Lake Shore Restoration with Vallisneria spiralis in Lake Como (Northern Italy) to Improve Sustainability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
- The upper limit of the colonizable zone is 1.5 m as it is closer to the surface, and fluctuations in the water level and wave action make it difficult for macrophytes to maintain a stable presence.
- The lower limit is 8 m, as, below this depth, the vegetation gradient decreases rapidly due to lower light levels; however, macrophytes are sometimes visible at greater depths (in Lake Como, based on personal observations, never deeper than 10 m). Therefore, this is the maximum depth to target to maximize the positive effects of restoration efforts.
2.2. Target Species
2.3. Mesocosm Experiment
- (1)
- PATCH type: A hydrodynamic geometric module designed to be placed over sandy sediment or inside muddy ground. It features a reduced thickness and shape that provides resistance to waves and is able to withstand water turbulence up to a depth of 10 m (Figure 2A).
- (2)
- LINEAR PATCH type: A substrate designed to facilitate the growth of plants in a linear formation, promoting rapid expansion in flat and uniform environments. This substrate is specifically intended to combat the spread of invasive species like Egeria densa (Figure 2B).
- (3)
- BRANCH or BOULDER type: An ovoid object used to occupy the space between rocky blocks or submerged branches, equipped with a point of attachment to the bottom screw (or dowel) passing through. The geometric shape allows for the storage of large amounts of nutrient reserves and, therefore, ensures greater autonomy in environments with little organic soil available for engraftment (Figure 2C).
- (4)
- BLOCK type: A modular object that can be used to create any structure by combining small blocks. It was specifically designed for use in mixed environments where other objects may not be suitable (Figure 2D).
3. Results
- A temperature between 25 and 27 degrees Celsius;
- A constantly active circulation pump with a filter;
- The presence of a fertile substrate (tablets renewed every 6 months);
- Light cycles set to provide enough hours of darkness to counteract excessive filamentous algae growth; the cycles used were 6 h of peak light alternated with 6 h of darkness.
4. Discussion
5. Conclusions
- -
- Planting in specialized substrates, rather than directly in sediments, represents a significant innovation. The delicate root systems of Vallisneria spiralis and other aquatic plants struggle to anchor themselves in unassisted environments, making physical support essential for their establishment.
- -
- Our comparative analysis of various forms and types of substrates has led us to identify the most effective materials for supporting plant anchoring and establishment (the patch).
- -
- The implementation of a substrate system that functions like a small container enhances the growth medium, allowing us to easily adjust nutrient proportions tailored to the specific needs of the aquatic plants we are introducing.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Herdendorf, C.E. Distribution of the world’s large lakes. In Large Lakes: Ecological Structure and Function; Springer: Berlin/Heidelberg, Germany, 1990; pp. 3–38. [Google Scholar]
- Downing, J.A.; Prairie, Y.T.; Cole, J.J.; Duarte, C.M.; Tranvik, L.J.; Striegl, R.G.; McDowell, W.H.; Kortelainen, P.; Caraco, N.F.; Melack, J.M.; et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 2006, 51, 2388–2397. [Google Scholar] [CrossRef]
- Brönmark, C.; Hansson, L.A. Environmental issues in lakes and ponds: Current state and perspectives. Environ. Conserv. 2002, 29, 290–307. [Google Scholar] [CrossRef]
- Sterner, R.W.; Keeler, B.; Polasky, S.; Poudel, R.; Rhude, K.; Rogers, M. Ecosystem services of Earth’s largest freshwater lakes. Ecosyst. Serv. 2020, 41, 101046. [Google Scholar] [CrossRef]
- Evenset, A.; Christensen, G.N.; Carroll, J.; Zaborska, A.; Berger, U.; Herzke, D.; Gregor, D. Historical trends in persistent organic pollutants and metals recorded in sediment from Lake Ellasjøen, Bjørnøya, Norwegian Arctic. Environ. Pollut. 2007, 146, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, P.; Vilanova, R.M.; Martínez, C.; Appleby, P.; Grimalt, J.O. The historical record of atmospheric pyrolytic pollution over Europe registered in the sedimentary PAH from remote mountain lakes. Environ. Sci. Technol. 2000, 34, 1906–1913. [Google Scholar] [CrossRef]
- Pozo, K.; Urrutia, R.; Barra, R.; Mariottini, M.; Treutler, H.C.; Araneda, A.; Focardi, S. Records of polychlorinated biphenyls (PCBs) in sediments of four remote Chilean Andean lakes. Chemosphere 2007, 66, 1911–1921. [Google Scholar] [CrossRef]
- Nava, V.; Chandra, S.; Aherne, J.; Alfonso, M.B.; Antão-Geraldes, A.M.; Attermeyer, K.; Bao, R.; Bartrons, M.; Berger, S.A.; Biernaczyk, M.; et al. Plastic debris in lakes and reservoirs. Nature 2023, 619, 317–322. [Google Scholar] [CrossRef]
- Bellasi, A.; Binda, G.; Pozzi, A.; Galafassi, S.; Volta, P.; Bettinetti, R. Microplastic contamination in freshwater environments: A review, focusing on interactions with sediments and benthic organisms. Environments 2020, 7, 30. [Google Scholar] [CrossRef]
- D’Avignon, G.; Gregory-Eaves, I.; Ricciardi, A. Microplastics in lakes and rivers: An issue of emerging significance to limnology. Environ. Rev. 2022, 30, 228–244. [Google Scholar] [CrossRef]
- Dusaucy, J.; Gateuille, D.; Perrette, Y.; Naffrechoux, E. Microplastic pollution of worldwide lakes. Environ. Pollut. 2021, 284, 117075. [Google Scholar] [CrossRef]
- Mishra, R.K. Fresh water availability and its global challenge. Br. J. Multidiscip. Adv. Stud. 2023, 4, 1–78. [Google Scholar] [CrossRef]
- Brauer, C.J.; Beheregaray, L.B. Recent and rapid anthropogenic habitat fragmentation increases extinction risk for freshwater biodiversity. Evol. Appl. 2020, 13, 2857–2869. [Google Scholar] [CrossRef] [PubMed]
- Dudgeon, D. Prospects for sustaining freshwater biodiversity in the 21st century: Linking ecosystem structure and function. Curr. Opin. Environ. Sustain. 2010, 2, 422–430. [Google Scholar] [CrossRef]
- Williams-Subiza, E.A.; Epele, L.B. Drivers of biodiversity loss in freshwater environments: A bibliometric analysis of the recent literature. Aquat. Conserv. Mar. Freshwater Ecosyst. 2021, 31, 2469–2480. [Google Scholar] [CrossRef]
- Gawecka, K.A.; Bascompte, J. Habitat restoration and the recovery of metacommunities. J. Appl. Ecol. 2023, 60, 1622–1636. [Google Scholar] [CrossRef]
- Loch, J.M.; Walters, L.J.; Cook, G.S. Recovering trophic structure through habitat restoration: A review. Food Webs 2020, 25, e00162. [Google Scholar] [CrossRef]
- Boström-Einarsson, L.; Babcock, R.C.; Bayraktarov, E.; Ceccarelli, D.; Cook, N.; Ferse, S.C.; Hancock, B.; Harrison, P.; Hein, M.; Shaver, E.; et al. Coral restoration–A systematic review of current methods, successes, failures and future directions. PLoS ONE 2020, 15, e0226631. [Google Scholar] [CrossRef] [PubMed]
- De’Ath, G.; Fabricius, K.E.; Sweatman, H.; Puotinen, M. The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. USA 2012, 109, 17995–17999. [Google Scholar] [CrossRef]
- Montefalcone, M.; Morri, C.; Bianchi, C.N. Long-term change in bioconstruction potential of Maldivian coral reefs following extreme climate anomalies. Glob. Change Biol. 2018, 24, 5629–5641. [Google Scholar] [CrossRef]
- Escandell-Westcott, A.; Riera, R.; Hernández-Muñoz, N. Posidonia oceanica restoration review: Factors affecting seedlings. J. Sea Res. 2023, 191, 102337. [Google Scholar] [CrossRef]
- Pansini, A.; Bosch-Belmar, M.; Berlino, M.; Sarà, G.; Ceccherelli, G. Collating evidence on the restoration efforts of the seagrass Posidonia oceanica: Current knowledge and gaps. Sci. Total Environ. 2022, 851, 158320. [Google Scholar] [CrossRef]
- Vacchi, M.; De Falco, G.; Simeone, S.; Montefalcone, M.; Morri, C.; Ferrari, M.; Bianchi, C.N. Biogeomorphology of the Mediterranean Posidonia oceanica seagrass meadows. Earth Surf. Process. Landforms 2017, 42, 42–54. [Google Scholar] [CrossRef]
- Chen, J.; Liu, J.; Han, S.; Su, H.; Xia, W.; Wang, H.; Liu, Y.; Zhang, L.; Ke, Z.; Zhang, X.; et al. Nontraditional biomanipulation: A powerful ecotechnology to combat cyanobacterial blooms in eutrophic freshwaters. Innovation Life 2023, 1, 100038. [Google Scholar] [CrossRef]
- Jurajda, P.; Adámek, Z.; Janáč, M.; Roche, K.; Mikl, L.; Rederer, L.; Zapletal, T.; Koza, V.; Špaček, J. Use of multiple fish-removal methods during biomanipulation of a drinking water reservoir–evaluation of the first four years. Fish. Res. 2016, 173, 101–108. [Google Scholar] [CrossRef]
- Alhamarna, M.Z.; Tandyrak, R. Lakes restoration approaches. Limnol. Rev. 2021, 21, 105–118. [Google Scholar] [CrossRef]
- Gao, J.; Hu, W. A bibliometric analysis of lake restoration with submerged macrophytes. Water 2023, 15, 2411. [Google Scholar] [CrossRef]
- Tammeorg, O.; Chorus, I.; Spears, B.; Nõges, P.; Nürnberg, G.K.; Tammeorg, P.; Søndergaard, M.; Jeppesen, E.; Paerl, H.; Huser, B.; et al. Sustainable lake restoration: From challenges to solutions. Wiley Interdiscip. Rev. Water 2024, 11, e1689. [Google Scholar]
- Bettinetti, R.; Quadroni, S.; Galassi, S.; Bacchetta, R.; Bonardi, L.; Vailati, G. Is meltwater from Alpine glaciers a secondary DDT source for lakes? Chemosphere 2008, 73, 1027–1031. [Google Scholar] [CrossRef]
- Bettinetti, R.; Quadroni, S.; Boggio, E.; Galassi, S. Recent DDT and PCB contamination in the sediment and biota of the Como Bay (Lake Como, Italy). Sci. Total Environ. 2016, 542, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Castiglioni, S.; Zuccato, E.; Fattore, E.; Riva, F.; Terzaghi, E.; Koenig, R.; Principi, P.; Di Guardo, A. Micropollutants in Lake Como water in the context of circular economy: A snapshot of water cycle contamination in a changing pollution scenario. J. Hazard. Mater. 2020, 384, 121441. [Google Scholar] [CrossRef] [PubMed]
- Boldrocchi, G.; Monticelli, D.; Mazzoni, M.; Spanu, D.; Bettinetti, R. Accumulation of selected trace elements in shads from three lakes: First insights from Italian pre-alpine area. Biol. Trace Elem. Res. 2021, 1–6. [Google Scholar] [CrossRef]
- Mazzoni, M.; Boggio, E.; Manca, M.; Piscia, R.; Quadroni, S.; Bellasi, A.; Bettinetti, R. Trophic transfer of persistent organic pollutants through a pelagic food web: The case of Lake Como (Northern Italy). Sci. Total Environ. 2018, 640, 98–106. [Google Scholar] [CrossRef]
- Valsecchi, S.; Babut, M.; Mazzoni, M.; Pascariello, S.; Ferrario, C.; De Felice, B.; Bettinetti, R.; Veyrand, B.; Marchand, P.; Polesello, S. Per- and polyfluoroalkyl substances (PFAS) in fish from European lakes: Current contamination status, sources, and perspectives for monitoring. Environ. Toxicol. Chem. 2021, 40, 658–676. [Google Scholar] [CrossRef]
- Portal to the Flora of Italy. Vallisneria spiralis L. FlorItaly Database. Available online: https://floritaly.plantdata.it/index.php?procedure=taxon_page&tipo=all&id=6693 (accessed on 15 October 2024).
- Bolpagni, R.; Laini, A.; Soana, E.; Tomaselli, M.; Nascimbene, J. Growth performance of Vallisneria spiralis under oligotrophic conditions supports its potential invasiveness in mid-elevation freshwaters. Weed Res. 2015, 55, 185–194. [Google Scholar] [CrossRef]
- Martin, A.P.; Mort, M.E. Vallisneria (Hydrocharitaceae): Novel species, taxonomic revisions, and hybridization. Aquat. Bot. 2023, 188, 103669. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, L. Identification of the spectral characteristics of submerged plant Vallisneria spiralis. Acta Ecol. Sin. 2006, 26, 1005–1010. [Google Scholar] [CrossRef]
- Racchetti, E.; Bartoli, M.; Ribaudo, C.; Longhi, D.; Brito, L.E.Q.; Naldi, M.; Iacumin, P.; Viaroli, P. Short-term changes in pore water chemistry in river sediments during the early colonization by Vallisneria spiralis. Hydrobiologia 2010, 652, 127–137. [Google Scholar] [CrossRef]
- Magri, M.; Benelli, S.; Bartoli, M. Vallisneria spiralis promotes P and Fe retention via radial oxygen loss in contaminated sediments. Water 2023, 15, 4222. [Google Scholar] [CrossRef]
- Schloesser, D.W.; Manny, B.A. Restoration of wildcelery, Vallisneria americana Michx., in the lower Detroit River of the Lake Huron-Lake Erie corridor. J. Great Lakes Res. 2007, 33 (Suppl. S1), 8–19. [Google Scholar] [CrossRef]
- Tanski, E.M. Culturing Vallisneria Americana for Restoration Efforts; University of North Texas: Denton, TX, USA, 2004. [Google Scholar]
- Balestri, E.; Vallerini, F.; Seggiani, M.; Cinelli, P.; Menicagli, V.; Vannini, C.; Lardicci, C. Use of bio-containers from seagrass wrack with nursery planting to improve the eco-sustainability of coastal habitat restoration. J. Environ. Manag. 2019, 251, 109604. [Google Scholar] [CrossRef]
- Kenworthy, W.J.; Hall, M.O.; Hammerstrom, K.K.; Merello, M.; Schwartzschild, A. Restoration of tropical seagrass beds using wild bird fertilization and sediment regrading. Ecol. Eng. 2018, 112, 72–81. [Google Scholar] [CrossRef]
- Wear, R.J.; Tanner, J.E.; Hoare, S.L. Facilitating recruitment of Amphibolis as a novel approach to seagrass rehabilitation in hydrodynamically active waters. Mar. Freshwater Res. 2010, 61, 1123–1133. [Google Scholar] [CrossRef]
- Marín, A.; Feijoo, P.; de Llanos, R.; Carbonetto, B.; González-Torres, P.; Tena-Medialdea, J.; García-March, J.R.; Gámez-Pérez, J.; Cabedo, L. Microbiological Characterization of the Biofilms Colonizing Bioplastics in Natural Marine Conditions: A Comparison Between PHBV and PLA. Microorganisms 2023, 11, 1461. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castelnuovo, N.; Villa, B.; Boldrocchi, G.; Iotti, P.; Bettinetti, R. Lake Shore Restoration with Vallisneria spiralis in Lake Como (Northern Italy) to Improve Sustainability. Sustainability 2024, 16, 10048. https://doi.org/10.3390/su162210048
Castelnuovo N, Villa B, Boldrocchi G, Iotti P, Bettinetti R. Lake Shore Restoration with Vallisneria spiralis in Lake Como (Northern Italy) to Improve Sustainability. Sustainability. 2024; 16(22):10048. https://doi.org/10.3390/su162210048
Chicago/Turabian StyleCastelnuovo, Nicola, Benedetta Villa, Ginevra Boldrocchi, Paola Iotti, and Roberta Bettinetti. 2024. "Lake Shore Restoration with Vallisneria spiralis in Lake Como (Northern Italy) to Improve Sustainability" Sustainability 16, no. 22: 10048. https://doi.org/10.3390/su162210048
APA StyleCastelnuovo, N., Villa, B., Boldrocchi, G., Iotti, P., & Bettinetti, R. (2024). Lake Shore Restoration with Vallisneria spiralis in Lake Como (Northern Italy) to Improve Sustainability. Sustainability, 16(22), 10048. https://doi.org/10.3390/su162210048