. J. Integr. Agric. 2019, 18, 1360–1368. [Google Scholar] [CrossRef]
- Ghazouani, H.; Rallo, G.; Mguidiche, A.; Latrech, B.; Douh, B.; Boujelben, A.; Provenzano, G. Effects of Saline and Deficit Irrigation on Soil-Plant Water Status and Potato Crop Yield under the Semiarid Climate of Tunisia. Sustainability 2019, 11, 2706. [Google Scholar] [CrossRef]
- Khatun, M.; Shuvo, M.A.R.; Salam, M.T.B.; Rahman, S.M.H. Effect of Organic Amendments on Soil Salinity and the Growth of Maize (Zea mays L.). Plant Sci. Today 2019, 6, 106–111. [Google Scholar] [CrossRef]
- Zörb, C.; Geilfus, C.M.; Dietz, K.J. Salinity and Crop Yield. Plant Biol. 2019, 21, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Alkharabsheh, H.M.; Seleiman, M.F.; Hewedy, O.A.; Battaglia, M.L.; Jalal, R.S.; Alhammad, B.A.; Schillaci, C.; Ali, N.; Al-Doss, A. Field Crop Responses and Management Strategies to Mitigate Soil Salinity in Modern Agriculture: A Review. Agronomy 2021, 11, 2299. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.; Sarkar, B.; Jat, H.S.; Sharma, P.C.; Bolan, N.S. Soil Salinity under Climate Change: Challenges for Sustainable Agriculture and Food Security. J. Environ. Manag. 2021, 280, 111736. [Google Scholar] [CrossRef]
- Eekhout, J.P.C.; de Vente, J. Global Impact of Climate Change on Soil Erosion and Potential for Adaptation through Soil Conservation. Earth Sci. Rev. 2022, 226, 103921. [Google Scholar] [CrossRef]
- Global Soil Partnership Endorses Guidelines on Sustainable Soil Management|Global Soil Partnership|Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/global-soil-partnership/resources/highlights/detail/en/c/416516/ (accessed on 19 September 2024).
- Katra, I. Soil Erosion by Wind and Dust Emission in Semi-Arid Soils Due to Agricultural Activities. Agronomy 2020, 10, 89. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Y.; Sun, D.; Liu, L.; Cui, Y.; Zhu, W. Wind Erosion Changes in a Semi-Arid Sandy Area, Inner Mongolia, China. Sustainability 2019, 11, 188. [Google Scholar] [CrossRef]
- Hojan, M.; Rurek, M.; Wiecław, M.; Krupa, A. Effects of Extreme Dust Storm in Agricultural Areas (Poland, the Greater Lowland). Geosciences 2019, 9, 106. [Google Scholar] [CrossRef]
- Středová, H.; Spáčilová, B.; Podhrázská, J.; Chuchma, F. A Universal Meteorological Method to Identify Potential Risk of Wind Erosion on Heavy-Textured Soils. Morav. Geogr. Rep. 2015, 23, 56–62. [Google Scholar] [CrossRef]
- Guo, Y.; Peng, C.; Zhu, Q.; Wang, M.; Wang, H.; Peng, S.; He, H. Modelling the Impacts of Climate and Land Use Changes on Soil Water Erosion: Model Applications, Limitations and Future Challenges. J. Environ. Manag. 2019, 250, 109403. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Himics, M.; Scarpa, S.; Matthews, F.; Bogonos, M.; Poesen, J.; Borrelli, P. Projections of Soil Loss by Water Erosion in Europe by 2050. Environ. Sci Policy 2021, 124, 380–392. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An Assessment of the Global Impact of 21st Century Land Use Change on Soil Erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef]
- Han, J.; Ge, W.; Hei, Z.; Cong, C.; Ma, C.; Xie, M.; Liu, B.; Feng, W.; Wang, F.; Jiao, J. Agricultural Land Use and Management Weaken the Soil Erosion Induced by Extreme Rainstorms. Agric. Ecosyst. Environ. 2020, 301, 107047. [Google Scholar] [CrossRef]
- Alewell, C.; Ringeval, B.; Ballabio, C.; Robinson, D.A.; Panagos, P.; Borrelli, P. Global Phosphorus Shortage Will Be Aggravated by Soil Erosion. Nat. Commun. 2020, 11, 4546. [Google Scholar] [CrossRef]
- Lackóová, L.; Pokrývková, J.; Dufková, J.K.; Policht-latawiec, A.; Michałowska, K.; Dąbrowska, J. Long-Term Impact of Wind Erosion on the Particle Size Distribution of Soils in the Eastern Part of the European Union. Entropy 2021, 23, 935. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, Q.; Zhu, H.; Reich, P.B.; Banerjee, S.; van der Heijden, M.G.A.; Sadowsky, M.J.; Ishii, S.; Jia, X.; Shao, M.; et al. Erosion Reduces Soil Microbial Diversity, Network Complexity and Multifunctionality. ISME J. 2021, 15, 2474–2489. [Google Scholar] [CrossRef]
- Li, J.; Ma, X.; Zhang, C. Predicting the Spatiotemporal Variation in Soil Wind Erosion across Central Asia in Response to Climate Change in the 21st Century. Sci. Total Environ. 2020, 709, 136060. [Google Scholar] [CrossRef]
- Nasir Ahmad, N.S.B.; Mustafa, F.B.; Muhammad Yusoff, S.Y.; Didams, G. A Systematic Review of Soil Erosion Control Practices on the Agricultural Land in Asia. Int. Soil Water Conserv. Res. 2020, 8, 103–115. [Google Scholar] [CrossRef]
- Wu, H.; Cui, H.; Fu, C.; Li, R.; Qi, F.; Liu, Z.; Yang, G.; Xiao, K.; Qiao, M. Unveiling the Crucial Role of Soil Microorganisms in Carbon Cycling: A Review. Sci. Total Environ. 2024, 909, 168627. [Google Scholar] [CrossRef]
- Walker, T.W.N.; Kaiser, C.; Strasser, F.; Herbold, C.W.; Leblans, N.I.W.; Woebken, D.; Janssens, I.A.; Sigurdsson, B.D.; Richter, A. Microbial Temperature Sensitivity and Biomass Change Explain Soil Carbon Loss with Warming. Nat. Clim. Chang. 2018, 8, 885–889. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Gosal, S.K.; Kaur, P. Effects of Climate Change on Plant Associated Microbial Communities and Enzyme Activities. Afr. J. Microbiol. Res. 2014, 8, 3087–3093. [Google Scholar] [CrossRef]
- Cavicchioli, R.; Ripple, W.J.; Timmis, K.N.; Azam, F.; Bakken, L.R.; Baylis, M.; Behrenfeld, M.J.; Boetius, A.; Boyd, P.W.; Classen, A.T.; et al. Scientists’ Warning to Humanity: Microorganisms and Climate Change. Nat. Rev. Microbiol. 2019, 17, 569–586. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Deng, Y.; Shen, L.; Wen, C.; Yan, Q.; Ning, D.; Qin, Y.; Xue, K.; Wu, L.; He, Z.; et al. Temperature Mediates Continental-Scale Diversity of Microbes in Forest Soils. Nat. Commun. 2016, 7, 12083. [Google Scholar] [CrossRef] [PubMed]
- Tu, Q.; He, Z.; Wu, L.; Xue, K.; Xie, G.; Chain, P.; Reich, P.B.; Hobbie, S.E.; Zhou, J. Metagenomic Reconstruction of Nitrogen Cycling Pathways in a CO2-Enriched Grassland Ecosystem. Soil Biol. Biochem. 2017, 106, 99–108. [Google Scholar] [CrossRef]
- Yu, H.; Deng, Y.; He, Z.; Van Nostrand, J.D.; Wang, S.; Jin, D.; Wang, A.; Wu, L.; Wang, D.; Tai, X.; et al. Elevated CO2 and Warming Altered Grassland Microbial Communities in Soil Top-Layers. Front. Microbiol. 2018, 9, 396056. [Google Scholar] [CrossRef]
- Schimel, J.P. Life in Dry Soils: Effects of Drought on Soil Microbial Communities and Processes. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 409–432. [Google Scholar] [CrossRef]
- Phillips, C.L.; Bond-Lamberty, B.; Desai, A.R.; Lavoie, M.; Risk, D.; Tang, J.; Todd-Brown, K.; Vargas, R. The Value of Soil Respiration Measurements for Interpreting and Modeling Terrestrial Carbon Cycling. Plant Soil 2017, 413, 1–25. [Google Scholar] [CrossRef]
- de Vries, F.T.; Griffiths, R.I.; Bailey, M.; Craig, H.; Girlanda, M.; Gweon, H.S.; Hallin, S.; Kaisermann, A.; Keith, A.M.; Kretzschmar, M.; et al. Soil Bacterial Networks Are Less Stable under Drought than Fungal Networks. Nat. Commun. 2018, 9, 3033. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, T.R.; Lee, J.-Y.; Bottos, E.M.; Brislawn, C.J.; Richard Allen White, I.; Bramer, L.M.; Brown, J.; Zucker, J.D.; Kim, Y.-M.; Jumpponen, A.; et al. Metaphenomic Responses of a Native Prairie Soil Microbiome to Moisture Perturbations. mSystems 2019, 4. [Google Scholar] [CrossRef]
- Dubey, A.; Malla, M.A.; Khan, F.; Chowdhary, K.; Yadav, S.; Kumar, A.; Sharma, S.; Khare, P.K.; Khan, M.L. Soil Microbiome: A Key Player for Conservation of Soil Health under Changing Climate. Biodivers. Conserv. 2019, 28, 2405–2429. [Google Scholar] [CrossRef]
Chapter | Keywords |
---|---|
Introduction | Soil management and sustainable agriculture Soil and sustainable agriculture Soil management and sustainability |
Soil management in precision agriculture | Precision agriculture, sustainable agriculture and soil management Precision agriculture, sustainable agriculture and soil Precision agriculture, sustainable agriculture, soil and ground sensors Precision agriculture, sustainable agriculture, soil and remote sensing Precision agriculture, sustainable agriculture, soil and GPS Precision agriculture, sustainable agriculture, soil and GNSS |
Soil health | Soil quality, the term Soil health, the concept Soil health, global sustainability, EU policy Soil health, sustainability, government regulation, international agreement Soil health, sustainable agriculture, international strategy Soil health, sustainability, soil health principles Soil health, sustainable agriculture, soil quality indicators, soil monitoring, recommendation Soil health, sustainable agriculture, soil health improvement, research, negative effect, soil management |
Soil in organic farming | Organic agriculture, organic farming, environmental sustainability, ecosystem management, soil management Organic agriculture, organic farming, ecosystem management, pest control, regulation, agricultural policy Organic agriculture, organic farming, soil organic carbon, soil fertility, soil sustainability, regulation, agricultural policy Organic agriculture, organic farming, organic management, sward, grassland, green manure, crop rotation Organic agriculture, organic farming, organic management, carbon stocks, carbon sequestration, recommendation |
Nanoparticles (NPs) in sustainable agriculture | Nanotechnology, nanoparticles, nanoscale Nanoparticles, NPs, quantum dots, nanorods Nanoparticles, NPs, sustainable agriculture Nanoparticles, NPs and fertilizers Nanoparticles, NPs and insecticides Nanoparticles, NPs and herbicides Nanoparticles, NPs, sustainable agriculture and soil Nanoparticles, NPs, sustainable agriculture and potential ecological effects Nanoparticles, NPs, sustainable agriculture and legal regulations |
Climate change | Climate change, sustainable agriculture and soil management Climate change, sustainable agriculture and soil Climate change, sustainable agriculture and soil salinity Climate change, sustainable agriculture and soil erosion Climate change, sustainable agriculture and soil biodiversity |
Method | Description | Recommended for These Main Benefits | Examples of Their Disadvantages and Limitations |
---|---|---|---|
Cover Cropping | Growing crops like legumes and grasses during the off-season to cover soil. | Reduces erosion, improves water retention, adds organic matter, and fixes nitrogen. | In water-limited environments, cover crops can deplete soil moisture and lead to reduced yields in subsequent crops [127]. Cover crops can suppress the germination and growth of crops, so the choice of cover crop species is critical [128]. |
Crop Rotation | Alternating different crops in the same area across growing seasons. | Breaks pest cycles, reduces diseases, enhances nutrient cycling. | The reliance on specialized equipment and inputs associated with diverse crop rotations [129]. Introducing new crops can alter soil microbial communities, potentially leading to reduced crop performance [130]. |
Conservation Tillage | Minimizing soil disturbance by reducing or eliminating tilling. | Reduces erosion, maintains soil structure, increases organic matter retention. | Conservation tillage systems often lead to higher weed dissemination [131]. Potential yield loss under certain conditions may discourage farmers from this practice [132]. |
Organic Amendments | Adding compost, manure, or plant residues. | Enhances organic matter, improves nutrient availability, promotes microbial activity. | Organic amendments can provide nutrients at a slower rate, while in regions with poor soil quality, rapid nutrient uptake is crucial [133]. The application of these materials can lead to greenhouse gas emissions [134]. |
Green Manure | Growing plants to be plowed into the soil. | Increases organic matter, enhances nitrogen levels, improves soil structure. | In some agricultural systems, the costs associated with green manure cultivation have been found to outweigh the benefits [135]. The decomposition of green manure biomass can lead to peaks in nitrous oxide and carbon dioxide emissions, particularly when it has a low C:N ratio [135]. |
Biochar Application | Adding charred organic matter (biochar) to the soil. | Enhances soil structure, increases water retention, reduces nutrient leaching. | Biochars derived from contaminated feedstocks may contain elevated levels of hazardous substances [136]. The presence of free radicals and other toxic compounds in biochar can be linked to neurotoxic effects in soil biota [137]. |
Mulching | Covering soil with organic or inorganic materials. | Conserves moisture, adds organic matter. | Mulch can create habitats conducive to pest populations [138]. Polyethylene mulches break down into microplastics and can contaminate soil and water systems [139]. |
Integrating Livestock | Rotational grazing of livestock to naturally fertilize soil. | Adds organic nutrients, stimulates root growth, improves nutrient cycling. | Livestock grazing can increase soil bulk density [140]. Negative effects of grazers on soil nematode diversity in grasslands [141]. |
Adding Beneficial Microbes | Introducing microorganisms like mycorrhizal fungi or nitrogen-fixing bacteria. | Enhances nutrient availability, improves root health, promotes disease resistance. | Certain beneficial microbes can lead to a decrease in microbial diversity [142]. Limited effectiveness in diverse agricultural settings [143]. |
Reducing Chemical Inputs | Minimizing the use of synthetic fertilizers, herbicides, and pesticides. | Preserves microbial health, reduces toxic compounds formation, promotes long-term soil fertility. | Financial risk can deter farmers from these practices [144]. Farmers may revert to less sustainable methods when faced with increased pest pressures [145]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Futa, B.; Gmitrowicz-Iwan, J.; Skersienė, A.; Šlepetienė, A.; Parašotas, I. Innovative Soil Management Strategies for Sustainable Agriculture. Sustainability 2024, 16, 9481. https://doi.org/10.3390/su16219481
Futa B, Gmitrowicz-Iwan J, Skersienė A, Šlepetienė A, Parašotas I. Innovative Soil Management Strategies for Sustainable Agriculture. Sustainability. 2024; 16(21):9481. https://doi.org/10.3390/su16219481
Chicago/Turabian StyleFuta, Barbara, Joanna Gmitrowicz-Iwan, Aida Skersienė, Alvyra Šlepetienė, and Irmantas Parašotas. 2024. "Innovative Soil Management Strategies for Sustainable Agriculture" Sustainability 16, no. 21: 9481. https://doi.org/10.3390/su16219481
APA StyleFuta, B., Gmitrowicz-Iwan, J., Skersienė, A., Šlepetienė, A., & Parašotas, I. (2024). Innovative Soil Management Strategies for Sustainable Agriculture. Sustainability, 16(21), 9481. https://doi.org/10.3390/su16219481