Transforming Irrigated Agriculture in Semi-Arid and Dry Subhumid Mediterranean Conditions: A Case of Protected Cucumber Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographic Location
2.2. Climatic Conditions
2.3. Soil Properties
2.4. Experimental Design
2.5. Modality of Water and Fertilizer Application
2.6. Monitoring of Soil Moisture
2.7. Land Preparation and Cultivation Cycle
2.8. Estimation of Crop Water and Nutrient Demands
2.9. Statistical Analysis
3. Results and Discussion
3.1. Management of Irrigation of Protected Cucumber
3.2. Fertilization Practices of Protected Cucumber
3.3. Yield of Protected Cucumbers in Traditional and Advanced Practices
3.4. Water Use Efficiency of Protected Cucumbers in Traditional and Advanced Practices
3.5. Nitrogen Use Efficiency of Protected Cucumbers in Traditional and Advanced Practices
3.6. Effect of Fertigation Practices on Soil Quality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture—Systems at Breaking Point; Main Report; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Abdelmoneim, A.A.; Khadra, R.; Elkamouh, A.; Derardja, B.; Dragonetti, G. Towards Affordable Precision Irrigation: An Experimental Comparison of Weather-Based and Soil Water Potential-Based Irrigation Using Low-Cost IoT-Tensiometers on Drip Irrigated Lettuce. Sustainability 2024, 16, 306. [Google Scholar] [CrossRef]
- Edreira, R.J.I.; Andrade, J.F.; Cassman, K.G.; van Ittersum, M.K.; van Loon, M.P.; Grassini, P. Spatial frameworks for robust estimation of yield gaps. Nat. Food 2021, 2, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Amanullah, T.D., Jr.; Erpul, G.; Horn, R.; Nkongolo, N.; Parmar, B.; Pierzynski, G.; De Ruiter, P.; Taboada, M. Threats to Soils: Global Trends and Perspectives. A Contribution from the Intergovernmental Technical Panel on Soils, Global Soil Partnership Food and Agriculture Organization of the United Nation; Global Land Outlook Working Paper; Pierzynski, G., Brajendra, Eds.; UNCCD: Bonn, Germany, 2017; 27p. [Google Scholar]
- Hall, A.J.; Richards, R.A. Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crops Res. 2013, 143, 18–33. [Google Scholar] [CrossRef]
- Khadra, R.; Sagardoy, J.A. Irrigation Governance Challenges in the Mediterranean Region: Learning from Experiences and Promoting Sustainable Performance; Springer International Publishing: New York City, NY, USA, 2019. [Google Scholar]
- Daru, G.; Alemu, S. Exploring Farmers’ Perception and Constraints on the Adoption of Small-Scale Irrigation in Hulet Eju Enesie District, North-Western Ethiopia. Adv. Agric. 2024, 2024, 4979184. [Google Scholar] [CrossRef]
- Yang, X.; Wang, G.; Chen, Y.; Sui, P.; Pacenka, S.; Steenhuis, T.S.; Siddique, K.H.M. Reduced groundwater use and increased grain production by optimized irrigation scheduling in winter wheat–summer maize double cropping system-A 16-year field study in North China Plain. Field Crops Res. 2022, 275, 108364. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Tsunekawa, A.; Tsubo, M.; Fenta, A.A.; Ebabu, K.; Vanmaercke, M.; Borrelli, P.; Panagos, P.; Berihun, M.L.; Langendoen, E.J.; et al. Progress and challenges in sustainable land management initiatives: A global review. Sci. Total Environ. 2023, 858, 160027. [Google Scholar] [CrossRef]
- Yang, X.L.; Steenhuis, T.S.; Davis, K.F.; van der Werf, W.; Ritsema, C.J.; Pacenka, S.; Zhang, F.S.; Siddique, K.H.; Du, T.S. Diversified crop rotations enhance groundwater and economic sustainability of food production. Food Energy Secur. 2021, 10, e311. [Google Scholar] [CrossRef]
- Yang, X.L.; Chen, Y.Q.; Steenhuis, T.S.; Pacenka, S.; Gao, W.S.; Ma, L.; Zhang, M.; Sui, P. Mitigating Groundwater Depletion in North China Plain with Cropping System that Alternate Deep and Shallow Rooted Crops. Front. Plant Sci. 2017, 8, 980. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Li, Y.; Zhao, J.; Yang, Y.; Zang, H.; Zeng, Z. Peanut residue incorporation benefits crop yield, nitrogen yield, and water use efficiency of summer peanut—Winter wheat systems. Field Crops Res. 2022, 279, 108463. [Google Scholar] [CrossRef]
- Xie, W.; Zhu, A.; Ali, T.; Zhang, Z.; Chen, X.; Wu, F.; Huang, J.; Davis, K.F. Crop switching can enhance environmental sustainability and farmer incomes in China. Nature 2023, 616, 300–305. [Google Scholar] [CrossRef]
- Agnolucci, P.; Rapti, C.; Alexander, P.; De Lipsis, V.; Holland, R.A.; Eigenbrod, F.; Ekins, P. Impacts of rising temperatures and farm management practices on global yields of 18 crops. Nat. Food 2020, 1, 562–571. [Google Scholar] [CrossRef] [PubMed]
- El Chami, D.; El Moujabber, M. Sustainable Agriculture and Climate Resilience. Sustainability 2024, 16, 113. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R.; Lahmar, R.; Mrabet, R.; Basch, G.; González-Sánchez, E.J.; Serraj, R. Conservation agriculture in the dry Mediterranean climate. Field Crops Res. 2012, 132, 7–17. [Google Scholar] [CrossRef]
- Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W. Mediterranean irrigation under climate change: More efficient irrigation needed to compensate increases in irrigation water requirements. Hydrol. Earth Syst. Sci. Discuss. 2015, 12, 8459–8504. [Google Scholar] [CrossRef]
- Multsch, S.; Elshamy, M.E.; Batarseh, S.; Seid, A.H.; Frede, H.-G.; Breuer, L. Improving irrigation efficiency will be insufficient to meet future water demand in the Nile Basin. J. Hydrol. Reg. Stud. 2017, 12, 315–330. [Google Scholar] [CrossRef]
- Darwish, T.; Atallah, T.; Hajhasan, S.; Haidar, A. Nitrogen and water use efficiency of fertigated processing potato. Agric. Water Manag. 2006, 85, 95–104. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Z.; Li, J. Coupling effects of phosphate fertilizer type and drip fertigation strategy on soil nutrient distribution, maize yield and nutrient uptake. Agric. Water Manag. 2023, 290, 108602. [Google Scholar] [CrossRef]
- Bonachela, S.; Fernández, M.D.; Cabrera-Corral, F.J.; Granados, M.R. Salt and irrigation management of soil-grown Mediterranean greenhouse tomato crops drip-irrigated with moderately saline water. Agric. Water Manag. 2022, 262, 107433. [Google Scholar] [CrossRef]
- Canatário Duarte, A.; Melián-Navarro, A.; Ruiz-Canales, A. Resilience of Irrigated Agriculture to Face the Challenges in Mediterranean Climatic Conditions (Iberian peninsula). In Irrigation and Drainage—Recent Advances; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Chen, S.; Liu, W.; Morel, J.; Parsons, D.; Du, T. Improving yield, quality, and environmental co-benefits through optimized irrigation and nitrogen management of hybrid maize in Northwest China. Agric. Water Manag. 2023, 290, 108577. [Google Scholar] [CrossRef]
- LARI. Lebanese Agricultural Research Institute. Climatic Information. Department of Irrigation and Climatology. 2024. Available online: http://www.lari.gov.lb/ (accessed on 13 June 2024).
- CNRS. Land Cover /Use Map of Lebanon. 2023. Available online: http://rsensing.cnrs.edu.lb/geonetwork/srv/eng/search#fast=index&from=1&to=50 (accessed on 13 June 2024).
- Dragonetti, G.; Khadra, R. Assessing Soil Dynamics and Improving Long-Standing Irrigation Management with Treated Wastewater: A Case Study on Citrus Trees in Palestine. Sustainability 2023, 15, 13518. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Valiantzas, J.D. Simplified versions for the Penman evaporation equation using routine weather data. J. Hydrol. 2006, 331, 690–702. [Google Scholar] [CrossRef]
- Darwish, T.; Fadel, A.; Atallah, T.; Jomaa, I.; Baydoun, S. Chapter 6. Lebanon. In Challenges and Opportunities for Crop Production Under Dry and Saline Environments in ARASIA Member States; IAEA TECDOC No. 1841; Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture and Asia and The Pacific Section; FAO: Vienna, Austria, 2018; pp. 47–65. ISBN 978-92-0-101918-9. [Google Scholar]
- Aldababseh, A.; Temimi, M.; Maghelal, P.; Branch, O.; Wulfmeyer, V. Multi-Criteria Evaluation of Irrigated Agriculture Suitability to Achieve Food Security in an Arid Environment. Sustainability 2018, 10, 803. [Google Scholar] [CrossRef]
- Skaf, L.; Buonocore, E.; Dumontet, S.; Capone, R.; Franzese, P.P. Food security and sustainable agriculture in Lebanon: An environmental accounting framework. J. Clean. Prod. 2019, 209, 1025–1032. [Google Scholar] [CrossRef]
- UNDP. Climate-Proofing Lebanon’s Development Plans; UNDP: Beirut, Lebanon, 2021; Available online: https://www.undp.org/lebanon/publications/climate-proofing-lebanons-development-plans (accessed on 17 June 2024).
- MoEW. National Water Sector Strategy Update-2020. 2020. Available online: https://faolex.fao.org/docs/pdf/leb211915EVolI.pdf (accessed on 17 June 2024).
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Nahar, K.; Hossain, M.S.; Mahmud, J.A.; Hossen, M.S.; Masud, A.A.C.; Moumita and Fujita, M. Potassium: A Vital Regulator of Plant Responses and Tolerance to Abiotic Stresses. Agronomy 2018, 8, 31. [Google Scholar] [CrossRef]
- Papadopoulos, I. Nitrogen fertilization of trickle irrigated potato. Fert. Res. 1988, 16, 157–167. [Google Scholar] [CrossRef]
- Kabirigi, M.; Prakash, S.O.; Prescella, B.V.; Niamwiza, C.; Quintin, S.P.; Mwamjengwa, I.A.; Jayantha, A.M.; Keji, M.L.A.; Zhang, C.L. Fertigation for Environmentally Friendly Fertilizers Application: Constraints and Opportunities for Its Application in Developing Countries. Agric. Sci. 2017, 8, 292–301. [Google Scholar] [CrossRef]
- Zhang, X.; Mauzerall, D.L.; Davidson, E.A.; Kanter, D.R.; Cai, R. The Economic and Environmental Consequences of Implementing Nitrogen-Efficient Technologies and Management Practices in Agriculture. J. Environ. Qual. 2015, 44, 312–324. [Google Scholar] [CrossRef]
- Rubeiz, I.G.; Maluf, S. Effect of intensively cropping greenhouses in semiarid regions on soil salinity and nitrogen fertilizer requirements of cucumber. J. Plant Nutr. 1989, 12, 1467–1472. [Google Scholar] [CrossRef]
- Rubeiz, I.G.; Naja, Z.U.; Nimah, M.N. Enhancing Late and Early Yield of Greenhouse Cucumber with Plastic Mulches. Biol. Agric. Hortic. 1991, 8, 67–70. [Google Scholar] [CrossRef]
Soil Type | Depth, cm | Total Sand | Silt | Clay | CaCO3 Total | CaCO3 Active | O.M. | EC | pH H2O | Available Nutrients, ppm | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
% | ds m−1 | N | P2O5 | K2O | ||||||||
Eutric Regosols DS1-Serein | 0–20 | 36 | 18 | 46 | 5.6 | 1.9 | 2.74 | 0.49 | 7.6 | 23.8 | 354 | 280 |
20–40 | 30 | 20 | 50 | 3.8 | 1.3 | 1.55 | 0.33 | 7.4 | 23.1 | 305 | 268 | |
Eutric Cambisols DS2-Sultan Yacoub | 0–20 | 26 | 12 | 62 | 5.8 | 1.9 | 1.25 | 0.34 | 7.7 | 32.2 | 206 | 578 |
20–40 | 24 | 16 | 60 | 5.8 | 1.9 | 1.31 | 0.3 | 7.8 | 27 | 185 | 627 |
Location | Water Application | SEALACOM | Farmer | Difference (Farmers-SEALACOM) | Potential Water Saving from Protected Greenhouses in One Cucumber Season, m3 | |
---|---|---|---|---|---|---|
(mm) | SEALACOM DS (120 ha) | Country Level (1560 ha) | ||||
Serein | Whole season | 190.0 | 283.0 | 93 | 111,600 | 1,450,800 |
Sultan Yacoub | 177.70 | 299.67 | 121.97 | 146,335 | 1,902,732 | |
Serein | Productive period | 81.75 | 157.83 | 76.08 | 91,278 | 1,186,848 |
Sultan Yacoub | 88.83 | 147.3 | 58.47 | 70,150 | 912,132 |
Location | Nutrient | Pure Element (Kg Deca−1) | Fertilizer Equivalent (Kg Deca−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
N | P2O5 | K2O | MgO | Amm. Sulfate | MAP | Pot. Sulfate | Mg Sulfate | ||
Serein | Farmer | 27.52 | 11.39 | 6.05 | 2.01 | 131.02 | 18.66 | 12.11 | 13.39 |
SEALACOM | 10.14 | 2.41 | 12.54 | 0.65 | 48.27 | 3.96 | 25.08 | 4.36 | |
Sultan Yacoub | Farmer | 26.86 | 73.59 | 9.80 | 0.00 | 127.92 | 120.65 | 19.61 | 0.00 |
SEALACOM | 11.40 | 2.51 | 13.79 | 1.62 | 54.30 | 4.12 | 27.58 | 10.77 |
Treatment | Mean Yield (kg/deca) | Confidence Interval (ConI) | Range [Mean ± ConI] |
---|---|---|---|
Improved practice | 2911.6 a | 191.2 | 2911.6 − 191.2 = 2720.4 |
Farmers practice | 2379.5 b | 305.0 | 2379.5 + 305.0 = 2684.5 |
Practice | Serein | Sultan Yacoub | ||||||
---|---|---|---|---|---|---|---|---|
Total Applied Water, mm | Water Application During the Production Stage, mm | Application Water Use Efficiency, Kg/mm | Agronomic Water Use Efficiency, Kg/mm | Total Applied Water, mm | Water Application During the Production Stage, mm | Application Water Use Efficiency, Kg/mm | Agronomic Water Use Efficiency, Kg/mm | |
Farmer | 283 | 190.3 | 8.4 | 12.5 | 299.7 | 147.3 | 9.96 | 20.27 |
SEALACOM | 190.3 | 82.2 | 15.3 | 35.4 | 177.7 | 88.83 | 16.7 | 33.42 |
Treatment | Site | Replicate | Applied Water m3/Deca | Cucumber Yield Kg/Deca | Water Productivity Kg/m3 | Mean | Confidence Interval | Interval | |
---|---|---|---|---|---|---|---|---|---|
Minimum | Maximum | ||||||||
Improved | Serein | 1.1 | 190.26 | 3096.39 | 16.27 | 15.30 a | 1.01 | 14.29 | 16.32 |
1.2 | 190.26 | 2873.49 | 15.10 | ||||||
1.3 | 190.26 | 2765.06 | 14.53 | ||||||
Sultan Yacoub | 1.4 | 177.70 | 2735.29 | 15.39 | 16.71 a | 2.58 | 14.13 | 19.29 | |
1.5 | 177.70 | 3202.61 | 18.02 | ||||||
Mean improved treatment | 15.86 a | 1.19 | 14.67 | ||||||
Farmers | Serein | 2.1 | 283.06 | 2683.73 | 9.48 | 8.41 b | 1.08 | 7.33 | 9.49 |
2.2 | 283.06 | 2285.24 | 8.07 | ||||||
2.3 | 283.06 | 2169.58 | 7.66 | ||||||
Sultan Yacoub | 2.4 | 299.67 | 3088.24 | 10.31 | 9.96 b | 0.67 | 9.29 | 10.63 | |
2.5 | 299.67 | 2882.35 | 9.62 | ||||||
Mean farmers treatment | 9.03 b | 0.97 | 10.00 |
Practice | Average Yield, Kg Deca−1 | Applied Nitrogen, Kg Deca−1 | N Use Efficiency, Kg cucumber/Kg Nitrogen | |||
---|---|---|---|---|---|---|
Serein | Sultan Yacoub | Serein | Sultan Yacoub | Serein | Sultan Yacoub | |
Farmer | 2379.5 | 2969 | 27.52 | 26.86 | 86.5 | 111.14 |
SEALACOM | 2911.6 | 2985.3 | 10.14 | 11.4 | 287.1 | 255.4 |
Location | Treatment | Applied Irrigation Water, m3 | Crop Yield Kg/Deca | Nutrient Use Efficiency Kg Product/kg Nutrient | ||
---|---|---|---|---|---|---|
N | P2O5 | K2O | ||||
Serein | SEALACOM | 190.27 | 2911.65a | 287.14 | 1208.15 | 232.19 |
Farmer | 283.06 | 2379.52b | 86.47 | 208.91 | 452.81 | |
Sultan Yacoub | SEALACOM | 177.70 | 2968.95a | 255.40 | 1182.84 | 215.30 |
Farmer | 299.67 | 2985.29a | 111.14 | 40.56 | 304.62 |
Demo Site | Depth, cm | SEALACOM Practice | Farmers’ Practice | ||||||
---|---|---|---|---|---|---|---|---|---|
EC dS/m | pH H2O | Available Nutrients, ppm | EC | pH H2O | Available Nutrients, ppm | ||||
P2O5 | K2O | dS/m | P2O5 | K2O | |||||
Serein | 0–20 | 0.64 | 7.6 | 233 | 307 | 0.39 | 7.6 | 232 | 275 |
20–40 | 0.63 | 7.6 | 236 | 283 | 0.38 | 7.6 | 239 | 253 | |
Sultan Yacoub | 0–20 | 0.59 | 7.4 | 174 | 830 | 0.58 | 7.6 | 137 | 831 |
20–40 | 0.51 | 7.4 | 200 | 818 | 0.34 | 7.7 | 101 | 707 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darwish, T.; Shaban, A.; Faour, G.; Jomaa, I.; Moubarak, P.; Khadra, R. Transforming Irrigated Agriculture in Semi-Arid and Dry Subhumid Mediterranean Conditions: A Case of Protected Cucumber Cultivation. Sustainability 2024, 16, 10050. https://doi.org/10.3390/su162210050
Darwish T, Shaban A, Faour G, Jomaa I, Moubarak P, Khadra R. Transforming Irrigated Agriculture in Semi-Arid and Dry Subhumid Mediterranean Conditions: A Case of Protected Cucumber Cultivation. Sustainability. 2024; 16(22):10050. https://doi.org/10.3390/su162210050
Chicago/Turabian StyleDarwish, Talal, Amin Shaban, Ghaleb Faour, Ihab Jomaa, Peter Moubarak, and Roula Khadra. 2024. "Transforming Irrigated Agriculture in Semi-Arid and Dry Subhumid Mediterranean Conditions: A Case of Protected Cucumber Cultivation" Sustainability 16, no. 22: 10050. https://doi.org/10.3390/su162210050
APA StyleDarwish, T., Shaban, A., Faour, G., Jomaa, I., Moubarak, P., & Khadra, R. (2024). Transforming Irrigated Agriculture in Semi-Arid and Dry Subhumid Mediterranean Conditions: A Case of Protected Cucumber Cultivation. Sustainability, 16(22), 10050. https://doi.org/10.3390/su162210050