New Management Strategy Framework for Effectively Managing Microplastic in Circular System Form Plastic Product Manufacturing to Waste Treatment Facility
Abstract
:1. Introduction
2. Factors Influencing MPs in the Circular System: From Plastic Product Manufacturing to Waste Management
3. Investigation of MPs in Waste Treatment Facilities
3.1. Materials and Methods
3.2. MPs in Landfill Sites, Incineration, Sewage Treatment, and Recycling Facilities
4. Theoretical Strategy for Effective Management of MPs
5. Applying the Theoretical Strategy: A Case Study in South Korea
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, S.; Cui, Y.; Brahney, J.; Mahowald, N.M.; Li, Q. Long-distance atmospheric transport of microplastic fibers influenced by their shapes. Nat. Geosci. 2023, 16, 863–870. [Google Scholar] [CrossRef]
- Arthur, C.; Baker, J.E.; Bamford, H.A. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris, September 9–11, 2008, University of Washington Tacoma, Tacoma, WA, USA; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2009. [Google Scholar]
- Eerkes-Medrano, D.; Leslie, H.A.; Quinn, B. Microplastics in drinking water: A review and assessment. Curr. Opin. Environ. Sci. Health 2019, 7, 69–75. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- OSPAR Commission. Assessment Document of Land-Based Inputs of Microplastics in the Marine Environment. 2017. Available online: https://www.ospar.org/documents?v=38018 (accessed on 29 September 2024).
- Kim, S.W.; An, Y.J. Soil microplastics inhibit the movement of springtail species. Environ. Int. 2019, 126, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, Y.; Deng, Y.; Jiang, W.; Zhao, Y.; Geng, J.; Ding, L.; Ren, H. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio retio) and toxic effects in liver. Environ. Sci. Technol. 2016, 50, 4054–4060. [Google Scholar] [CrossRef]
- Wagner, M.; Lambert, S. Freshwater Microplastics; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Law, K.L.; Thompson, R.C. Microplastics in the seas. Science 2014, 345, 144–145. [Google Scholar] [CrossRef]
- Bittner, G.D.; Denison, M.S.; Yang, C.Z.; Stoner, M.A.; He, G. Chemicals having estrogenic activity can be released from some bisphenol a-free, hard and clear, thermoplastic resins. Environ. Health 2014, 13, 103. [Google Scholar] [CrossRef]
- Zimmermann, L.; Bartosova, Z.; Braun, K.; Oehlmann, J.; Volker, C.; Wagner, M. Plastic products leach chemicals that induce in vitro toxicity under realistic use conditions. Environ. Sci. Technol. 2021, 55, 11814–11823. [Google Scholar] [CrossRef]
- Charlton-Howard, H.S.; Bond, A.L.; Rivers-Auty, J.; Lavers, J.L. ‘Plasticosis’: Characterising macro- and microplastic-associated fibrosis in seabird tissues. J. Hazard. Mater. 2023, 15, 131090. [Google Scholar] [CrossRef]
- Yang, C.S.; Chang, C.H.; Tsai, P.J.; Chen, W.Y.; Tseng, F.G.; Lo, L.W. Nanoparticle-based in vivo investigation on blood-brain barrier permeability following ischemia and reperfusion. Anal. Chem. 2004, 76, 4465–4471. [Google Scholar] [CrossRef]
- UNEP. Exploring the Potential for Adopting Alternative Materials to Reduce Marine Plastic Litter. 2018. Available online: https://www.unep.org/resources/report/exploring-potential-adopting-alternative-materials-reduce-marine-plastic-litter (accessed on 29 September 2024).
- OECD. Policies to Reduce Microplastics Pollution in Water. 2021. Available online: https://www.oecd.org/env/policies-to-reduce-microplastics-pollution-in-water-7ec7e5ef-en.htm (accessed on 29 September 2024).
- Tommasi, F.; Mancini, L. Plastics and Microplastics: The OECD’s Approach. In Proceedings of the 2nd International Conference on Microplastic Pollution in the Mediterranean Sea, Naples, Italy, 28–30 September 2019. [Google Scholar]
- Fadeeva, Z.; Berkel, R.V. Unlocking circular economy for prevention of marine plastic pollution: An exploration of G20 policy and initiatives. J. Environ. Manag. 2021, 277, 111457. [Google Scholar] [CrossRef] [PubMed]
- Ministry of the Environment. G20 Report on Actions Against Marine Plastic Litter. 2020. Available online: https://apps1.unep.org/resolutions/uploads/g20_mpl_1st_followup_report191029.pdf (accessed on 29 September 2024).
- Guggisberg, S. Finding equitable solutions to the land-based sources of marine plastic pollution: Sovereignty as a double-edged sword. Mar. Policy 2024, 159, 105960. [Google Scholar] [CrossRef]
- Golwala, H.; Zhang, X.; Iskander, S.M.; Smith, A.L. Solid waste: An overlooked source of microplastics to the environment. Sci. Total Environ. 2021, 769, 144581. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, R.; Sayadi, M.H.; Aazami, J.; Savabieasfehani, M. Accumulation and distribution of microplastics in the sediment and coastal water samples of Chabahar Bay in the Oman Sea, Iran. Mar. Pollut. Bull. 2020, 160, 111682. [Google Scholar] [CrossRef]
- Park, T.J.; Lee, S.H.; Lee, M.S.; Lee, J.K.; Lee, S.H.; Zoh, K.D. Occurrence of microplastics in the Han River and riverine fish in South Korea. Sci. Total Environ. 2020, 708, 134535. [Google Scholar] [CrossRef]
- Qi, R.; Tang, Y.; Jones, D.L.; He, W.; Yan, C. Occurrence and characteristics of microplastics in soils from greenhouse and open-field cultivation using plastic mulch film. Sci. Total Environ. 2023, 905, 166935. [Google Scholar] [CrossRef]
- Scheurer, M.; Bigalke, M. Microplastics in Swiss floodplain soils. Environ. Sci. Technol. 2018, 52, 3591–3598. [Google Scholar] [CrossRef]
- Sunitha, T.G.; Monisha, V.; Sivanesan, S.; Vasanthy, M.; Prabhakaran, M.; Omine, K.; Sivasankar, V.; Darchen, A. Micro-plastic pollution along the Bay of Bengal coastal stretch of Tamil Nadu, South India. Sci. Total Environ. 2021, 756, 144073. [Google Scholar] [CrossRef]
- Yu, X.; Huang, W.; Wang, Y.; Wang, Y.; Cao, L.; Yang, Z. Microplastic pollution in the environment and organisms of Xiangshan Bay, East China Sea: An area of intensive mariculture. Water Res. 2022, 212, 118117. [Google Scholar] [CrossRef]
- Zhao, X.; Qiang, M.; Yuan, Y.; Zhang, M.; Wu, W.; Zhang, J.; Gao, Z.; Gu, X.; Ma, S.; Liu, Z.; et al. Distribution of microplastic contamination in the major tributaries of the Yellow River on the Loess Plateau. Sci. Total Environ. 2023, 905, 167431. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, H.B.; Fu, C.C.; Zhou, Y.; Dai, Z.F.; Li, Y.; Tu, C.; Luo, Y. The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea. Geoderma 2018, 322, 201–208. [Google Scholar] [CrossRef]
- Zhu, X.; Huang, W.; Fang, M.; Liao, Z.; Wang, Y.; Xu, L.; Mu, Q.; Shi, C.; Lu, C.; Deng, H.; et al. Airborne microplastic concentrations in five megacities of northern and southeast China. Environ. Sci. Technol. 2021, 55, 12871–12881. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, A.K.; Tan, Q.; Li, J. Biotechnological potential for microplastic waste. Trends Biotechnol. 2020, 38, 1196–1199. [Google Scholar] [CrossRef] [PubMed]
- Haque, F.; Fan, C. Fate and impacts of microplastics in the environment: Hydrosphere, pedosphere, and atmosphere. Environments 2023, 10, 70. [Google Scholar] [CrossRef]
- Lassen, C.; Hansen, S.F.; Magnusson, K.; Noren, F.; Hartmann, N.I.B.; Jensen, P.R.; Nielsen, T.G.; Brinch, A. Microplastics—Occurrence, Effects and Sources of Releases to the Environment in Denmark; The Danish Environmental Protection Agency: Odense, Denmark, 2015. [Google Scholar]
- Sipe, J.M.; Bossa, N.; Berger, W.; Windheim, N.V.; Gall, K.; Wiesner, M.R. From bottle to microplastics: Can we estimate how our plastic products are breaking down? Sci. Total Environ. 2022, 814, 152460. [Google Scholar] [CrossRef]
- Stapleton, M.J.; Ansari, A.J.; Ahmed, A.; Hai, F.I. Evaluating the generation of microplastics from an unlikely source: The unintentional consequence of the current plastic recycling process. Sci. Total Environ. 2023, 902, 166090. [Google Scholar] [CrossRef]
- Scudo, A.; Liebmann, B.; Corden, C.; Tyrer, D. Intentionally Added Microplastics in Products—Final Report of the Study on Behalf of the European Commission. 2017. Available online: https://www.researchgate.net/publication/327982467_Intentionally_added_microplastics_in_products_-_Final_report_of_the_study_on_behalf_of_the_European_Commission (accessed on 29 September 2024).
- British Ecological Society. Microbeads: Small Plastics Causing Big Problems. 2016. Available online: https://www.britishecologicalsociety.org/microbeads-small-plastics-causing-big-problems (accessed on 29 September 2024).
- Zuccaro, P.; Thompson, D.C.; Boer, J.; Llompart, M.; Watterson, A.; Bilott, R.; Birnbaum, L.S.; Vasiliou, V. The European Union ban on microplastics includes artificial turf crumb rubber infill: Other nations should follow suit. Environ. Sci. Technol. 2024, 58, 2591–2594. [Google Scholar] [CrossRef]
- Embrandiri, A.; Madu, I.E.; Rahma, M.; Rupani, P.F.; Jamaludin, M.H.; Naim, M.A.; Quaik, S. “Microplastics”: The next threat to manking? In Handbook of Research on Resource Management for Pollution and Waste Treatment, 2nd ed.; Affam, A.C., Ezechi, E.H., Eds.; IGI-global: Waltham, MA, USA, 2019; pp. 106–122. [Google Scholar]
- Hoeke, S.; Wijnen, J.; Krikke, H.; Lohr, A.; Ragas, A.M.J. Mapping the tire supply chain and its microplastics emissions using a multi-stakeholder approach. Resour. Conserv. Recycl. 2024, 203, 107389. [Google Scholar] [CrossRef]
- Kole, P.J.; Lohr, A.J.; Belleghem, F.G.A.J.V.; Ragas, M.J. Wear and tear of tyres: A stealthy source of microplastics in the environment. Int. J. Environ. Res. Public Health 2017, 14, 1265. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Tehrani-Bagha, A. A review on microplastic emission from textile materials and its reduction techniques. Polym. Degrad. Stab. 2022, 199, 109901. [Google Scholar] [CrossRef]
- The Yorkshire Post. Ten ‘Stealth Microplastics’ to Avoid If You Want to Save the Oceans. 2018. Available online: https://www.yorkshirepost.co.uk/read-this/ten-stealth-microplastics-to-avoid-if-you-want-to-save-the-oceans-49570 (accessed on 29 September 2024).
- Hassan, F.; Prasetya, K.D.; Hanun, J.N.; Bui, H.M.; Rajendran, S.; Kataria, N.; Khoo, K.S.; Wang, Y.F.; You, S.J.; Jiang, J.J. Microplastic contamination in sewage sludge: Abundance, characteristics, and impacts on the environment and human health. Environ. Technol. Innov. 2023, 31, 103176. [Google Scholar] [CrossRef]
- Staplevan, M.J.; Hai, F.I. Recycling process produces microplastics. Science 2024, 383, 958. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Lu, F.; Zhang, H.; Wang, W.; Shao, L.; Ye, J.; He, P. Is incineration the terminator of plastics and microplastics? J. Hazard. Mater. 2021, 401, 123429. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Kumar, D.; Yoo, C.G.; Gitsov, I.; Majumder, E.L.W. Conversion and removal strategies for microplastics in wastewater treatment plants and landfills. Chem. Eng. J. 2021, 406, 126715. [Google Scholar] [CrossRef]
- Petrovic, M.; Mihajlovic, I.; Tubic, A.; Novakovic, M. Microplastics in municipal solid waste landfills. Curr. Opin. Environ. Sci. Health 2023, 31, 100428. [Google Scholar] [CrossRef]
- Yu, F.; Wu, Z.; Wang, J.; Li, Y.; Chu, R.; Pei, Y.; Ma, J. Effect of landfill age on the physical and chemical characteristics of waste plastics/microplastics in a waste landfill sites. Environ. Pollut. 2022, 306, 119366. [Google Scholar] [CrossRef]
- JPI Oceans Standardised Protocol for Monitoring Microplastics in Seawater. 2019. Available online: https://repository.oceanbestpractices.org/handle/11329/1077 (accessed on 29 September 2024).
- Lee, H.S.; Kim, Y.J. Consideration on quantitative and qualitative analysis for microplastic in various madia. J. Korea Soc. Waste Manag. 2017, 34, 537–545. [Google Scholar] [CrossRef]
- Ministry of the Environment. Guidelines for Harmonizing Ocean Surface Microplastics Monitoring Methods. 2019. Available online: https://repository.oceanbestpractices.org/handle/11329/1361 (accessed on 29 September 2024).
- Moret-Ferguson, S.; Law, K.L.; Proskurowski, G.; Murphy, E.K.; Peacock, E.E.; Reddy, C.M. The size, mass, and composition of plastic debris in the western North Atlantic Ocean. Mar. Pollut. Bull. 2010, 60, 1873–1878. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration. Lab Oratory Methods for the Analysis of Microplastics in the Marine Environment: Recommendations for Quantifying Synthetic Particles in Waters and Sediments. 2015. Available online: https://repository.library.noaa.gov/view/noaa/10296 (accessed on 29 September 2024).
- Bauerlein, P.S.; Hofman-Caris, R.C.H.M.; Pieke, E.N.; Laak, T.L.T. Fate of microplastics in the drinking water production. Water Res. 2022, 221, 118790. [Google Scholar] [CrossRef]
- Dumichen, E.; Eisentraut, P.; Bannick, C.G.; Barthel, A.K.; Senz, R.; Braun, U. Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere 2017, 174, 572–584. [Google Scholar] [CrossRef]
- Chai, J.; Shi, Y.; Wang, Y.; Yang, X.; Pi, K.; Gerson, A.R. Surfactant-assisted air flotation: A novel approach for the removal of microplastics from municipal solid waste incineration bottom ash. Sci. Total Environ. 2023, 884, 163841. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, L.; Mei, Q.; Dong, B.; Dai, X.; Ding, G.; Zeng, E.Y. Microplastics in sewage sludge from the wastewater treatment plants in China. Water Res. 2018, 142, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Magni, S.; Binelli, A.; Pittura, L.; Avio, C.G.; Della Torre, C.; Parenti, C.C.; Gorbi, S.; Regoli, F. The fate of microplastics in an Italian Wastewater Treatment Plant. Sci. Total Environ. 2019, 652, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Mintenig, S.M.; Int-Veen, I.; Loder, M.G.J.; Primpke, S.; Gerdts, G. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res. 2017, 108, 365–372. [Google Scholar] [CrossRef]
- Puthcharoen, A.; Leungprasert, S. Determination of microplastics in soil and leachate from the landfills. Thai Environ. Eng. J. 2019, 33, 39–46. [Google Scholar]
- Rahmani, A.; Boroojerdi, M.N.; Seid-mohammadi, A.; Shabanloo, A.; Zabihollahi, S.; Zafari, D. Abundance and characteristics of microplastics in different zones of waste landfill site: A case study of Hamadan, Iran. Case Stud. Chem. Environ. Eng. 2023, 8, 100494. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, Z.; Wu, D.; Zhan, L.; Shi, H. Occurrence of microplastics in landfill systems and their fate with landfill age. Water Res. 2019, 164, 114968. [Google Scholar] [CrossRef]
- Devereux, R.; Ayati, B.; Westhead, E.K.; Jayaratne, R.; Newport, D. Impact of the Covid-19 pandemic on microplastic abundance along the River Thames. Mar. Pollut. Bull. 2023, 189, 114763. [Google Scholar] [CrossRef]
- Ghosh, S.; Dutta, S.; Mondal, B.K.; Chaudhuri, S. Impact of COVID-19 waste on environmental pollution and its sustainable management. In Microplastic Pollution: Occurrence, Sources and Impact of COVID-19 Generated Waste, 2nd ed.; Das, A.P., Mishra, S., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 243–264. [Google Scholar]
- Lee, M.; Kim, H. COVID-10 pandemic and microplastic pollution. Nanomaterials 2022, 12, 851. [Google Scholar] [CrossRef]
- Ray, S.S.; Lee, H.K.; Huyen, D.T.T.; Chen, S.S.; Kwon, Y.N. Microplastics waste in environment: A perspective on recycling issues form PPE kits and face masks during the COVID-19 pandemic. Environ. Technol. Innov. 2022, 26, 102290. [Google Scholar] [CrossRef]
- Statistics Korea. Korean Standard Industrial Classification. 2024. Available online: http://kssc.kostat.go.kr/ksscNew_web/ekssc/common/selectIntroduce.do?part=2&top_menu=100&bbsId=isic_s&categoryNameCode=800&categoryMenu=001# (accessed on 29 September 2024).
- Ministry of Environment. Wastes Control Act. 2018. Available online: https://law.go.kr/LSW/lsInfoP.do?viewCls=engLsInfoR&urlMode=engLsInfoR&lsiSeq=199145#0000 (accessed on 29 September 2024).
- Hu, T.; He, P.; Yang, Z.; Wang, W.; Zhang, H.; Shao, L.; Lu, F. Emission of airborne microplastics from municipal solid waste transfer stations in downtown. Sci. Total Environ. 2022, 828, 154400. [Google Scholar] [CrossRef] [PubMed]
- EPA. Landfill Bioreactor Performance, Second Interim Report. 2006. Available online: https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=NRMRL&dirEntryID=171903 (accessed on 29 September 2024).
- Giacomucci, L.; Raddadi, N.; Soccio, M.; Lotti, N.; Fava, F. Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus. New Biotechnol. 2019, 52, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Munir, E.; Harefa, R.S.M.; Priyani, N.; Suryanto, D. Plastic degrading fungi Trichoderma viride and Aspergillus nomius isolated from local landfill soil in Medan. IOP Conf. Ser. Earth Environ. Sci. 2018, 126, 012145. [Google Scholar] [CrossRef]
- Skariyachan, S.; Patil, A.A.; Shankar, A.; Manjunath, M.; Bachappanavar, N.; Kiran, S. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and aneurinibacillus sp. Screened from waste management landfills and sewage treatment plants. Polym. Degrad. Stab. 2018, 149, 52–68. [Google Scholar] [CrossRef]
- Yamano, N.; Nakayama, A.; Kawasaki, N.; Yamamoto, N.; Aiba, S. Mechanism and characterization of polyamide 4 degradation by Pseudomonas sp. J. Polym. Environ. 2008, 16, 141–146. [Google Scholar] [CrossRef]
- Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 2016, 351, 1196–1199. [Google Scholar] [CrossRef]
- Singh, S.; Malyan, S.K.; Maithani, C.; Kashyap, S.; Tyagi, V.K.; Singh, R.; Malhotra, S.; Sharma, M.; Kumar, A.; Panday, B.K.; et al. Microplastics in landfill leachate: Occurrence, health concerns, and removal strategies. J. Environ. Manag. 2023, 342, 118220. [Google Scholar] [CrossRef]
- Budhiraja, V.; Music, B.; Krzan, A. Magnetic extraction of weathered tire wear particles and polyethylene microplastics. Polymers 2022, 14, 5189. [Google Scholar] [CrossRef]
- Grbic, J.; Nguyen, B.; Guo, E.; You, J.B.; Sinton, D.; Rochman, C.M. Magnetic extraction of microplastics from environmental samples. Environ. Sci. Technol. Lett. 2019, 6, 68–72. [Google Scholar] [CrossRef]
- Le, L.T.; Bui, X.B.; Tran, C.S.; Chiemchaisri, C.; Pandey, A. Chapter 9—Membrane and Filtration processes for microplastic removal. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2023; pp. 203–220. [Google Scholar]
- Li, Q.; Wu, J.; Zhao, X.; Gu, X.; Ji, R. Separation and identification of microplastics from soil and sewage sludge. Environ. Pollut. 2019, 254, 113076. [Google Scholar] [CrossRef]
- Nabi, I.; Bacha, A.U.R.; Zhang, L. A review on microplastics separation techniques form environmental media. J. Clean. Prod. 2022, 337, 130458. [Google Scholar] [CrossRef]
- Rhein, F.; Nirschl, H.; Kaegi, R. Separation of microplastic particles from sewage sludge extracts using magnetic seeded filtration. Water Res. X 2022, 17, 100155. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Zhang, S.; Zhao, J.; Ma, J.; Wu, H.; Sun, H.; Cheng, S. Experimental study on removal of microplastics form aqueous solution by magnetic force effect on the magnetic sepiolite. Sep. Purif. Technol. 2022, 288, 120564. [Google Scholar] [CrossRef]
- Swart, B.; Pihlajamaki, A.; Chew, Y.M.; Wenk, J. Microbubble-microplastic interactions in batch air flotation. Chem. Eng. J. 2022, 449, 137866. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, H.; Bian, K.; Wang, H.; Wang, C. Is froth flotation a potential scheme for microplastics removal? Analysis on flotation kinetics and surface characteristics. Sci. Total Environ. 2021, 792, 148345. [Google Scholar] [CrossRef]
- Cruz-Salas, A.A.; Velasco-Perez, M.; Mendoza-Munoz, N.; Vazquez-Morillas, A.; Beltran-Villavicencio, M.; Alvarez-Zeferino, C.; Ojeda-Benitez, S. Sorption of total petroleum hydrocarbons in microplastics. Polymers 2023, 15, 2050. [Google Scholar] [CrossRef]
- Gamez, E. Investigation of Microplasitcs and Their Absorption of Polycyclic Aromatic Hydrocarbons and Compounds of Concern in Water Associated with Their Removals by Engineering Systems. 2020. Available online: https://www.csusb.edu/sites/default/files/Eduardo%20Gamez_Final%20Report.pdf (accessed on 29 September 2024).
- Liu, Q.; Wu, H.; Chen, J.; Guo, B.; Zhao, X.; Lin, H.; Li, W.; Zhao, X.; Lv, S.; Huang, C. Adsorption mechanism of trace heavy metals on microplastics and simulating their effect on microalgae in river. Environ. Res. 2022, 214, 113777. [Google Scholar] [CrossRef]
- Liu, S.; Huang, J.H.; Zhang, W.; Shi, L.X.; Yi, K.X.; Yu, H.B.; Zhang, C.Y.; Li, S.Z.; Li, J.N. Microplastics as a vehicle of heavy metals in aquatic environments: A review of adsorption factors, mechanisms, and biological effects. J. Environ. Manag. 2022, 302, 113995. [Google Scholar] [CrossRef]
- Prado, N.O. Sorption of Polycyclic Aromatic Hydrocarbons (PAHs) on Microplastics in the Freshwater, Brackish, and Saline Environments. Master’s Thesis, The University of Tokyo, Tokyo, Japan, 2020. [Google Scholar]
- Korea Environment Corporation. Status of Waste Generation and Disposal in Korea. 2022. Available online: https://www.recycling-info.or.kr/rrs/stat/envStatList.do?menuNo=M13020201 (accessed on 29 September 2024).
- Ponti, M.G.; Allen, D.; White, C.J.; Bertram, D.; Switzer, C. A framework to assess the impact of flooding on the release of microplastics form waste management facilities. J. Hazard. Mater. Adv. 2022, 7, 100105. [Google Scholar] [CrossRef]
Facility Type | Material Carried into Facility | Main Process | Waste Generated After Process | |||
---|---|---|---|---|---|---|
Type | Particle | Sample Code | ||||
Incineration | A facility (1) | Plastic waste and waste plastic products 20 (wt.%), rubber 1.3 (wt.%), fiber 5 (wt.%) | Incinerator with grate combustion furnace | Bottom ash | Various | IAB |
Fly ash | Very fine (<0.1 mm) | IAF | ||||
Fly ash (medicated) | Very fine (<0.1 mm) | IAFm | ||||
B facility (2) | Plastic waste and waste plastic products >30 (wt.%) | Incinerator with fluidized bed furnace | Bottom ash | Various | IBB | |
Fly ash | Very fine (<0.1 mm) | IBF | ||||
Sewage treatment | C facility (3) | Sewage (9) | Dewatering process with polyacrylamide coagulant | Sludge | Usually fine (<5 mm) | SCW |
Drying process with polyacrylamide coagulant | Sludge | Usually fine (<5 mm) | SCD | |||
D facility (4) | Sewage (9) | Dewatering process with polyacrylamide coagulant | Sludge | Usually fine (<5 mm) | SDW | |
Drying process with polyacrylamide coagulant | Sludge | Usually fine (<5 mm) | SDD | |||
Landfill | Mixture of municipal solid waste and construction waste | Landfill sites | Landfilled waste | Various | LW | |
Intermediate treatment | E facility (5) | Waste plastic products | Melting, electric heater, and cutting processes | Process residues | Various | RE |
F facility (6) | Waste plastic products | Melt mixer process | Process residues | Various | RF | |
G facility (7) | Waste plastic products (scrap cars) | Crushing, cutting process | Process residues | Various | RG | |
H facility (8) | Waste tire | Crushing, cutting process | Process residues | Various | RH |
Sample Code | ea/g | ||||||||
---|---|---|---|---|---|---|---|---|---|
PP (1) | PE (2) | PET (3) | PVC (4) | PA (5) | PU (6) | PMMA (7) | Total | ||
Incineration | IAB | 40 | 10 | 30 | - | - | - | - | 80 |
IAF | - | 12 | - | - | - | - | - | 60 | |
IAFm | 40 | 130 | 10 | - | - | - | - | 180 | |
IBB | 80 | 140 | 20 | - | - | 20 | - | 260 | |
IBF | 270 | 720 | 30 | - | 10 | - | 10 | 1040 | |
Sewage treatment | SCW | 232 | 142 | 6 | - | - | - | - | 380 |
SCD | 38 | 6 | 62 | - | - | 3 | 1 | 114 | |
SDW | 160 | 66 | 16 | - | 46 | - | - | 288 | |
SDD | 12 | - | - | - | - | - | - | 12 | |
Landfill | LW | 208 | 138 | 22 | 12 | 8 | 12 | 12 | 412 |
Intermediate treatment | RE | 116 | 21 | 2 | - | 1 | 2 | - | 142 |
RF | 5 | 1 | 850 | - | - | - | - | 856 | |
RG | 497 | 32 | 4 | - | - | - | - | 533 | |
RH | 309 | 1 | 2 | - | - | - | - | 312 |
Location | Particle | Plastic Type | Abundance Range | References | |
---|---|---|---|---|---|
Incineration | Seoul, Korea | <5 mm | PA, PE, PET, PMMA, PP, PU | 60–1040 ea/g | This paper |
Wuhan, China | <5 mm | PA, PE, PMMA, PP, PS, PVC | 11.2 ± 0.5 ea/g | [56] | |
Eight different cities in China | 50 um–1 mm | PE, PET, PP, PS, ABS | 0.6 ± 0.2 ea/g | [45] | |
Sewage treatment | Seoul and Busan, Korea | <5 mm | PA, PE, PET, PMMA, PP, PU | 12–380 ea/g | This paper |
Northern Italy | 10 um–5 mm | AN, PE, PET | 113 ea/g | [58] | |
Oldenburg and Holdorf, Germany | <500 um | PE, PET, PP | 1–24 ea/g | [59] | |
11 provinces of China | 37 um–5 mm | PA, PE, PO, PS | 1.6–56.4 ea/g | [57] | |
Landfill | Incheon, Korea | <5 mm | PA, PE, PET, PMMA, PP, PU, PVC | 420 ea/g | This paper |
Shanghai, China | 0.23–4.97 mm | EPM, PE, PEUR, PP, PS | 20–91 ea/g | [62] | |
11 landfill sites in Thailand | <330 um | PE, PET, PP | 0.1–2.3 ea/g | [60] | |
Intermediate treatment | Hamadan, Iran | 30–150 um more abundant | PE, PET, PP | 0.6–10.3 ea/g | [61] |
Incheon, Gyeonggi, Jeonbuk, and Gwangju, Korea | <5 mm | PE, PET, PP | 42–856 ea/g | This paper | |
Coastal soil | Shandong, China | <5 mm | PE, PEU, PP, PS | <0.1–14.7 ea/g | [28] |
Floodplain soil | Swiss | <5 mm | PE, PP, PS, PVC | 0.59 ea/g | [24] |
Typical soil | Beijing, Shandong, and Xinjiang, China | <5 mm | PA, PE, PP, PS, UF | 18.3–40.2 ea/g | [23] |
River | Beijing, China | <2 mm | PE, PET, PP, PS | 0.1–0.6 ea/g | [27] |
Seoul, Korea | 0.1–5 mm | PE, PFTE, PTEE | 0–234.5 ea/m3, 1–48 ea/fish | [22] | |
Coastal | South India | 0.3–6.7 mm | PET, PTFE, PVE, PVDF | Wet sediment 0.1–1.6 ea/g, Dry sand < 0.1–1.5 ea/g | [25] |
Southeast Iran | 0–4.75 mm | PE, PET, PTE | 0.2 ea/g | [21] | |
Xiangshan Bay, China | <330 um | RY, PE, PET, PP, PS, PVC | Water 0.17 ea/m3, Sediment 0.1 ea/g | [26] | |
Airborne | Beijing, Tianjin, Shanghai, Nanjing, and Hangzhou, China | <0.1–9.6 mm | RY, PAA, PAN, PE, PES, PET | Northern 358 ± 132 ea/m3, Southeast 230 ± 94 ea/m3 | [29] |
Circular System | Range | Related Factors | Type of MPW | |
---|---|---|---|---|
Material Factor (MF) | Causative Area (CA) | |||
Production |
| MF-1, MF-2, MF-3, MF-6, and MF-7 | CA-1 | During production, waste from specific plastic manufacturing processes with high MP generation rates is denoted as MPW-1. |
Consumption and Discharge |
| MF-2, MF-4, and MF-7 | CA-2 | MPW-2 is defined as the state in which specific products are disposed of after use; such products comprise, contain, or exhibit a high potential to generate MPs. |
Disposal |
| MF-3, MF-4, MF-5, MF-6, and MF-7 | CA-3 | Waste, including MPW-1 and MPW-2, managed at dedicated landfill facilities is referred to as MPW-3. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Um, N.; Cho, S.-J.; Yoon, Y.-S. New Management Strategy Framework for Effectively Managing Microplastic in Circular System Form Plastic Product Manufacturing to Waste Treatment Facility. Sustainability 2024, 16, 10054. https://doi.org/10.3390/su162210054
Um N, Cho S-J, Yoon Y-S. New Management Strategy Framework for Effectively Managing Microplastic in Circular System Form Plastic Product Manufacturing to Waste Treatment Facility. Sustainability. 2024; 16(22):10054. https://doi.org/10.3390/su162210054
Chicago/Turabian StyleUm, Namil, Soo-Jin Cho, and Young-Sam Yoon. 2024. "New Management Strategy Framework for Effectively Managing Microplastic in Circular System Form Plastic Product Manufacturing to Waste Treatment Facility" Sustainability 16, no. 22: 10054. https://doi.org/10.3390/su162210054
APA StyleUm, N., Cho, S. -J., & Yoon, Y. -S. (2024). New Management Strategy Framework for Effectively Managing Microplastic in Circular System Form Plastic Product Manufacturing to Waste Treatment Facility. Sustainability, 16(22), 10054. https://doi.org/10.3390/su162210054