Evaluating Growth and Crisis Risk Dynamics of Sustainable Climate Exchange-Traded Funds
Abstract
:1. Introduction
2. Literature Review
3. Data and Methods
3.1. Data and Basic Analysis
3.2. Econometric Analysis a TVP-VAR Approach
4. Findings and Discussion
4.1. Dynamic Total Connectedness Index Analysis
4.2. Net Connectedness Analysis
4.3. Network Connectedness Approach
4.4. Total Connectedness Index of the Full Sample as a Robustness
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gabriel, V.; Pinho, C. Are Clean and Black Energy Exchange-Traded Funds Driven by Climate Risk? J. Sustain. Financ. Investig. 2024, 1–27. Available online: https://www.tandfonline.com/doi/abs/10.1080/20430795.2024.2303501 (accessed on 25 October 2024).
- Ghani, U.; Zhu, B.; Ma, F.; Ghani, M. Climate Change and Volatility Forecasting: Novel Insights from Sectoral Indices. J. Clim. Financ. 2024, 6, 100034. [Google Scholar] [CrossRef]
- Gabriel, V.; Pinho, C. Connectedness between sustainable exchanged-traded funds in the presence of the Ukrainian war: Does political risk matter? Int. Soc. Sci. J. 2024, 74, 973–992. [Google Scholar] [CrossRef]
- Dias, R.; Galvão, R.; Irfan, M.; Alexandre, P.; Gonçalves, S.; Almeida, L. Delving into the Exchange-Traded Funds (ETFs) Market: Understanding Market Efficiency. J. Ecohumanism 2024, 3, 2670–2681. [Google Scholar] [CrossRef]
- Fiordelisi, F.; Galloppo, G.; Lattanzio, G.; Paimanova, V. Looking at socially responsible investment strategies through the lenses of the global ETF industry. J. Int. Money Financ. 2023, 137, 102917. [Google Scholar] [CrossRef]
- Landi, G.C.; Turriziani, L.; Muto, V.; Ricciardi, I. Exploring the nexus between ESG risk variations and investment preferences: Insights from sustainable ETFs during the COVID-19 era. Socio-Econ. Plan. Sci. 2024, 95, 102039. [Google Scholar] [CrossRef]
- Malkiel, B.G. Efficient market hypothesis. In Finance; Springer: Berlin/Heidelberg, Germany, 1989; pp. 127–134. [Google Scholar]
- Markowitz, H. Portfolio selection. J. Financ. 1952, 7, 77–91. [Google Scholar]
- Cox, J.C.; Ross, S.A. The valuation of options for alternative stochastic processes. J. Financ. Econ. 1976, 3, 145–166. [Google Scholar] [CrossRef]
- Venturini, A. Climate change, risk factors and stock returns: A review of the literature. Int. Rev. Financ. Anal. 2022, 79, 101934. [Google Scholar] [CrossRef]
- Orlitzky, M.; Bauer, R.; Busch, T. Sustainable development and financial markets: Old paths and new avenues. Bus. Soc. 2016, 55, 303–329. [Google Scholar]
- Urban, M.A.; Wójcik, D. Dirty banking: Probing the gap in sustainable finance. Sustainability 2019, 11, 1745. [Google Scholar] [CrossRef]
- Cunha, F.A.F.D.S.; Meira, E.; Orsato, R.J. Sustainable finance and investment: Review and research agenda. Bus. Strategy Environ. 2021, 30, 3821–3838. [Google Scholar] [CrossRef]
- Miziołek, T.; Feder-Sempach, E.; Zaremba, A. The Basics of Exchange-Traded Funds. In International Equity Exchange-Traded Funds: Navigating Global ETF Market Opportunities and Risks; Palgrave Macmillan: London, UK, 2020; pp. 65–113. [Google Scholar]
- D’Ecclesia, R.L.; Morelli, G.; Stefanelli, K. Energy ETF performance: The role of fossil fuels. Energy Econ. 2024, 131, 107332. [Google Scholar] [CrossRef]
- Çelik, İ.; Sak, A.F.; Höl, A.Ö.; Vergili, G. The dynamic connectedness and hedging opportunities of implied and realized volatility: Evidence from clean energy ETFs. N. Am. J. Econ. Financ. 2022, 60, 101670. [Google Scholar] [CrossRef]
- Ji, H.; Naeem, M.; Zhang, J.; Tiwari, A.K. Dynamic dependence and spillover among the energy related ETFs: From the hedging effectiveness perspective. Energy Econ. 2024, 136, 107681. [Google Scholar] [CrossRef]
- Banerjee, A.K. Environmental sustainability and the time-varying changing dynamics of green and brown energy ETFs. Financ. Res. Lett. 2024, 62, 105148. [Google Scholar] [CrossRef]
- Díaz, A.; Esparcia, C.; López, R. The diversifying role of socially responsible investments during the COVID-19 crisis: A risk management and portfolio performance analysis. Econ. Anal. Policy 2022, 75, 39–60. [Google Scholar] [CrossRef]
- Banerjee, A.K.; Özer, Z.S.; Rahman, M.R.; Sensoy, A. How does the time-varying dynamics of spillover between clean and brown energy ETFs change with the intervention of climate risk and climate policy uncertainty? Int. Rev. Econ. Financ. 2024, 93, 442–468. [Google Scholar] [CrossRef]
- Lin, X.; Swain, R.B. Performance of negatively screened sustainable investments during crisis. Int. Rev. Econ. Financ. 2024, 93, 1226–1247. [Google Scholar] [CrossRef]
- Yue, X.G.; Han, Y.; Teresiene, D.; Merkyte, J.; Liu, W. Sustainable funds’ performance evaluation. Sustainability 2020, 12, 8034. [Google Scholar] [CrossRef]
- Kuang, W. The heterogeneity of the diversification effect of sustainable development goals related exchange-traded funds. J. Sustain. Financ. Investig. 2024, 14, 366–387. [Google Scholar] [CrossRef]
- Younis, I.; Naeem, M.A.; Shah, W.U.; Tang, X. Inter-and intra-connectedness between energy, gold, Bitcoin, and Gulf cooperation council stock markets: New evidence from various financial crises. Res. Int. Bus. Financ. 2025, 73, 102548. [Google Scholar] [CrossRef]
- Younis, I.; Shah, W.U.; Missaoui, I.; Tang, X. Exploring interconnectedness between climate change, renewable energy, technological innovation, and G-17 banking stock markets. J. Clean. Prod. 2024, 449, 141667. [Google Scholar] [CrossRef]
- Goodwin, K.R.; Kanuri, S.; McLeod, R.W. Relative Performance of Real Estate Exchange-Traded Funds. J. Real Estate Portf. Manag. 2021, 27, 78–87. [Google Scholar] [CrossRef]
- Marszk, A.; Lechman, E. Application of diffusion models in the analysis of financial markets: Evidence on exchange traded funds in Europe. Risks 2020, 8, 18. [Google Scholar] [CrossRef]
- Kunjal, D. Evaluating the liquidity response of South African exchange-traded funds to country risk effects. Economies 2022, 10, 130. [Google Scholar] [CrossRef]
- Marszk, A.; Lechman, E.; Kato, Y.; Marszk, A.; Lechman, E.; Kato, Y. Exchange-Traded Funds Market Development in Asia-Pacific Region. In The Emergence of ETFs in Asia-Pacific; Springer: Berlin/Heidelberg, Germany, 2019; pp. 83–142. [Google Scholar]
- Pisani, F.; Russo, G. Sustainable finance and COVID-19: The reaction of ESG funds to the 2020 crisis. Sustainability 2021, 13, 13253. [Google Scholar] [CrossRef]
- Li, D.; Wu, Z.; Tang, Y. Do climate risks affect dirty–Clean energy stock price dynamic correlations? Energy Econ. 2024, 136, 107713. [Google Scholar] [CrossRef]
- Orlando, G. A Review on Exchange Traded Products: Taxonomy, Risk and Mitigations. Risk Mitig. 2024. [Google Scholar] [CrossRef]
- Quatrini, S. Challenges and opportunities to scale up sustainable finance after the COVID-19 crisis: Lessons and promising innovations from science and practice. Ecosyst. Serv. 2021, 48, 101240. [Google Scholar] [CrossRef]
- Joshi, G.; Dash, R.K. Exchange-traded funds and the future of passive investments: A bibliometric review and future research agenda. Future Bus. J. 2024, 10, 17. [Google Scholar] [CrossRef]
- Marszk, A.; Lechman, E. What drives sustainable investing? Adoption determinants of sustainable investing exchange-traded funds in Europe. Struct. Change Econ. Dyn. 2024, 69, 63–82. [Google Scholar] [CrossRef]
- Angelini, E.; Birindelli, G.; Chiappini, H.; Foglia, M. Clean energy indices and brown assets: An analysis of tail risk spillovers through the VAR for VaR model. J. Sustain. Financ. Investig. 2022, 1–28. [Google Scholar] [CrossRef]
- Alexopoulos, T.A. To trust or not to trust? A comparative study of conventional and clean energy exchange-traded funds. Energy Econ. 2018, 72, 97–107. [Google Scholar] [CrossRef]
- Yadav, M.P.; Bhatia, S.; Singh, N.; Islam, M.T. Financial and energy exchange traded funds futures: An evidence of spillover and portfolio hedging. Ann. Oper. Res. 2024, 333, 501–516. [Google Scholar] [CrossRef]
- Naeem, M.A.; Bouri, E.; Costa, M.D.; Naifar, N.; Shahzad, S.J.H. Energy markets and green bonds: A tail dependence analysis with time-varying optimal copulas and portfolio implications. Resour. Policy 2021, 74, 102418. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Y. Liquidity Spillover between Exchange-Traded Funds: Variations across News Regimes. J. Risk Financ. Manag. 2024, 17, 391. [Google Scholar] [CrossRef]
- Yavas, B.F.; Rezayat, F.; Bilici, H. A study of correlation between international equity markets using exchange-traded funds. J. Asia-Pac. Bus. 2004, 5, 67–82. [Google Scholar] [CrossRef]
- Tokat, E.; Hayrullahoğlu, A.C. Pairs trading: Is it applicable to exchange-traded funds? Borsa Istanb. Rev. 2022, 22, 743–751. [Google Scholar] [CrossRef]
- Gurrib, I.; Kamalov, F.; Starkova, O.; Makki, A.; Mirchandani, A.; Gupta, N. Performance of equity investments in sustainable environmental markets. Sustainability 2023, 15, 7453. [Google Scholar] [CrossRef]
- Magner, N.; Lavín, J.F.; Valle, M.A. Modeling synchronization risk among sustainable exchange trade funds: A statistical and network analysis approach. Mathematics 2022, 10, 3598. [Google Scholar] [CrossRef]
- Esparcia, C.; Fakhfakh, T.; Jareño, F.; Ghorbel, A. Dynamic DeFi-G7 stock markets interactions and their potential role in diversifying and hedging strategies. Financ. Innov. 2024, 10, 73. [Google Scholar] [CrossRef]
- Younis, I.; Gupta, H.; Du, A.M.; Shah, W.U.; Hanif, W. Spillover dynamics in DeFi, G7 banks, and equity markets during global crises: A TVP-VAR analysis. Res. Int. Bus. Financ. 2024, 70, 102405. [Google Scholar] [CrossRef]
- Younis, I.; Du, A.M.; Gupta, H.; Shah, W.U. Dynamic spillover effects and interconnectedness of DeFi assets, commodities, and Islamic stock markets during crises. Int. Rev. Financ. Anal. 2024, 96, 103563. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yilmaz, K. Better to give than to receive: Predictive directional measurement of volatility spillovers. Int. J. Forecast. 2012, 28, 57–66. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yılmaz, K. On the network topology of variance decompositions: Measuring the connectedness of financial firms. J. Econom. 2014, 182, 119–134. [Google Scholar] [CrossRef]
- Antonakakis, N.; Gabauer, D. Refined Measures of Dynamic Connectedness Based on TVP-VAR; MPRA: Munich, Germany, 2017. [Google Scholar]
- Zheng, T.; Ye, S.; Hong, Y. Fast estimation of a large TVP-VAR model with score-driven volatilities. J. Econ. Dyn. Control 2023, 157, 104762. [Google Scholar] [CrossRef]
- Koop, G.; Pesaran, M.H.; Potter, S.M. Impulse response analysis in nonlinear multivariate models. J. Econom. 1996, 74, 119–147. [Google Scholar] [CrossRef]
- Pesaran, H.H.; Shin, Y. Generalized impulse response analysis in linear multivariate models. Econ. Lett. 1998, 58, 17–29. [Google Scholar] [CrossRef]
- Barnea, A.; Rubin, A. Corporate social responsibility as a conflict between shareholders. J. Bus. Ethics 2010, 97, 71–86. [Google Scholar] [CrossRef]
S No. | Ticker | Markets Details Information |
---|---|---|
1 | EMCR | Xtrackers Emerging Markets Carbon Reduction and Climate Improvers ETF (EMCR) |
2 | D6RR | Deka MSCI Europe Climate Change ESG UCITS ETF (D6RR) |
3 | D6RP | Deka MSCI World Climate Change ESG UCITS ETF (D6RP) |
4 | D6RQ | Deka MSCI USA Climate Change ESG UCITS ETF (D6RQ) |
5 | LWCR | Amundi MSCI World Climate Transition CTB—UCITS ETF DR—EUR-C (LWCR) |
6 | FLX5 | Franklin S&P 500 Paris Aligned Climate UCITS ETF (FLX5) |
7 | PARI | Franklin STOXX Europe 600 Paris Aligned Climate UCITS ETF (PARI) |
8 | FLXP | Franklin STOXX Europe 600 Paris Aligned Climate UCITS ETF (FLXP) |
9 | XAMB | Amundi MSCI World SRI Climate Net Zero Ambition PAB UCITS ETF EUR Acc (XAMB) |
EMCR | D6RR | D6RP | D6RQ | LWCR | FLX5 | PARI | FLXP | XAMB | |
---|---|---|---|---|---|---|---|---|---|
Mean | 0.025279 | 0.036786 | 0.059924 | 0.071211 | 0.061121 | 0.068752 | 0.044235 | 0.0448 | 0.050305 |
Median | 0.00 | 0.069396 | 0.112952 | 0.121322 | 0.11484 | 0.120919 | 0.067317 | 0.083195 | 0.127 |
Maximum | 8.570413 | 4.74732 | 3.230654 | 3.899371 | 3.423295 | 3.660024 | 4.240283 | 5.934613 | 3.443526 |
Minimum | −5.19172 | −4.28044 | −4.4505 | −4.82098 | −4.26382 | −7.84569 | −4.51157 | −3.80687 | −4.78146 |
Std. Dev. | 1.127852 | 0.933127 | 0.964109 | 1.067154 | 0.917551 | 1.021503 | 0.927689 | 0.937904 | 0.899945 |
Skewness | 0.285556 | −0.20973 | −0.31995 | −0.26694 | −0.32719 | −0.69071 | −0.2922 | −0.04182 | −0.37973 |
Kurtosis | 6.618602 | 5.271583 | 4.63623 | 4.4369 | 4.699013 | 7.416689 | 5.543997 | 5.813466 | 4.903563 |
Jarque-Bera | 607.8343 | 241.6779 | 139.8029 | 106.4221 | 150.1357 | 969.9416 | 308.5919 | 358.8272 | 190.2394 |
Probability | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
ERS | −6.87 *** | −10.52 *** | −6.570 *** | −7.473 *** | −3.395 *** | −13.84 *** | −3.550 *** | −7.172 *** | −9.529 *** |
ARCH RESID(−1)^2 | 0.057 *** | 0.122 *** | 0.099 *** | 0.098 *** | 0.115 *** | 0.180 *** | 0.027 *** | 0.136 *** | 0.129 *** |
Sum | 27.47869 | 39.98661 | 65.1375 | 77.40647 | 66.43847 | 74.73361 | 48.08395 | 48.69717 | 54.68169 |
Sum Sq. Dev. | 1381.447 | 945.6077 | 1009.444 | 1236.757 | 914.3026 | 1133.206 | 934.6188 | 955.3142 | 879.5534 |
EMCR | D6RR | D6RP | D6RQ | LWCR | FLX5 | PARI | FLXP | XAMB | |
---|---|---|---|---|---|---|---|---|---|
EMCR | 1.270881 | 0.02383 | 0.014179 | 0.009234 | 0.010376 | 2.21 × 10−5 | 0.056005 | 0.040543 | 0.021366 |
D6RR | 0.02383 | 0.869924 | 0.714198 | 0.696535 | 0.091647 | 0.666282 | −0.01444 | 0.829975 | 0.694933 |
D6RP | 0.014179 | 0.714198 | 0.928651 | 0.999076 | 0.093235 | 0.896769 | −0.02618 | 0.694265 | 0.830032 |
D6RQ | 0.009234 | 0.696535 | 0.999076 | 1.137771 | 0.09946 | 0.988854 | −0.03113 | 0.672773 | 0.88676 |
LWCR | 0.010376 | 0.091647 | 0.093235 | 0.09946 | 0.841125 | 0.076033 | 0.119501 | 0.063917 | 0.082841 |
FLX5 | 2.21 × 10−5 | 0.666282 | 0.896769 | 0.988854 | 0.076033 | 1.042508 | −0.03677 | 0.682951 | 0.820609 |
PARI | 0.056005 | −0.01444 | −0.02618 | −0.03113 | 0.119501 | −0.03677 | 0.859815 | −0.01113 | −0.03252 |
FLXP | 0.040543 | 0.829975 | 0.694265 | 0.672773 | 0.063917 | 0.682951 | −0.01113 | 0.878854 | 0.680888 |
XAMB | 0.021366 | 0.694933 | 0.830032 | 0.88676 | 0.082841 | 0.820609 | −0.03252 | 0.680888 | 0.809157 |
Israel–Palestine Conflict Sample (1 October 2023–10 October 2024) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
EMCR | D6RR | D6RP | D6RQ | LWCR | FLX5 | PARI | FLXP | XAMB | FROM | |
EMCR | 94.58 | 0.53 | 0.79 | 0.85 | 0.18 | 0.97 | 0.48 | 0.73 | 0.88 | 5.42 |
D6RR | 0.09 | 23.24 | 14.65 | 11.27 | 0.31 | 12.38 | 0.58 | 21.83 | 15.65 | 76.76 |
D6RP | 0.23 | 12.34 | 19.62 | 18.64 | 0.15 | 18.44 | 0.22 | 11.75 | 18.6 | 80.38 |
D6RQ | 0.28 | 10.19 | 20.07 | 21.12 | 0.17 | 19.61 | 0.22 | 9.56 | 18.78 | 78.88 |
LWCR | 0.26 | 12.48 | 19.13 | 18.31 | 0.33 | 18.49 | 0.23 | 12.01 | 18.75 | 99.67 |
FLX5 | 0.35 | 10.93 | 19.34 | 19.08 | 0.14 | 20.56 | 0.18 | 10.55 | 18.86 | 79.44 |
PARI | 0.42 | 2.46 | 2.16 | 1.92 | 0.14 | 2 | 85.64 | 2.85 | 2.41 | 14.36 |
FLXP | 0.14 | 22.46 | 14.22 | 10.75 | 0.3 | 12.13 | 0.78 | 23.87 | 15.34 | 76.13 |
XAMB | 0.29 | 13.16 | 18.57 | 17.43 | 0.19 | 17.95 | 0.21 | 12.63 | 19.57 | 80.43 |
TO | 2.05 | 84.56 | 108.94 | 98.24 | 1.59 | 101.97 | 2.91 | 81.92 | 109.28 | 591.46 |
Inc.Own | 96.64 | 107.8 | 128.56 | 119.36 | 1.92 | 122.54 | 88.55 | 105.78 | 128.85 | cTCI/TCI |
NET | −3.36 | 7.8 | 28.56 | 19.36 | −98.08 | 22.54 | −11.45 | 5.78 | 28.85 | 73.93/65.71 |
NPT | 1 | 4 | 7 | 5 | 0 | 6 | 2 | 3 | 8 | |
Russia–UkraineConflict Sample (1 February 2022–30 September 2023) | ||||||||||
EMCR | 80.8 | 1.77 | 2.92 | 2.74 | 2.32 | 3.26 | 1.1 | 1.94 | 3.14 | 19.2 |
D6RR | 0.18 | 26.93 | 10.82 | 7.31 | 8.6 | 6.94 | 3.58 | 20.69 | 14.95 | 73.07 |
D6RP | 0.31 | 8.4 | 20.79 | 19.44 | 12.85 | 14.69 | 1.73 | 6.87 | 14.92 | 79.21 |
D6RQ | 0.33 | 6.17 | 21.03 | 22.51 | 13.14 | 16.03 | 1.38 | 4.95 | 14.46 | 77.49 |
LWCR | 0.22 | 9.82 | 15.68 | 14.95 | 20.36 | 13.5 | 1.24 | 8.44 | 15.81 | 79.64 |
FLX5 | 0.65 | 6.3 | 16.97 | 17.09 | 12.53 | 24.4 | 1.83 | 6.75 | 13.48 | 75.6 |
PARI | 1.05 | 8.44 | 5.09 | 3.67 | 3.53 | 5.35 | 59.18 | 7.92 | 5.78 | 40.82 |
FLXP | 0.14 | 22.34 | 9.54 | 6.27 | 7.31 | 7.96 | 3.61 | 29.23 | 13.6 | 70.77 |
XAMB | 0.33 | 12.15 | 15.39 | 13.8 | 12.06 | 12.17 | 1.98 | 10.42 | 21.71 | 78.29 |
TO | 3.19 | 75.4 | 97.42 | 85.26 | 72.33 | 79.9 | 16.46 | 67.98 | 96.16 | 594.09 |
Inc.Own | 84 | 102.33 | 118.21 | 107.77 | 92.69 | 104.3 | 75.64 | 97.21 | 117.87 | cTCI/TCI |
NET | −16 | 2.33 | 18.21 | 7.77 | −7.31 | 4.3 | −24.36 | −2.79 | 17.87 | 74.26/66.01 |
NPT | 0 | 4 | 8 | 6 | 2 | 5 | 1 | 3 | 7 | |
Full Sample (16 July 2020–10 October 2024) | ||||||||||
EMCR | 88.23 | 1.25 | 1.65 | 1.54 | 0.92 | 1.68 | 1.87 | 1.14 | 1.73 | 11.77 |
D6RR | 0.2 | 22.45 | 14.91 | 11.63 | 1.72 | 11.57 | 1.12 | 20.34 | 16.06 | 77.55 |
D6RP | 0.16 | 12.71 | 19.61 | 18.55 | 2.01 | 16.41 | 0.61 | 11.9 | 18.05 | 80.39 |
D6RQ | 0.15 | 10.67 | 20 | 21.08 | 2.03 | 17.5 | 0.52 | 9.92 | 18.13 | 78.92 |
LWCR | 0.17 | 12.83 | 18.69 | 17.85 | 3.13 | 16.37 | 0.6 | 12.14 | 18.23 | 96.87 |
FLX5 | 0.26 | 10.77 | 17.96 | 17.82 | 2.02 | 22.17 | 0.48 | 11.37 | 17.15 | 77.83 |
PARI | 1.18 | 3.88 | 3.73 | 3.46 | 0.85 | 3.56 | 74.95 | 4.33 | 4.06 | 25.05 |
FLXP | 0.2 | 20.91 | 14.19 | 10.97 | 1.54 | 12.26 | 1.32 | 23.16 | 15.46 | 76.84 |
XAMB | 0.17 | 13.73 | 18.15 | 16.91 | 1.94 | 15.76 | 0.68 | 12.96 | 19.7 | 80.3 |
TO | 2.5 | 86.74 | 109.28 | 98.74 | 13.04 | 95.09 | 7.19 | 84.09 | 108.87 | 605.53 |
Inc.Own | 90.72 | 109.19 | 128.89 | 119.81 | 16.16 | 117.26 | 82.14 | 107.25 | 128.57 | cTCI/TCI |
NET | −9.28 | 9.19 | 28.89 | 19.81 | −83.84 | 17.26 | −17.86 | 7.25 | 28.57 | 75.69/67.28 |
NPT | 0 | 4 | 8 | 6 | 2 | 5 | 1 | 3 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, A.; Liu, X.; Zeeshan, M.; Shah, W.U. Evaluating Growth and Crisis Risk Dynamics of Sustainable Climate Exchange-Traded Funds. Sustainability 2024, 16, 10049. https://doi.org/10.3390/su162210049
Ullah A, Liu X, Zeeshan M, Shah WU. Evaluating Growth and Crisis Risk Dynamics of Sustainable Climate Exchange-Traded Funds. Sustainability. 2024; 16(22):10049. https://doi.org/10.3390/su162210049
Chicago/Turabian StyleUllah, Atta, Xiyu Liu, Muhammad Zeeshan, and Waheed Ullah Shah. 2024. "Evaluating Growth and Crisis Risk Dynamics of Sustainable Climate Exchange-Traded Funds" Sustainability 16, no. 22: 10049. https://doi.org/10.3390/su162210049
APA StyleUllah, A., Liu, X., Zeeshan, M., & Shah, W. U. (2024). Evaluating Growth and Crisis Risk Dynamics of Sustainable Climate Exchange-Traded Funds. Sustainability, 16(22), 10049. https://doi.org/10.3390/su162210049