Can the Carbon Trading Policy Enhance Resource Allocation Efficiency?—An Analysis of the Synergistic Effect of Market Mechanism and Government Intervention
Abstract
:1. Introduction
2. Literature Review
2.1. Research Related to Carbon Trading
2.2. Research Related to Resource Allocation Efficiency
2.3. The Mechanism and Channel of ETS Influencing Resource Allocation Efficiency
3. Research Design
3.1. Variable Description
- (1)
- Explained variable
- (2)
- Explanatory variable
- (3)
- Control variables
- (4)
- Other variables
3.2. Data Source
3.3. Model Construction
3.3.1. Baseline Regression Model
3.3.2. Regional Heterogeneity Model
3.3.3. Synergistic Effect Model
4. Empirical Analysis
4.1. Parallel Trend Test
4.2. Baseline Regression Result
4.3. Robustness Analysis
4.3.1. Placebo Test
4.3.2. PSM-DID
4.3.3. Adjustment Time Bandwidth Test
4.3.4. Eliminate Some Special Samples
4.3.5. Quantile Regression
4.3.6. Adjusting Control Variable
4.3.7. Bacon Decomposition
4.4. Regional Heterogeneity Analysis
4.4.1. Subgroup Heterogeneity Analysis
4.4.2. Carbon Emissions
5. Synergistic Effect
5.1. Market Mechanism
5.2. Government Intervention
6. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hong, Q.Q.; Cui, L.H.; Hong, P.H. The impact of carbon emissions trading on energy efficiency: Evidence from quasi-experiment in China‘s carbon emissions trading pilot. Energy Econ. 2022, 110, 106025. [Google Scholar] [CrossRef]
- Cheng, Y.W.; Mu, D.; Ren, H.Y.; Fan, T.J.; Du, J.B. Using a temporal input-output approach to analyze the ripple effect of China’s energy consumption. Energy 2020, 211, 118641. [Google Scholar] [CrossRef]
- Liu, L.C.; Cao, D.; Wei, Y.M. What drives intersectoral CO2 emissions in China? J. Clean. Prod. 2016, 133, 1053–1061. [Google Scholar] [CrossRef]
- Zheng, G.; Barbieri, E.; Di Tommaso, M.R.; Zhang, L. Development zones and local economic growth: Zooming in on the Chinese case. China Econ. Rev. 2016, 38, 238–249. [Google Scholar] [CrossRef]
- Huang, H.P.; Yi, M.T. Impacts and mechanisms of heterogeneous environmental regulations on carbon emissions: An empirical research based on DID method. Environ. Impact Assess. Rev. 2023, 99, 107039. [Google Scholar] [CrossRef]
- Wu, J.X.; Nie, X.; Wang, H. Curse to blessing: The carbon emissions trading system and resource-based cities’ carbon mitigation. Energy Policy 2023, 183, 113796. [Google Scholar] [CrossRef]
- Jiang, J.J.; Xie, D.J.; Ye, B.; Shen, B.; Chen, Z.M. Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook. Appl. Energy 2016, 178, 902–917. [Google Scholar] [CrossRef]
- Lv, M.C.; Bai, M.Y. Evaluation of China’s carbon emission trading policy from corporate innovation. Financ. Res. Lett. 2021, 39, 101565. [Google Scholar] [CrossRef]
- Cui, J.B.; Wang, C.H.; Zhang, J.J.; Zheng, Y. The effectiveness of China’s regional carbon market pilots in reducing firm emissions. Proc. Natl. Acad. Sci. USA 2021, 118, e2109912118. [Google Scholar] [CrossRef]
- Wei, Y.M.; Du, M.Z.; Huang, Z.X. The effects of energy quota trading on total factor productivity and economic potential in industrial sector: Evidence from China. J. Clean. Prod. 2024, 445, 141227. [Google Scholar] [CrossRef]
- Lin, B.Q.; Huang, C.C. Analysis of emission reduction effects of carbon trading: Market mechanism or government intervention? Sustain. Prod. Consum. 2022, 33, 28–37. [Google Scholar] [CrossRef]
- Jia, Z.J.; Lin, B.Q. Rethinking the choice of carbon tax and carbon trading in China. Technol. Forecast. Soc. Chang. 2020, 159, 120187. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Su, C.W.; Umar, M.; Shao, X.F. Exploring the asymmetric impact of economic policy uncertainty on China’s carbon emissions trading market price: Do different types of uncertainty matter? Technol. Forecast. Soc. Chang. 2022, 178, 121601. [Google Scholar] [CrossRef]
- Tang, H.L.; Liu, J.M.; Wu, J.G. The impact of command-and-control environmental regulation on enterprise total factor productivity: A quasi-natural experiment based on China’s “Two Control Zone” policy. J. Clean. Prod. 2020, 254, 120011. [Google Scholar] [CrossRef]
- Narassimhan, E.; Gallagher, K.S.; Koester, S.; Alejo, J.R. Carbon pricing in practice: A review of existing emissions trading systems. Clim. Policy 2018, 18, 967–991. [Google Scholar] [CrossRef]
- Calel, R.; Dechezleprêtre, A. Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market. Rev. Econ. Stat. 2016, 98, 173–191. [Google Scholar] [CrossRef]
- Pietzcker, R.C.; Osorio, S.; Rodrigues, R. Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector. Appl. Energy 2021, 293, 116914. [Google Scholar] [CrossRef]
- Dechezlepretre, A.; Nachtigall, D.; Venmans, F. The joint impact of the European Union emissions trading system on carbon emissions and economic performance. J. Environ. Econ. Manag. 2023, 118, 102758. [Google Scholar] [CrossRef]
- Aguiar-Conraria, L.; Soares, M.J.; Sousa, R. California’s carbon market and energy prices: A wavelet analysis. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2018, 376, 20170256. [Google Scholar] [CrossRef]
- Xiong, L.; Shen, B.; Qi, S.Z.; Price, L.; Ye, B. The allowance mechanism of China’s carbon trading pilots: A comparative analysis with schemes in EU and California. Appl. Energy 2017, 185, 1849–1859. [Google Scholar] [CrossRef]
- Zhou, F.X.; Wang, X.Y. The carbon emissions trading scheme and green technology innovation in China: A new structural economics perspective. Econ. Anal. Policy 2022, 74, 365–381. [Google Scholar] [CrossRef]
- Teixido, J.; Verde, S.F.; Nicolli, F. The impact of the EU Emissions Trading System on low-carbon technological change: The empirical evidence. Ecol. Econ. 2019, 164, 106347. [Google Scholar] [CrossRef]
- Sun, H.P.; Edziah, B.K.; Kporsu, A.K.; Sarkodie, S.A.; Taghizadeh-Hesary, F. Energy efficiency: The role of technological innovation and knowledge spillover. Technol. Forecast. Soc. Chang. 2021, 167, 120659. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Z.P.; Wu, X.Y.; Niea, X. Can a carbon trading system promote the transformation of a low-carbon economy under the framework of the porter hypothesis?—Empirical analysis based on the PSM-DID method. Energy Policy 2019, 129, 930–938. [Google Scholar] [CrossRef]
- Qiang, O.Y.; Wang, T.T.; Ying, D.; Li, Z.P.; Jahanger, A. The impact of environmental regulations on export trade at provincial level in China: Evidence from panel quantile regression. Environ. Sci. Pollut. Res. 2022, 29, 24098–24111. [Google Scholar] [CrossRef]
- Marin, G.; Marino, M.; Pellegrin, C. The Impact of the European Emission Trading Scheme on Multiple Measures of Economic Performance. Environ. Resour. Econ. 2018, 71, 551–582. [Google Scholar] [CrossRef]
- Loisel, R. Environmental climate instruments in Romania: A comparative approach using dynamic CGE modelling. Energy Policy 2009, 37, 2190–2204. [Google Scholar] [CrossRef]
- Chen, P.S.; He, Y.; Yue, K.; Fang, G.C. Can Carbon Trading Promote Low-Carbon Transformation of High Energy Consumption Enterprises?-The Case of China. Energies 2023, 16, 3438. [Google Scholar] [CrossRef]
- Zhou, Z.; Ma, Z.C.; Lin, X.W. Carbon emissions trading policy and green transformation of China’s manufacturing industry: Mechanism assessment and policy implications. Front. Environ. Sci. 2022, 10, 984612. [Google Scholar] [CrossRef]
- Yu, D.S.; Liu, L.X.; Gao, S.H.; Yuan, S.Y.; Shen, Q.L.; Chen, H.P. Impact of carbon trading on agricultural green total factor productivity in China. J. Clean. Prod. 2022, 367, 132789. [Google Scholar] [CrossRef]
- Li, J.Q.; Huang, D.C.; Wu, X.Q. The Impact of China’s Carbon Emission Trading Policy on Green Total Factor Productivity—Influence Analysis Based on Super-EBM and Multiple Mediators. Pol. J. Environ. Stud. 2022, 31, 5107–5123. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.H.; Mao, S.P.; Lin, Q.N. Has China’s Carbon Emissions Trading Pilot Policy Improved Agricultural Green Total Factor Productivity? Agriculture 2022, 12, 1444. [Google Scholar] [CrossRef]
- Xiao, Y.; Huang, H.; Qian, X.M.; Chen, L. Can carbon emission trading pilot facilitate green development performance? Evidence from a quasi-natural experiment in China. J. Clean. Prod. 2023, 400, 136755. [Google Scholar] [CrossRef]
- Zeng, B.X.; Xie, J.; Zhang, X.B.; Yu, Y.; Zhu, L. The impacts of emission trading scheme on China’s thermal power industry: A pre-evaluation from the micro level. Energy Environ. 2020, 31, 1007–1030. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Li, S.; Luo, T.Y.; Gao, J. The effect of emission trading policy on carbon emission reduction: Evidence from an integrated study of pilot regions in China. J. Clean. Prod. 2020, 265, 121843. [Google Scholar] [CrossRef]
- Xuan, D.; Ma, X.W.; Shang, Y.P. Can China’s policy of carbon emission trading promote carbon emission reduction? J. Clean. Prod. 2020, 270, 122383. [Google Scholar] [CrossRef]
- Chen, X.; Lin, B.Q. Towards carbon neutrality by implementing carbon emissions trading scheme: Policy evaluation in China. Energy Policy 2021, 157, 112510. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.; Li, G.X.; Guo, S.C. Emission reduction effect and carbon market efficiency of carbon emissions trading policy in China. Energy 2020, 196, 117117. [Google Scholar] [CrossRef]
- Wu, M.; Li, K.X.; Xiao, Y.; Yuen, K.F. Carbon Emission Trading Scheme in the shipping sector: Drivers, challenges, and impacts. Mar. Policy 2022, 138, 104989. [Google Scholar] [CrossRef]
- Liu, P.K.; Wu, J.H. Study on the diffusion of CCUS technology under carbon trading mechanism: Based on the perspective of tripartite evolutionary game among thermal power enterprises, government and public. J. Clean. Prod. 2024, 438, 140730. [Google Scholar] [CrossRef]
- Hu, H.; Qi, S.Z.; Chen, Y.Z. Using green technology for a better tomorrow: How enterprises and government utilize the carbon trading system and incentive policies. China Econ. Rev. 2023, 78, 101933. [Google Scholar] [CrossRef]
- Liu, B.L.; Ding, C.J.; Hu, J.; Su, Y.Q.; Qin, C. Carbon trading and regional carbon productivity. J. Clean. Prod. 2023, 420, 138395. [Google Scholar] [CrossRef]
- Cao, K.Y.; Xu, X.P.; Wu, Q.; Zhang, Q.P. Optimal production and carbon emission reduction level under cap-and-trade and low carbon subsidy policies. J. Clean. Prod. 2017, 167, 505–513. [Google Scholar] [CrossRef]
- Liu, L.W.; Chen, C.X.; Zhao, Y.F.; Zhao, E.D. China’s carbon-emissions trading: Overview, challenges and future. Renew. Sustain. Energy Rev. 2015, 49, 254–266. [Google Scholar] [CrossRef]
- Hsieh, C.T.; Klenow, P.J. Misallocation and Manufacturing TFP in China and India. Q. J. Econ. 2009, 124, 1403–1448. [Google Scholar] [CrossRef]
- Zuo, P.; Jiang, Q.; Chen, J. Internet Development, Urbanization and the Upgrading of China’s Industrial Structure. Quant. Tech. Econ. 2020, 37, 71–91. [Google Scholar]
- Qian, W.; Liu, H.; Pan, F.H. Digital Economy, Industry Heterogeneity, and Service Industry Resource Allocation. Sustainability 2022, 14, 8020. [Google Scholar] [CrossRef]
- Zhu, W.J.; Huang, J.; Cai, N. Comparing the Digital Economy Urban Network: Study Based on the Human Resource Needs in the Yangtze River Delta, China. J. Urban Plan. Dev. 2022, 148, 05022033. [Google Scholar] [CrossRef]
- Ning, J.; Yin, Q.R.; Yan, A. How does the digital economy promote green technology innovation by manufacturing enterprises? Evidence from China. Front. Environ. Sci. 2022, 10, 967588. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, G.; Guo, X.; Zhang, Y.F. Digital twin-driven service model and optimal allocation of manufacturing resources in shared manufacturing. J. Manuf. Syst. 2021, 59, 165–179. [Google Scholar] [CrossRef]
- Zhang, W.; Li, G.X.; Guo, F.Y. Does carbon emissions trading promote green technology innovation in China? Appl. Energy 2022, 315, 119012. [Google Scholar] [CrossRef]
- Shen, B.; Yang, X.D.; Xu, Y.; Ge, W.F.; Liu, G.L.; Su, X.F.; Zhao, S.K.; Dagestani, A.; Ran, Q.Y. Can carbon emission trading pilot policy drive industrial structure low-carbon restructuring: New evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 41553–41569. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Liu, J.; Zhao, Z.H.; Ren, J.; Chen, X.R. Research on carbon emission reduction effect of China’s regional digital trade under the double carbon target—Combination of the regulatory role of industrial agglomeration and carbon emissions trading mechanism. J. Clean. Prod. 2023, 405, 137049. [Google Scholar] [CrossRef]
- Wang, B.; Yang, M.J.; Zhang, X. The effect of the carbon emission trading scheme on a firm’s total factor productivity: An analysis of corporate green innovation and resource allocation efficiency. Front. Environ. Sci. 2022, 10, 1036482. [Google Scholar] [CrossRef]
- Ma, J.J.; Xiang, Y.J.; Bai, X.W. Carbon emission trading scheme and corporate labor investment efficiency: Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 90830–90843. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Wang, C. Distributional employment impacts of the nationwide emission trading scheme in China. J. Environ. Manag. 2023, 334, 117526. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, W. Distortions, Misallocation and Losses: Theory and Application. China Econ. Q. 2011, 10, 1401–1422. [Google Scholar]
- Sarkodie, S.A.; Strezov, V. Effect of foreign direct investments, economic development and energy consumption on greenhouse gas emissions in developing countries. Sci. Total Environ. 2019, 646, 862–871. [Google Scholar] [CrossRef]
- Aust, V.; Morais, A.I.; Pinto, I. How does foreign direct investment contribute to Sustainable Development Goals? Evidence from African countries. J. Clean. Prod. 2020, 245, 118823. [Google Scholar] [CrossRef]
- Yang, Y.P.; Wu, D.; Xu, M.; Yang, M.T.; Zou, W.J. Capital misallocation, technological innovation, and green development efficiency: Empirical analysis based on China provincial panel data. Environ. Sci. Pollut. Res. 2022, 29, 65535–65548. [Google Scholar] [CrossRef]
- Long, H.L.; Tu, S.S.; Ge, D.Z.; Li, T.T.; Liu, Y.S. The allocation and management of critical resources in rural China under restructuring: Problems and prospects. J. Rural Stud. 2016, 47, 392–412. [Google Scholar] [CrossRef]
- Wu, Y.; Qi, J.; Xian, Q.; Chen, J.D. The Carbon Emission Reduction Effect of China’s Carbon Market—From the Perspective of the Coordination between Market Mechanism and Administrative Intervention. China Ind. Econ. 2021, 8, 114–132. [Google Scholar]
- Jin, W.; Zhang, H.Q.; Liu, S.S.; Zhang, H.B. Technological innovation, environmental regulation, and green total factor efficiency of industrial water resources. J. Clean. Prod. 2019, 211, 61–69. [Google Scholar] [CrossRef]
- Bertrand, M.; Duflo, E.; Mullainathan, S. How much should we trust differences-in-differences estimates? Q. J. Econ. 2004, 119, 249–275. [Google Scholar] [CrossRef]
- Chetty, R.; Looney, A.; Kroft, K. Salience and Taxation: Theory and Evidence. Am. Econ. Rev. 2009, 99, 1145–1177. [Google Scholar] [CrossRef]
- Bauer, N.; Bosetti, V.; Hamdi-Cherif, M.; Kitous, A.; McCollum, D.; Mejean, A.; Rao, C.S.; Turton, H.; Paroussos, L.; Ashina, S.; et al. CO2 emission mitigation and fossil fuel markets: Dynamic and international aspects of climate policies. Technol. Forecast. Soc. Chang. 2015, 90, 243–256. [Google Scholar] [CrossRef]
- Chen, Y.L.; Wang, Z.; Zhong, Z.Q. CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China. Renew. Energy 2019, 131, 208–216. [Google Scholar] [CrossRef]
- Chepeliev, M.; Osorio-Rodarte, I.; van der Mensbrugghe, D. Distributional impacts of carbon pricing policies under the Paris Agreement: Inter and intra-regional perspectives. Energy Econ. 2021, 102, 105530. [Google Scholar] [CrossRef]
- Dou, X.S. Low Carbon-Economy Development: China’s Pattern and Policy Selection. Energy Policy 2013, 63, 1013–1020. [Google Scholar] [CrossRef]
- Tan, X.J.; Choi, Y.; Wang, B.B.; Huang, X.Q. Does China’s carbon regulatory policy improve total factor carbon efficiency? A fixed-effect panel stochastic frontier analysis. Technol. Forecast. Soc. Chang. 2020, 160, 120222. [Google Scholar] [CrossRef]
- Wang, M.X.; Zhao, R.D.; Li, B. Impact of financing models and carbon allowance allocation rules in a supply chain. J. Clean. Prod. 2021, 302, 126794. [Google Scholar] [CrossRef]
- Chen, S.; Shi, A.N.; Wang, X. Carbon emission curbing effects and influencing mechanisms of China’s Emission Trading Scheme: The mediating roles of technique effect, composition effect and allocation effect. J. Clean. Prod. 2020, 264, 121700. [Google Scholar] [CrossRef]
Province or City | GDP (CNY Trillion) | Trading Amount (CNY Million) | Trading Volume (10 k tons) | Pattern |
---|---|---|---|---|
Guangdong | 86,170.88875 | 159,065.6 | 7755.1 | carbon-dependence prov. |
Hubei | 34,812.87822 | 168,834.7 | 7827.6 | carbon-dependence prov. |
Fujian | 31,874.95875 | 17,138.0 | 847.0 | environmental province |
Beijing | 27,453.01375 | 90,577.7 | 1461.5 | service city |
Shanghai | 29,857.08816 | 51,842.5 | 1739.7 | service city |
Tianjin | 16,267.42000 | 20,103.6 | 920.1 | service city |
Chongqing | 18,612.52500 | 5309.5 | 869.0 | environmental city |
Variable | Full Name | Definition |
---|---|---|
CAE | Capital allocation efficiency | The absolute value of the capital mismatch index |
LAE | Labor allocation efficiency | The absolute value of the labor mismatch index |
DIDs | Carbon trading policy | The interaction between the region variable and the time variable |
fdi | Foreign direct investment | Foreign direct investment as a share of GDP |
ind | Industrial structure | Advanced level of industrial structure |
pgdp | Per capita GDP | Logarithm of GDP per capita |
hc | Human capital | Per capita years of schooling |
urb | Urbanization level | Ratio of non-agricultural population to total population |
pd | Population density | Logarithm of total population per square kilometer |
t1 | “12th Five-Year Plan” energy conservation targets | The interaction between the target and the corresponding year |
t2 | “13th Five-Year Plan” energy conservation targets | The interaction between the target and the corresponding year |
il | Innovation level | Logarithm of the number of domestic invention patent applications accepted |
iad | Industrial agglomeration degree | The ratio of the number of employed people to the area of the administrative division |
ce | Carbon emission level | The carbon emission amount |
price | Carbon price | The annual average of daily closing prices |
amount | Market transaction size | The annual average of total transaction volume |
staog | Proportion of state-owned enterprises | Income from main business of state-owned enterprises |
penalty | Intensity of punishment | The intensity of administrative punishment for non-performance |
Variable | Observations | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
CAE | 300 | 0.340 | 0.392 | 0.009 | 2.858 |
LAE | 300 | 0.003 | 0.342 | 0.082 | 1.092 |
DIDs | 300 | 0.170 | 0.376 | 0.000 | 1.000 |
fdi | 300 | 0.019 | 0.018 | 0.000 | 0.121 |
ind | 300 | 2.374 | 0.129 | 2.166 | 2.836 |
pgdp | 300 | 2.224 | 0.431 | 1.140 | 3.356 |
hc | 300 | 9.167 | 0.989 | 4.222 | 12.782 |
urb | 300 | 0.590 | 0.122 | 0.350 | 0.896 |
pd | 300 | 474.416 | 709.120 | 7.864 | 3949.562 |
t1 | 300 | 62.950 | 66.194 | 0.000 | 187.000 |
t2 | 300 | 97.973 | 101.227 | 0.000 | 272.000 |
il | 300 | 9.570 | 1.404 | 5.318 | 12.285 |
iad | 300 | 0.026 | 0.038 | 0.000 | 0.217 |
price | 50 | 29.449 | 17.748 | 4.499 | 87.062 |
amount | 50 | 0.465 | 0.524 | −0.004 | 2.718 |
staog | 300 | 0.346 | 0.201 | 0.000 | 1.000 |
penalty | 300 | 0.670 | 1.664 | 0.000 | 6.000 |
Variables | CAE | LAE |
---|---|---|
pre3 | 0.0718 (0.0452) | −0.0130 (0.0230) |
pre2 | 0.0096 (0.0367) | 0.0007 (0.0195) |
current | −0.1067 (0.0877) | 0.0411 ** (0.0198) |
post1 | −0.1150 (0.0811) | 0.0328 * (0.0171) |
post2 | −0.1311 * (0.0693) | 0.0362 ** (0.0164) |
post3 | −0.1194 * (0.0678) | 0.0423 *** (0.0150) |
post4 | −0.1262 ** (0.0538) | 0.0256 ** (0.0120) |
post5 | −0.086 *** (0.0300) | 0.0172 ** (0.0170) |
Constant | 1.4064 (1.2584) | −0.3168 (0.8311) |
Observations | 300 | 300 |
R-squared | 0.6588 | 0.6935 |
Variables | (1) CAE | (2) CAE | (3) LAE | (4) LAE |
---|---|---|---|---|
DIDs | 0.0495 (0.1119) | −0.1883 *** (0.0586) | −0.0175 (0.0528) | 0.0768 *** (0.0139) |
fdi | 0.7721 (0.7874) | 0.9560 (0.5836) | ||
ind | 0.2625 (0.4807) | −0.0363 (0.2464) | ||
pgdp | 0.4145 ** (0.1669) | 0.3232 *** (0.0898) | ||
hc | −0.0031 (0.0058) | 0.0001 (0.0027) | ||
urb | −5.1749 ** (2.1896) | 1.0232 * (0.5521) | ||
pd | 0.0016 (0.0015) | −0.0015 *** (0.0003) | ||
t1 | 0.0018 * (0.0010) | −0.0021 (0.0006) | ||
t2 | 0.0008 (0.0005) | −0.0021 (0.0005) | ||
il | −0.0624 * (0.0325) | 0.0173 (0.0135) | ||
iad | 14.3884 *** (3.8768) | −1.4623 (1.5324) | ||
Constant | 0.2542 *** (0.0385) | 0.9561 (1.5177) | 0.0173 (0.0164) | −0.5250 (0.7898) |
Observations | 300 | 300 | 300 | 300 |
R-squared | 0.2231 | 0.6978 | 0.2320 | 0.6657 |
Variables | The Nearest Neighbor Matching | The Kernel Matching | ||
---|---|---|---|---|
CAE | LAE | CAE | LAE | |
DIDs | 0.233 ** (2.55) | −0.128 *** (−3.18) | 0.198 * (2.04) | −0.141 *** (−6.38) |
Controls | Yes | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
Constant | −2.243 (−0.57) | 2.526 *** (4.44) | −3.128 (−0.72) | 3.214 *** (4.84) |
Observations | 67 | 41 | 84 | 56 |
R-squared | 0.727 | 0.997 | 0.670 | 0.993 |
Variables | (1) CAE | (2) CAE | (3) LAE | (4) LAE |
---|---|---|---|---|
DIDs | −0.1492 ** (0.0584) | −0.1850 *** (0.0374) | 0.0880 *** (0.0115) | 0.0536 *** (0.0125) |
Controls | Yes | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
Constant | 0.3519 *** (0.0222) | 0.6696 (1.6349) | −0.0050 (0.0056) | −0.4013 (0.6414) |
Observations | 180 | 180 | 180 | 180 |
R-squared | 0.1651 | 0.4826 | 0.2262 | 0.6002 |
Variables | (1) CAE | (2) CAE | (3) CAE | (4) LAE | (5) LAE | (6) LAE |
---|---|---|---|---|---|---|
DIDs | −0.1005 ** (0.0373) | −0.01909 ** (0.0706) | −0.1655 ** (0.0673) | 0.0287 * (0.0149) | 0.0320 ** (0.0151) | 0.0271 * (0.0161) |
fdi | −0.5203 (0.7399) | 0.7926 (0.8449) | 0.7767 (0.8275) | 1.6752 *** (0.4596) | 1.0990 * (0.6201) | 1.0754 * (0.6291) |
ind | 0.2722 (0.3728) | 0.2450 (0.4902) | 0.2330 (0.4633) | −0.1615 (0.2383) | −0.0550 (0.2526) | −0.0261 (0.2468) |
pgdp | 0.2388 ** (0.1111) | 0.4054 ** (0.1705) | 0.4550 *** (0.1561) | 0.3244 *** (0.0798) | 0.2959 *** (0.0925) | 0.2848 *** (0.0972) |
hc | 0.0017 (0.0026) | 0.0038 (0.0054) | 0.0027 (0.0052) | 0.0020 (0.0034) | 0.0001 (0.0027) | 0.0008 (0.0028) |
urb | −0.2945 (0.9586) | −5.0861 ** (2.2442) | −5.0241 ** (2.1719) | −0.1007 (0.5658) | 1.0577 * (0.5997) | 1.0640 * (0.5668) |
pd | 0.0007 (0.0008) | 0.0016 (0.0015) | 0.0011 (0.0016) | −0.0013 *** (0.0004) | −0.0012 *** (0.0004) | −0.0010 ** (0.0004) |
t1 | 0.0012 (0.0007) | 0.0016 (0.0009) | 0.0017 * (0.0009) | −0.0005 (0.0008) | −0.0007 (0.0007) | −0.0007 (0.0008) |
t2 | 0.0004 (0.0005) | 0.0008 (0.0005) | 0.0007 (0.0005) | 0.0002 (0.0006) | −0.0001 (0.0006) | −0.0001 (0.0006) |
il | −0.0285 (0.0190) | −0.0636 ** (0.0291) | −0.0526 * (0.0281) | −0.0113 (0.0124) | −0.0075 (0.0134) | −0.0117 (0.0125) |
iad | 0.6401 (2.0891) | 14.1617 *** (3.8174) | 15.2461 *** (4.1291) | −6.7041 (3.9376) | −1.7452 (1.6297) | −2.0512 (1.6091) |
Constant | −0.7824 (1.1924) | 0.8932 (1.6152) | 0.9634 (1.5056) | 0.4423 (0.7928) | −0.2659 (0.8461) | −0.3707 (0.8173) |
Observations | 280 | 290 | 290 | 280 | 290 | 290 |
R-squared | 0.3665 | 0.7004 | 0.7084 | 0.651 | 0.6844 | 0.6873 |
Variables | (1) CAE | (2) CAE | (3) CAE | (4) LAE | (5) LAE | (6) LAE |
---|---|---|---|---|---|---|
Quantile | 0.30 | 0.60 | 0.90 | 0.30 | 0.60 | 0.90 |
DIDs | −0.0878 *** (0.028) | 0.2427 *** (0.0577) | 1.9248 *** (0.1605) | 0.1042 ** (0.0414) | 0.1804 *** (0.0596) | 0.4190 *** (0.0951) |
Control | YES | YES | YES | YES | YES | YES |
City FE | YES | YES | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES | YES | YES |
Constant | 0.1466 *** (0.0330) | 0.1868 *** (0.0679) | 0.2569 (0.1889) | −0.0418 (0.0488) | 0.2302 *** (0.0702) | 0.7008 *** (0.1120) |
Observations | 300 | 300 | 300 | 300 | 300 | 300 |
R-squared | 0.0461 | 0.0779 | 0.3289 | 0.3490 | 0.3497 | 0.3417 |
Variables | (1) CAE | (2) CAE | (3) LAE | (4) LAE |
---|---|---|---|---|
DIDs | 0.0495 (0.1119) | −0.1931 *** (0.0602) | −0.0156 (0.0419) | 0.0264 ** (0.0120) |
pgdp | 0.4076 ** (0.1668) | 0.3203 *** (0.0935) | ||
edu | −0.0028 (0.0057) | 0.0011 (0.0027) | ||
urb | −4.9928 ** (2.1485) | 1.2545 ** (0.4746) | ||
pd | 0.0017 (0.0015) | −0.0009 ** (0.0004) | ||
t1 | 0.0019 * (0.0011) | −0.0005 (0.0008) | ||
t2 | 0.0007 (0.0005) | 0.0000 (0.0006) | ||
il | −0.0595 * (0.0318) | 0.0144 (0.0160) | ||
iad | 14.3713 *** (4.038) | −1.8251 (1.7822) | ||
Constant | 0.2542 *** (0.0385) | 1.3805 (1.0012) | 0.0161 (0.0158) | −0.8816 ** (0.3501) |
Observations | 300 | 300 | 300 | 300 |
R-squared | 0.2231 | 0.6930 | 0.2434 | 0.6639 |
Variables | CAE | LAE | ||
---|---|---|---|---|
Weight | Estimate | Weight | Estimate | |
T vs. Never treated | 0.941 | 0.122 | 0.941 | −0.057 |
Earlier T vs. Later C | 0.016 | 0.204 | 0.016 | −0.097 |
Later T vs. Earlier C | 0.042 | −0.306 | 0.042 | 0.142 |
DIDs estimate | 0.105 | −0.050 |
Variables | (1) CAE | (2) CAE | (3) CAE | (4) LAE | (5) LAE | (6) LAE |
---|---|---|---|---|---|---|
DIDs | 0.1576 (0.1997) | −0.1287 *** (0.0240) | −0.0867 *** (0.0215) | −0.0499 (0.0741) | 0.0067 (0.0285) | 0.0591 ** (0.0216) |
Constant | 0.2822 ** (0.0980) | 0.2365 *** (0.0134) | 0.3368 *** (0.0078) | 0.3458 *** (0.0294) | −0.1067 *** (0.0145) | −0.2366 *** (0.0087) |
Control | Yes | Yes | Yes | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 110 | 80 | 110 | 110 | 80 | 110 |
R-squared | 0.2813 | 0.2349 | 0.2416 | 0.4941 | 0.4424 | 0.1036 |
Variables | (1) CAE | (2) CAE | (3) CAE | (4) LAE | (5) LAE | (6) LAE |
---|---|---|---|---|---|---|
DIDs | −0.0436 (0.1268) | −0.1273 *** (0.0114) | 0.0788 *** (0.0104) | 0.0256 (0.0369) | 0.0035 (0.0057) | −0.1089 ** (0.0441) |
Constant | 0.1873 (0.1167) | 0.2450 *** (0.0124) | 0.1885 *** (0.0124) | −0.0262 (0.0298) | 0.0429 * (0.0202) | 0.2184 *** (0.0449) |
Control | Yes | Yes | Yes | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 160 | 70 | 70 | 160 | 70 | 70 |
R-squared | 0.3610 | 0.8744 | 0.9304 | 0.5492 | 0.5977 | 0.7694 |
Variables | (1) CAE | (2) CAE | (3) LAE | (4) LAE |
---|---|---|---|---|
DIDs | −0.2646 *** (0.0522) | −0.1994 *** (0.0622) | 0.0648 *** (0.0193) | 0.0450 *** (0.0114) |
price | 0.0034 ** (0.0013) | −0.0013 ** (0.0006) | ||
amount | 0.0720 (0.0534) | −0.0595 ** (0.0284) | ||
Constant | 0.5631 (1.5232) | 0.8578 (1.5239) | −0.3508 (0.7459) | −0.4279 (0.7848) |
Control | Yes | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
Observations | 300 | 300 | 300 | 300 |
R-squared | 0.7137 | 0.6994 | 0.6970 | 0.6911 |
Variables | (1) CAE | (2) CAE | (3) LAE | (4) LAE |
---|---|---|---|---|
DIDs | −0.1892 ** (0.0740) | −0.2972 *** (0.0542) | 0.0866 *** (0.0161) | 0.0568 ** (0.0276) |
staog | 0.0026 (0.1500) | −0.1505 *** (0.0479) | ||
penalty | 0.0321 *** (0.0115) | −0.0062 (0.0070) | ||
Control | Yes | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
Constant | 0.9555 (1.5345) | 1.0135 (1.5069) | −0.4762 (0.7768) | −0.5201 (0.7897) |
Observations | 300 | 300 | 300 | 300 |
R-squared | 0.6978 | 0.7041 | 0.6955 | 0.6869 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Dai, D.; Shao, W.; Ye, L. Can the Carbon Trading Policy Enhance Resource Allocation Efficiency?—An Analysis of the Synergistic Effect of Market Mechanism and Government Intervention. Sustainability 2024, 16, 10128. https://doi.org/10.3390/su162210128
Zhao Y, Dai D, Shao W, Ye L. Can the Carbon Trading Policy Enhance Resource Allocation Efficiency?—An Analysis of the Synergistic Effect of Market Mechanism and Government Intervention. Sustainability. 2024; 16(22):10128. https://doi.org/10.3390/su162210128
Chicago/Turabian StyleZhao, Yunqing, Debao Dai, Wei Shao, and Liang Ye. 2024. "Can the Carbon Trading Policy Enhance Resource Allocation Efficiency?—An Analysis of the Synergistic Effect of Market Mechanism and Government Intervention" Sustainability 16, no. 22: 10128. https://doi.org/10.3390/su162210128
APA StyleZhao, Y., Dai, D., Shao, W., & Ye, L. (2024). Can the Carbon Trading Policy Enhance Resource Allocation Efficiency?—An Analysis of the Synergistic Effect of Market Mechanism and Government Intervention. Sustainability, 16(22), 10128. https://doi.org/10.3390/su162210128