Investigation of Dyeing Characteristics of Merino Wool Fiber Dyed with Sustainable Natural Dye Extracted from Aesculus hippocastanum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Method
2.2.1. Dye Extraction
2.2.2. Pre-Mordanting Process
2.2.3. Dyeing Process
2.2.4. Colorimetric Analysis
2.2.5. Fastness Properties Analysis
2.2.6. Feed-Forward Neural Network Modeling
3. Results and Discussion
3.1. Colorimetric Measurement
3.2. Effect of Mordant Concentration on Color Strength
3.3. Effect of Mordanting Duration on Color Strength
3.4. Effect of Dyeing Duration on Color Strength
3.5. Fastness Properties
3.6. Feed-Forward Neural Network Results
3.7. Environmental Benefits and Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Avinc, O.; Celik, A.; Gedik, G.; Yavas, A. Natural dye extraction from waste barks of Turkish red pine (Pinus brutia Ten.) timber and eco-friendly natural dyeing of various textile fibers. Fibers Polym. 2013, 14, 866–873. [Google Scholar] [CrossRef]
- Haji, A. Improved natural dyeing of cotton by plasma treatment and chitosan coating, Optimization by response surface methodology. Cell Chem. Technol. 2017, 51, 975–982. [Google Scholar]
- Sharma, A.; Kadam, S.; Mathur, P.; Islam, S.U.; Sheikh, J. Re-using henna natural dyeing wastewater for coloration and multifunctional finishing of linen fabric. Sustain. Chem. Pharm. 2019, 11, 17–22. [Google Scholar] [CrossRef]
- Rather, L.J.; Zhou, Q.; Ali, A.; Haque, Q.M.R.; Li, Q. Valorization of Natural Dyes Extracted from Mugwort Leaves (Folium artemisiae argyi) for Wool Fabric Dyeing: Optimization of Extraction and Dyeing Processes with Simultaneous Coloration and Biofunctionalization. ACS Sustain. Chem. Eng. 2020, 8, 2822–2834. [Google Scholar] [CrossRef]
- Hernández, V.A.; Galleguillos, F.A.; Sagredo, N.; Machuca, A. Note on the Dyeing of Wool Fabrics Using Natural Dyes Extracted from Rotten Wood-Inhabiting Fungi. Coatings 2018, 8, 77. [Google Scholar] [CrossRef]
- Wang, C.; Li, M.; Zhang, L.; Fu, S.; Wang, C. Extraction of natural dyes from Cinnamomum camphora (L.) presl fruit and their application on wool fabric. Tex. Res. J. 2017, 87, 2550–2560. [Google Scholar] [CrossRef]
- Mesrar, F.E.; Tachallait, H.; Bougrin, K.; Benhida, R. Ultrasound-assisted extraction of vegetable dyes and mordants from wool dyed with Curcuma longa and Reseda luteola. Ind. Crop. Prod. 2024, 208, 117807. [Google Scholar] [CrossRef]
- Rehman, F.; Naveed, T.; Ilyas, R.; Sanbhal, N.; Awais, M.; Wei, W. Ultrasonic Assisted Enhancement in Natural Dye Extraction from Eucalyptus for Process Optimization. J. Nat. Fibers 2024, 21, 2386596. [Google Scholar] [CrossRef]
- Dayioglu, H.; Kut, D.; Merdan, N.; Canbolat, S. The Effect of Dyeing Properties of Fixing Agent and Plasma Treatment on Silk Fabric Dyed with Natural Dye Extract Obtained from Sambucus ebulus L. Plant. Procedia. Soc. Behav. Sci. 2015, 195, 1609–1617. [Google Scholar] [CrossRef]
- Haji, A. Natural dyeing of wool with henna and yarrow enhanced by plasma treatment and optimized with response surface methodology. J. Text. Inst. 2019, 111, 467–475. [Google Scholar] [CrossRef]
- Yusuf, M.; Shabbir, M.; Mohammad, F. Natural colorants: Historical, processing and sustainable prospects. Nat. Prod. Bioprospecting 2017, 7, 123–145. [Google Scholar] [CrossRef] [PubMed]
- Gong, K.; Rather, L.J.; Zhou, Q.; Wang, W.; Li, Q. Natural dyeing of merino wool fibers with Cinnamomum camphora leaves extract with mordants of biological origin: A greener approach of textile coloration. J. Text. Inst. 2020, 111, 1038–1046. [Google Scholar] [CrossRef]
- Ghoranneviss, M.; Shahidi, S.; Anvari, A.; Motaghi, Z.; Wiener, J.; Šlamborová, I. Influence of plasma sputtering treatment on natural dyeing and antibacterial activity of wool fabrics. Prog. Org. Coat. 2011, 70, 388–393. [Google Scholar] [CrossRef]
- Richardson, M.J.; Johnston, J.H. Sorption and binding of nanocrystalline gold by Merino wool fibres—An XPS study. J. Colloid. Interface Sci. 2007, 310, 425–430. [Google Scholar] [CrossRef]
- Oghbaei, M.; Mirzaee, O. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J. Alloy. Compd. 2010, 494, 175–189. [Google Scholar] [CrossRef]
- Rather, L.J.; Dar, Q.F.; Zhou, Q.; Haofan, L.; Li, Q. Binary mix metal mordant dyeing of merino wool fibers using Cin-namomum camphora waste/fallen leaves extract: A brief statistical analysis of color parameters. J. Text. Inst. 2021, 112, 742–751. [Google Scholar] [CrossRef]
- Thakker, A.M.; Sun, D. Sustainable Processing with Herbs on Bamboo, Banana, and Merino Wool Fibers. J. Nat. Fibers 2022, 19, 8075–8091. [Google Scholar] [CrossRef]
- Thakker, A.; Sun, D. The sustainable colouration of merino wool yarns with herbs. J. Text. Eng. Fash. Technol. 2021, 3, 36–43. [Google Scholar]
- Arain, R.A.; Ahmad, F.; Khatri, Z.; Peerzada, M.H. Microwave assisted henna organic dyeing of polyester fabric: A green, economical and energy proficient substitute. Nat. Prod. Res. 2001, 35, 327–330. [Google Scholar] [CrossRef]
- Chen, G.; Li, L.; Tao, C.; Liu, Z.; Chen, N.; Peng, J. Effects of microwave heating on microstructures and structure properties of the manganese ore. J. Alloy. Compd. 2016, 657, 515–518. [Google Scholar] [CrossRef]
- Thalmann, C.; Freise, J.; Heitland, W.; Bacher, S. Effects of defoliation by horse chestnut leafminer (Cameraria ohridella) on reproduction in Aesculus hippocastanum. Trees 2003, 17, 383–388. [Google Scholar] [CrossRef]
- Tutak, M.; Korkmaz, N.E. Environmentally Friendly Natural Dyeing of Organic Cotton. J. Nat. Fibers 2012, 9, 51–59. [Google Scholar] [CrossRef]
- Singh, S.; Singh, D.R. Application of natural mordants on textile. Int. J. Appl. Home Sci. 2018, 5, 252–260. [Google Scholar]
- Čuk, N.; Gorjanc, M. Natural dyeing and uv protection of raw and bleached/mercerised cotton. Tekstilec 2017, 60, 126–136. [Google Scholar] [CrossRef]
- Dhouibi, N.; Ben Ticha, M.; Raddaoui, H.; Boudokhane, C.; Dhaouadi, H. Valorization and Reuse of Centaurea Kroumeriensis Hydrodistillation Effluent: A Sustainable Phytodyeing Process for Wool Fabrics. Fibers Polym. 2021, 22, 2238–2250. [Google Scholar] [CrossRef]
- EN ISO 105–B02; Textiles-Tests for Colour Fastness-Part B02: Colour Fastness to Artificial Light: Xenon Acr Fading Lamp Test. ISO: Geneva, Switzerland, 1994.
- ISO 105-C06; Textiles-Tests for Colour Fastness-Part C06: Colour Fastness to Domestic and Commercial Laundering. ISO: Geneva, Switzerland, 2010.
- ISO 105 X12; Textiles-Tests for Colour Fastness- Part X12: Colour Fastness to Rubbing. ISO: Geneva, Switzerland, 2001.
- Eyupoglu, C.; Eyupoglu, S.; Merdan, N. A multilayer perceptron artificial neural network model for estimation of ultraviolet protection properties of polyester microfiber fabric. J. Text. Inst. 2021, 112, 1403–1416. [Google Scholar] [CrossRef]
- Basyigit, Z.O.; Eyupoglu, C.; Eyupoglu, S.; Merdan, N. Investigation and feed-forward neural network-based estimation of dyeing properties of air plasma treated wool fabric dyed with natural dye obtained from Hibiscus sabdariffa. Color. Technol. 2023, 139, 441–453. [Google Scholar] [CrossRef]
- Eyupoglu, C.; Eyupoglu, S.; Merdan, N.; Omerogullari Basyigit, Z. Natural dyeing of air plasma treated wool fabric with Rubia tinctorum L. and prediction of dyeing properties using an artificial neural network. Color. Tech. 2024, 140, 91–102. [Google Scholar] [CrossRef]
- Eyupoglu, C.; Eyupoglu, S.; Merdan, N. Improvement of Thermal Insulation Properties of Polyester Nonwoven and Estimation of Thermal Conductivity Coefficients Using Artificial Neural Network. J. Test. Eval. 2019, 47, 1075–1086. [Google Scholar] [CrossRef]
- Chamoli, S. ANN and RSM approach for modeling and optimization of designing parameters for a V down perforated baffle roughened rectangular channel. Alex. Eng. J. 2015, 54, 429–446. [Google Scholar] [CrossRef]
- Sun, F.; Yu, Q.; Zhu, J.; Lei, L.; Li, Z.; Zhang, X. Measurement and ANN prediction of pH-dependent solubility of nitro-gen-heterocyclic compounds. Chemosphere 2015, 134, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Hagan, M.T.; Demuth, H.B.; Beale, M.H. Neural Network Design; PWS Pub. Co.: Boston, MA, USA, 1995. [Google Scholar]
- Wackerly, D.; Mendenhall, W.; Scheaffer, R.L. Mathematical Statistics with Applications; Thomson Brooks/Cole: Pacific Grove, CA, USA, 2008. [Google Scholar]
- Adeel, S.; Zia, K.M.; Azeem, M.; Kiran, S.; Zuber, M.; Irfan, M.; Qayyum, M.A. Microwave-supported green dyeing of mor-danted wool fabric with arjun bark extracts. J. Nat. Fiber 2021, 18, 136–150. [Google Scholar] [CrossRef]
- Aparecida de Almeida, P.; Campos Alves, M. New HPLC method for quality control of β-Escin in Aesculus hippocastanum L. Hydroalcoholic Extract. Lat. Am. J. Pharm. 2013, 32, 1082–1087. [Google Scholar]
- Zhu, R.; Huang, Z.; Song, M.; Shi, G.; Cao, Y.; Xiao, M.; Gong, J.; Xie, M.; Zhai, S. Clean Coloration and Antibacterial-Finishing of Angora Wool Fabric Using Natural Dye-Aided Tannic Acid Mordanting by Electrospray. Fibers Polym. 2024, 25, 2707–2717. [Google Scholar] [CrossRef]
- Rather, L.J.; Islam, S.U.; Mohammad, F. Study on the application of Acacia nilotica natural dye to wool using fluorescence and FT-IR spectroscopy. Fibers Polym. 2015, 16, 1497–1505. [Google Scholar] [CrossRef]
- Aminoddin, H. Antibacterial dyeing of wool with natural cationic dye using metal mordants. Mater. Sci. 2012, 18, 267–270. [Google Scholar]
- Zuber, M.; Adeel, S.; Rehman, F.-U.; Anjum, F.; Muneer, M.; Abdullah, M.; Zia, K.M. Influence of Microwave Radiation on Dyeing of Bio-mordanted Silk Fabric using Neem Bark (Azadirachta indica)-Based Tannin Natural Dye. J. Nat. Fibers 2020, 17, 1410–1422. [Google Scholar] [CrossRef]
- Rather, L.J.; Ali, A.; Zhou, Q.; Ganie, S.A.; Gong, K.; Haque, Q.M.R.; Li, Q. Instrumental characterization of merino wool fibers dyed with Cinnamomum camphora waste/fallen leaves extract: An efficient waste management alternative. J. Clean. Prod. 2020, 273, 123021. [Google Scholar] [CrossRef]
- Benli, H.; Aydınlıoğlu, Ö.; Yılmaz, F.; Bahtiyari, M.I. Topping of naturally dyed wool fabrics with different natural dye sources. Color. Technol. 2022, 139, 171–181. [Google Scholar] [CrossRef]
- Iqbal, K.; Afzal, H.; Siddiqui, M.O.R.; Bashir, U.; Jan, K.; Abbas, A.; Abid, H.A. Dyeing of wool fabric with natural dye extracted from Dalbergia Sissoo using natural mordants. Sustain. Chem. Pharm. 2023, 33, 101094. [Google Scholar] [CrossRef]
- Mirnezhad, S.; Sadeghi-Kiakhani, M.; Hashemi, E. Wool dyeing using Ziziphus bark extract as a natural dye: Studies on the dyeing, antibacterial, and antioxidant characteristics. Environ. Sci. Pollut. Res. 2023, 30, 51504–51517. [Google Scholar] [CrossRef] [PubMed]
- Bukhari, M.N.; Islam, S.U.; Shabbir, M.; Rather, L.J.; Shahid, M.; Singh, U.; Khan, M.A.; Mohammad, F. Dyeing studies and fastness properties of brown naphtoquinone colorant extracted from Juglans regia L. on natural protein fiber using different metal salt mordants. Text. Cloth. Sustain. 2017, 3, 3. [Google Scholar] [CrossRef]
- Adeel, S.; Naseer, K.; Javed, S.; Mahmmod, S.; Tang, R.-C.; Amin, N.; Naz, S. Microwave-assisted improvement in dyeing behavior of chemical and bio-mordanted silk fabric using safflower (Carthamus tinctorius L.) extract. J. Nat. Fibers 2020, 17, 55–65. [Google Scholar] [CrossRef]
- Cristea, D.; Vilarem, G. Improving light fastness of natural dyes on cotton yarn. Dye. Pigment. 2006, 70, 238–245. [Google Scholar] [CrossRef]
- Islam, S.; Mohammad, F. Natural colorants in the presence of anchors so-called mordants as promising coloring and anti-microbial agents for textile materials. Acs Sustain. Chem. Eng. 2015, 3, 2361–2375. [Google Scholar] [CrossRef]
- Islam, S.; Rather, L.J.; Shahid, M.; Khan, M.A.; Mohammad, F. Study the effect of ammonia post-treatment on color charac-teristics of annatto-dyed textile substrate using reflectance spectrophotometry. Ind. Crop Prod. 2014, 59, 337–342. [Google Scholar] [CrossRef]
- Ganesan, P.; Karthik, T. Analysis of colour strength, colour fastness and antimicrobial properties of silk fabric dyed with natural dye from red prickly pear fruit. J. Text. Inst. 2017, 108, 1173–1179. [Google Scholar] [CrossRef]
- Bulut, M.O.; Baydar, H.; Akar, E. Ecofriendly natural dyeing of woollen yarn using mordants with enzymatic pretreatments. J. Text. Inst. 2014, 105, 559–568. [Google Scholar] [CrossRef]
- Gautam, S.; Goel, A. Dyeing of merino wool with Butea monosperma flowers: A value added sustainable proposition. J. Community Mobilization Sustain. Dev. 2006, 1, 107–109. [Google Scholar]
- Yusuf, M.; Islam, S.U.; Khan, M.A.; Mohammad, F. Investigations of the colourimetric and fastness properties of wool dyed with colorants extracted from Indian madder using reflectance spectroscopy. Optik 2016, 127, 6087–6093. [Google Scholar] [CrossRef]
- Miah, M.R.; Telegin, F.Y.; Rahman, M.S. Eco-friendly dyeing of wool fabric using natural dye extracted from onion’s outer shell by using water and organic solvents. IRJET 2016, 3, 1–18. [Google Scholar]
- Cuce, M. Investigation of color, fastness, and antimicrobial properties of wool fabrics dyed with Rosa canina leaf extract. J. Nat. Fiber 2022, 19, 823–834. [Google Scholar] [CrossRef]
L | a | b | C | ho | |
---|---|---|---|---|---|
Reference | 72.1 | 1.2892 | 15.8550 | 15.9073 | 85.3516 |
Effect of Mordant Concentration (Samples Dyed for 2 min After Mordanting for 4 min) | |||||
Concentration (%) | |||||
0.5 | 57.3 | 4.1 | 19.7 | 20.1 | 78.2 |
0.75 | 58 | 1.4 | 12.3 | 12.3 | 83 |
1 | 57.3 | 1.8 | 13.9 | 14 | 82.2 |
1.25 | 56.1 | 1 | 9.1 | 9.2 | 83.4 |
1.50 | 58.4 | 1.1 | 10.8 | 10.9 | 83.8 |
1.75 | 60.1 | 1.6 | 11.5 | 11.6 | 82 |
2 | 56.7 | 1.8 | 11.9 | 12.1 | 81 |
Effect of Mordanting Time (Samples Dyed for 2 min After Mordanting with 1.75% Aluminum Potassium Sulfate) | |||||
Time (min) | |||||
1 | 56.6 | 1.3 | 10.4 | 10.4 | 82.3 |
2 | 59.2 | 2 | 11.9 | 12 | 80.1 |
3 | 57.8 | 1.8 | 12 | 12.1 | 81.4 |
4 | 60.1 | 1.6 | 11.5 | 11.6 | 82 |
5 | 59.2 | 1.5 | 11.6 | 11.7 | 82.5 |
Effect of Dyeing Time (Samples Mordanted for 4 min with 1.75% Aluminum Potassium Sulfate) | |||||
Time (min) | |||||
2 | 60.1 | 1.6 | 11.5 | 11.6 | 82 |
4 | 55.9 | 1.7 | 11.1 | 11.2 | 80.8 |
6 | 56.8 | 1.6 | 8.9 | 9.1 | 79.4 |
8 | 55.9 | 1.3 | 9.8 | 9.9 | 82.2 |
10 | 53.3 | 1.3 | 11.1 | 11.1 | 83.1 |
Light Fastness | Wash Fastness | Rub Fastness | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Color Change | CA | CO | PA | PET | PAN | WO | Dry | Wet | ||
Reference | 1–2 | 2 | 2 | 2–3 | 3 | 3 | 3 | 2–3 | 2 | 2–3 |
Effect of Mordant Concentration (Samples Dyed for 2 min After Mordanting for 4 min) | ||||||||||
Concentration (%) | ||||||||||
0.5 | 2–3 | 3 | 3 | 3–4 | 4–5 | 4–5 | 3–4 | 4 | 2–3 | 3–4 |
0.75 | 2–3 | 3 | 3–4 | 3–4 | 4–5 | 4–5 | 4 | 4 | 2–3 | 3–4 |
1 | 2–3 | 3–4 | 3–4 | 4 | 4 | 4–5 | 4–5 | 4–5 | 3 | 3–4 |
1.25 | 2–3 | 3–4 | 3–4 | 3 | 3–4 | 3–4 | 3–4 | 3–4 | 3 | 4 |
1.50 | 2–3 | 3–4 | 3–4 | 4 | 4–5 | 4–5 | 4 | 4 | 3–4 | 4 |
1.75 | 3 | 3–4 | 3–4 | 3–4 | 3–4 | 4–5 | 4–5 | 3–4 | 3–4 | 4 |
2 | 3 | 3 | 4 | 3–4 | 4 | 4–5 | 4–5 | 4–5 | 3–4 | 4 |
Effect of Mordanting Time (Samples Dyed for 2 min After Mordanting with 1.75% Aluminum Potassium Sulfate) | ||||||||||
Time (min) | ||||||||||
1 | 3 | 3 | 3–4 | 3–4 | 3–4 | 4 | 4 | 3–4 | 3–4 | 4 |
2 | 3 | 2–3 | 4 | 3–4 | 4 | 4 | 4 | 4 | 3 | 3 |
3 | 3 | 4 | 4 | 3–4 | 3–4 | 4 | 4 | 3–4 | 3 | 4 |
4 | 3 | 3–4 | 3–4 | 3–4 | 3–4 | 4–5 | 4–5 | 3–4 | 3–4 | 4 |
5 | 3 | 4 | 3–4 | 4–5 | 4 | 4–5 | 4–5 | 4–5 | 3 | 3–4 |
Effect of Dyeing Time (Samples Mordanted for 4 min with 1.75% Aluminum Potassium Sulfate) | ||||||||||
Time (min) | ||||||||||
2 | 3 | 3–4 | 3–4 | 3–4 | 3–4 | 4–5 | 4–5 | 3–4 | 3–4 | 4 |
4 | 3 | 3–4 | 4–5 | 3–4 | 4–5 | 4 | 4–5 | 4 | 3–4 | 4 |
6 | 3 | 3–4 | 4 | 4 | 4 | 4–5 | 4–5 | 4 | 3 | 3–4 |
8 | 3 | 3 | 4–5 | 3–4 | 3–4 | 4–5 | 5 | 4 | 3–4 | 3–4 |
10 | 3 | 2–3 | 4–5 | 4 | 5 | 5 | 5 | 4–5 | 3 | 3–4 |
Training | Validation | Testing | All |
---|---|---|---|
0.93955 | 0.91319 | 0.87557 | 0.90355 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eyupoglu, S.; Eyupoglu, C.; Merdan, N.; Karakuş, O. Investigation of Dyeing Characteristics of Merino Wool Fiber Dyed with Sustainable Natural Dye Extracted from Aesculus hippocastanum. Sustainability 2024, 16, 10129. https://doi.org/10.3390/su162210129
Eyupoglu S, Eyupoglu C, Merdan N, Karakuş O. Investigation of Dyeing Characteristics of Merino Wool Fiber Dyed with Sustainable Natural Dye Extracted from Aesculus hippocastanum. Sustainability. 2024; 16(22):10129. https://doi.org/10.3390/su162210129
Chicago/Turabian StyleEyupoglu, Seyda, Can Eyupoglu, Nigar Merdan, and Oktay Karakuş. 2024. "Investigation of Dyeing Characteristics of Merino Wool Fiber Dyed with Sustainable Natural Dye Extracted from Aesculus hippocastanum" Sustainability 16, no. 22: 10129. https://doi.org/10.3390/su162210129
APA StyleEyupoglu, S., Eyupoglu, C., Merdan, N., & Karakuş, O. (2024). Investigation of Dyeing Characteristics of Merino Wool Fiber Dyed with Sustainable Natural Dye Extracted from Aesculus hippocastanum. Sustainability, 16(22), 10129. https://doi.org/10.3390/su162210129