Assessing Drought Patterns in Al-Baha: Implications for Water Resources and Climate Adaptation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Collection of Historical Climatic Data
2.3. Climatic Data Analysis
2.4. Drought Indices
2.5. Selecting the Best Drought Indices for Drought Assessment in Al-Baha
2.5.1. The Standardized Precipitation Index
2.5.2. The Agricultural Standardized Precipitation Index
2.5.3. The Reconnaissance Drought Index
2.5.4. The Effective Reconnaissance Drought Index
2.5.5. The Reservoir Storage Index
2.6. Climate Change and Future Drought Scenarios in Al-Baha, Saudi Arabia
2.7. Quality Control, Validation, and Statistics Methods
3. Results and Discussion
3.1. Annual Rainfall and Temperature Distribution and Trends (1991–2022)
3.2. Types and Durations of Drought in Al-Baha
3.3. Drought Vulnerability and Severity Analysis in Al-Baha, KSA from 1991 to 2022
3.4. Drought Management in Al-Baha
3.5. Severity of Hydrological Drought in the Al-Baha Region
3.6. Drought and Its Correlation with Climate Change in the Al-Baha Region
3.7. Predicting Temperature and Precipitation Characteristics for the Period (2022–2100)
3.7.1. Expected Future Temperature Scenarios in 2050 and 2100
3.7.2. Future Precipitation Scenarios in 2050 and 2100
3.7.3. Potential Scenarios for Drought Occurrences in the Al-Baha Region
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Global Warming of 1.5 °C; An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate; World Meteorological Organization: Geneva, Switzerland, 2018; p. 32. [Google Scholar]
- UNESCO. HerEducationOurFuture: Fact Sheet on Girls’ Education. Paris, Global Education Monitoring Report. 2020. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000372963// (accessed on 20 October 2024).
- DeNicola, E.; Omar, S.A.; Azhar, S.; Azhar, S.; Haider, K.; David, O.C. Climate Change and Water Scarcity: The Case of Saudi Arabia. Ann. Glob. Health 2015, 81, 342–353. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014.
- UNESCO. United Nations World Water Development Report 2020: Water and Climate Change; UNESCO: Paris, France, 2020. [Google Scholar]
- András, H.; Reinhard, N.; Péter, K.; Zoltán, G. Predicting impacts of climate change on evapotranspiration and soil moisture for a site with subhumid climate. J. Hydrol. Hydromech. 2019, 67, 384–392. [Google Scholar] [CrossRef]
- Wolf, J.; Johnston, R.B.; Ambelu, A.; Arnold, B.F.; Bain, R.; Brauer, M.; Brown, J.; Caruso, B.A.; Clasen, T.; Colford, J.M., Jr.; et al. Burden of disease attributable to unsafe drinking water, sanitation, and hygiene in domestic settings: A global analysis for selected adverse health outcomes. Lancet 2023, 401, 2060–2071. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Athar, H. Teleconnection and Variability in Observed Rainfall over Saudi Arabia during 1978–2010. Atmos. Sci. Lett. 2015, 16, 373–379. [Google Scholar] [CrossRef]
- Huntley, B.J. Solar Energy, Temperature and Rainfall. In Ecology of Angola; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Hasanean, H.; Almazroui, M. Rainfall: Features and Variations over Saudi Arabia: A Review. Climate 2015, 3, 578–626. [Google Scholar] [CrossRef]
- Hag-Elsafi, S.; El-Tayib, M. Spatial and Statistical Analysis of Rainfall in the Kingdom of Saudi Arabia from 1979 to 2008. Weather 2016, 71, 262–266. [Google Scholar] [CrossRef]
- Saeed, S.; Almazroui, M. Impacts of Mid-Latitude Circulation on Winter Precipitation over the Arabian Peninsula. Clim. Dyn. 2019, 53, 5253–5264. [Google Scholar] [CrossRef]
- Alotaibi, B.A.; Baig, M.B.; Najim, M.M.; Shah, A.A.; Alamri, Y.A. Water Scarcity Management to Ensure Food Scarcity through Sustainable Water Resources Management in Saudi Arabia. Sustainability 2023, 15, 10648. [Google Scholar] [CrossRef]
- Kevin, O.O.; Modock, O.O. Contributing factors to the looming food crisis in sub-Saharan Africa: Opportunities for policy insight. Cogent Soc. Sci. 2023, 9, 2173716. [Google Scholar]
- FAO. The State of Food and Agriculture 2020. Overcoming Water Challenges in Agriculture; FAO: Rome, Italy, 2020.
- Leng, G.; Tang, Q.; Rayburg, S. Climate change impacts on meteorological, agricultural and hydrological droughts in China. Glob. Planet. Change 2015, 126, 23–34. [Google Scholar] [CrossRef]
- Oscar, R. Agricultural extreme drought assessment at global level using the FAO-Agricultural Stress Index System (ASIS). Weather. Clim. Extremes. 2020, 27, 100184. [Google Scholar] [CrossRef]
- Wilhite, D.A. Drought. In Encyclopedia of World Climatology; Encyclopedia of Earth Sciences Series; Oliver, J.E., Ed.; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar] [CrossRef]
- Alghamdi, A.G.; Anwar, A.; Mosaed, A.M.; Hesham, M.I. Impact of climate change on hydrochemical properties and quality of groundwater for domestic and irrigation purposes in arid environment: A case study of Al-Baha region, Saudi Arabia. Environ. Earth Sci. 2023, 82, 39. [Google Scholar] [CrossRef]
- Mohammed, A.; Teutsch, G.; Schüth, C.; Rausch, R. Challenges for an Integrated Groundwater Management in the Kingdom of Saudi Arabia. Int. J. Water Resour. Arid. Environ. 2011, 1, 65–70. [Google Scholar]
- Al-Barakah, F.N.; Anwar, A.A.; Emad, H.S.; Abdulwahid, M.; Abdulaziz, G.A.; Mohammad, S. Comparison and Hydrochemical Characterization of Groundwater Resources in the Arabian Peninsula: A Case Study of Al-Baha and Al-Qassim in Saudi Arabia. Water Resour. 2020, 47, 877–891. [Google Scholar] [CrossRef]
- Alghamdi, A.G.; Anwar, A.A.; Hesham, M.I. Effect of Climate Change on the Quality of Soil, Groundwater, and Pomegranate Fruit Production in Al-Baha Region, Saudi Arabia: A Modeling Study Using SALTMED. Sustainability 2022, 14, 13275. [Google Scholar] [CrossRef]
- Almazroui, M.; Islam, M.N.; Dambul, R.; Jones, P.D. Trends of temperature extremes in Saudi Arabia. Int. J. Climatol. 2014, 34, 808–826. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A review of drought indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- Wyss, D.; Negussie, K.; Staacke, A.; Karnagel, A.; Engelhardt, M.; Kappas, M. A comparative analysis of MODIS-derived drought indices for Northern and Central Namibia. Afr. J. Environ. Sci. Technol. 2022, 16, 173–191. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.; Beguería, S.; López-Moreno, J. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Edwards, D.C.; McKee, T.B. Characteristics of 20th century drought in the United States at multiple time scales. Atmos. Sci. Pap. 1997, 634, 1–30. [Google Scholar]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. Drought characterisation based on an agriculture-oriented standardised precipitation index. Theor. Appl. Climatol. 2019, 135, 1435–1447. [Google Scholar] [CrossRef]
- Tsakiris, G.; Pangalou, D.; Vangelis, H. Regional Drought Assessment Based on the Reconnaissance Drought Index (RDI). Water Resour. Manag. 2007, 21, 821–833. [Google Scholar] [CrossRef]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. The drought indices calculator (DrinC). In Proceedings of the 8th International Conference of EWRA: Water Resources Management in an Interdisciplinary and Changing Context, Porto, Portugal, 26–29 June 2013. [Google Scholar]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. DrinC: A software for drought analysis based on drought indices. Earth Sci. Inform. 2015, 8, 697–709. [Google Scholar] [CrossRef]
- Shiau, J.T. Water release policy effects on the shortage characteristics for the Shihmen reservoir system during droughts. Water Resour. Manag. 2003, 17, 463–480. [Google Scholar] [CrossRef]
- IPCC. Climate change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Pattnayak, K.C.; Awasthi, A.; Sharma, K.; Pattnayak, B.B. Fate of Rainfall over the North Indian States of India in the 1.5 °C and 2 °C Warming Scenarios. Earth Space Sci. 2023, 10, e2022EA002671. [Google Scholar] [CrossRef]
- Awasthi, A.; Pattnayak, K.C.; Tandon, A.; Sarkar, A.; Chakraborty, M. Implications of climate change on surface temperature in North Indian states: Evidence from CMIP6 model ensembles. Front. Environ. Sci. 2023, 11, 1264757. [Google Scholar] [CrossRef]
- Kummerow, J.S.; Thiele, O.; Barnes, W.; Chang, A.T.C.; Stocker, E.; Adler, R.F.; Hou, A.; Kakar, R.; Wentz, F.; Ashcroft, P.; et al. The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteorol. 2000, 39, 1965–1982. [Google Scholar] [CrossRef]
- Adnan, S.; Ullah, K.; Gao, S. Characterization of drought and its assessment over Sindh, Pakistan during 1951–2010. J. Meteorol. Res. 2015, 29, 837–857. [Google Scholar] [CrossRef]
- World Bank. Background Paper Water Scarcity and Droughts; Middle East and North Africa. Morocco CCDR; World Bank Group: Washington, DC, USA, 2023. [Google Scholar]
- Wang, B.; Sun, W.; Jin, C.; Luo, X.; Yang, Y.-M.; Li, T.; Xiang, B.; McPhaden, M.; Cane, M.; Jin, F.; et al. Understanding the recent increase in multiyear La Niñas. Nat. Clim. Change 2023, 13, 1075–1081. [Google Scholar] [CrossRef]
- Al-Taher, A.A. Drought and Human Adjustment in Saudi Arabia. GeoJournal 1994, 33, 411–422. [Google Scholar] [CrossRef]
- Smakhtin, V.; Hughes, D. Automated estimation and analysis of meteorological drought characteristics from monthly data. Environ. Model. Softw. 2007, 22, 880–890. [Google Scholar] [CrossRef]
- IPCC. The physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., Miller, H., Eds.; Cambridge University Press: Cambridge, UK, 2007; p. 996. [Google Scholar]
Drought Category | Index Values * |
---|---|
Extreme wet | ≥2.00 |
Severe wet | 1.50 to 1.99 |
Moderate wet | 1.00 to 1.49 |
Mild wet | 0.50 to 0.99 |
Normal conditions | −0.49 to 0.49 |
Mild drought | −0.50 to −0.99 |
Moderate drought | −1.00 to −1.49 |
Severe drought | −1.50 to −1.99 |
Extreme drought | ≤−2.00 |
RSI Category | Index Values |
---|---|
Extremely low groundwater storage | 0–10 |
Very low groundwater storage | 11–20 |
Moderately low groundwater storage | 21–30 |
Near-normal groundwater storage | 31–40 |
Moderately high groundwater storage | 41–60 |
Very high groundwater storage | 61–70 |
Extremely high groundwater storage | >70 |
Year * | SPI | aSPI | RDI | eRDI | ||||
---|---|---|---|---|---|---|---|---|
Value | Category | Value | Category | Value | Category | Value | Category | |
1992 | −1.09 | Moderate D. | −1.10 | Moderate D. | −1.00 | Moderate D. | −1.00 | Moderate D. |
1998 | 1.50 | Severe wet | 1.55 | Severe wet | 1.68 | Severe wet | 1.74 | Severe wet |
1999 | 1.27 | Moderate wet | 1.35 | Moderate wet | 1.18 | Moderate wet | 1.25 | Moderate wet |
2000 | −1.87 | Severe D. | −1.92 | Severe D. | −1.84 | Severe D. | −1.88 | Severe D. |
2002 | −1.29 | Moderate D. | −1.31 | Moderate D. | −1.25 | Moderate D. | −1.26 | Moderate D. |
2003 | 1.31 | Severe Wet | 1.03 | Moderate Wet | 1.19 | Moderate wet | 0.92 | Normal Cond. |
2006 | 1.24 | Moderate wet | 1.23 | Moderate wet | 1.22 | Moderate wet | 1.21 | Moderate wet |
2007 | 1.62 | Severe wet | 1.60 | Severe wet | 1.70 | Severe wet | 1.67 | Severe wet |
2009 | −1.29 | Moderate D. | −1.32 | Moderate D. | −1.27 | Moderate D. | −1.30 | Moderate D. |
2010 | −1.69 | Severe D. | −1.73 | Severe D. | −1.70 | Severe D. | −1.74 | Severe D. |
2012 | −0.53 | Mild drought | −0.57 | Mild drought | −0.57 | Mild drought | −0.60 | Mild drought |
2015 | −0.72 | Mild drought | −0.72 | Mild drought | −0.74 | Mild drought | −0.74 | Mild drought |
2016 | −0.73 | Mild drought | −0.73 | Mild drought | −0.79 | Mild drought | −0.80 | Mild drought |
2017 | 1.86 | Severe wet | 1.73 | Severe wet | 1.76 | Severe wet | 1.62 | Severe wet |
2018 | −1.16 | Moderate D. | −1.17 | Moderate D. | −1.23 | Moderate D. | −1.24 | Moderate D. |
2020 | 0.99 | Mild wet | 1.05 | Moderate wet | 0.94 | Mild wet | 1.00 | Moderate wet |
2021 | 1.29 | Moderate wet | 1.35 | Moderate wet | 1.19 | Moderate wet | 1.24 | Moderate wet |
Year * | SPI | aSPI | RDI | eRDI | ||||
---|---|---|---|---|---|---|---|---|
Value | Category | Value | Category | Value | Category | Value | Category | |
1992 | 0.56 | Mild wet | 0.60 | Mild wet | 0.41 | Normal Cond. | 0.44 | Normal Cond. |
1993 | 1.24 | Moderate wet | 1.28 | Moderate wet | 1.43 | Moderate wet | 1.48 | Moderate wet |
1994 | −0.82 | Mild drought | −0.83 | Mild drought | −0.80 | Mild drought | −0.80 | Mild drought |
1998 | 1.59 | Severe wet | 1.66 | Severe wet | 1.64 | Severe wet | 1.71 | Sever Wet |
1999 | 1.44 | Moderate wet | 1.45 | Moderate wet | 1.48 | Moderate wet | 1.49 | Moderate wet |
2000 | 1.42 | Moderate wet | 1.32 | Moderate wet | 1.38 | Moderate wet | 1.29 | Moderate wet |
2002 | 1.45 | Moderate wet | 1.50 | Severe wet | 1.43 | Moderate wet | 1.48 | Moderate wet |
2003 | 0.68 | Mild wet | 0.73 | Mild wet | 0.69 | Mild wet | 0.74 | Mild wet |
2004 | −1.03 | Moderate D. | −1.05 | Moderate D. | −1.04 | Moderate D. | −1.05 | Moderate D. |
2008 | −0.53 | Mild drought | −0.52 | Mild drought | −0.52 | Mild drought | −0.51 | Mild drought |
2010 | −1.34 | Moderate D. | −1.37 | Moderate D. | −1.33 | Moderate D. | −1.35 | Moderate D. |
2011 | −1.67 | Severe D. | −1.71 | Severe D. | −1.64 | Severe D. | −1.67 | Severe D. |
2012 | −1.92 | Severe D. | −1.97 | Severe D. | −1.87 | Severe D. | −1.91 | Severe D. |
2013 | −0.51 | Mild drought | −0.50 | Mild drought | −0.53 | Mild drought | −0.52 | Mild drought |
2014 | −0.60 | Mild drought | −0.59 | Mild drought | −0.62 | Mild drought | −0.61 | Mild drought |
2016 | −0.81 | Mild drought | −0.81 | Mild drought | −0.84 | Mild drought | −0.84 | Mild drought |
2018 | 2.17 | Extreme wet | 1.95 | Severe wet | 2.09 | Extreme wet | 1.88 | Sever Wet |
2019 | 1.05 | Moderate wet | 1.10 | Moderate wet | 1.02 | Moderate wet | 1.07 | Moderate wet |
2020 | −0.57 | Mild drought | −0.56 | Mild drought | −0.60 | Mild drought | −0.59 | Mild drought |
2021 | −1.36 | Moderate D. | −1.39 | Moderate D. | −1.34 | Moderate D. | −1.37 | Moderate D. |
Year * | SPI-12 | Category | aSPI-12 | Category | RDI-12 | Category | eRDI-12 | Category |
---|---|---|---|---|---|---|---|---|
1993 | 1.02 | Moderate wet | 1.06 | Moderate wet | 1.29 | Moderate wet | 1.34 | Moderate wet |
1994 | −0.69 | Mild drought | −0.69 | Mild drought | −0.53 | Mild drought | −0.52 | Mild drought |
1998 | 2.11 | Extreme wet | 2.24 | Extreme wet | 2.28 | Extreme wet | 2.41 | Extreme wet |
1999 | 1.82 | Severe wet | 1.92 | Severe wet | 1.75 | Severe wet | 1.83 | Severe wet |
2001 | −0.83 | Mild D. | −0.80 | Mild D. | −0.85 | Mild D. | −0.82 | Mild D. |
2002 | 0.62 | Mild wet | 0.68 | Mild wet | 0.61 | Mild wet | 0.66 | Mild wet |
2003 | 1.21 | Moderate wet | 1.06 | Moderate wet | 1.12 | Moderate wet | 0.97 | Mild wet |
2004 | −0.95 | Mild drought | −0.95 | Mild drought | −0.94 | Mild drought | −0.92 | Mild drought |
2006 | 0.56 | Mild wet | 0.55 | Mild wet | 0.53 | Mild wet | 0.51 | Mild wet |
2007 | 1.09 | Moderate wet | 1.09 | Moderate wet | 1.14 | Moderate wet | 1.13 | Moderate wet |
2009 | −1.13 | Moderate D. | −1.15 | Moderate D. | −1.08 | Moderate D. | −1.09 | Moderate D. |
2010 | −2.30 | Extreme D. | −2.38 | Extreme D. | −2.27 | Extreme D. | −2.33 | Exceptional D. |
2012 | −1.29 | Moderate D. | −1.36 | Moderate D. | −1.26 | Moderate D. | −1.33 | Moderate D. |
2013 | −0.52 | Mild D. | −0.47 | Normal Cond. | −0.55 | Mild D. | −0.51 | Mild D. |
2014 | −0.53 | Mild D. | −0.52 | Mild D. | −0.50 | Mild D. | −0.49 | Mild D. |
2015 | −0.67 | Mild D. | −0.64 | Mild D. | −0.67 | Mild D. | −0.63 | Mild D. |
2016 | −1.27 | Moderate D. | −1.30 | Moderate D. | −1.32 | Moderate D. | −1.34 | Moderate D. |
2017 | 1.16 | Moderate wet | 1.04 | Moderate wet | 1.04 | Moderate wet | 0.92 | Mild wet |
2018 | 1.63 | Severe wet | 1.34 | Moderate wet | 1.42 | Moderate wet | 1.13 | Moderate wet |
2019 | 0.51 | Mild wet | 0.58 | Mild wet | 0.46 | Normal Cond. | 0.53 | Mild wet |
2022 | −0.74 | Mild D. | −0.72 | Mild D. | −1.07 | Moderate D. | −1.07 | Moderate D. |
Drought Severity | SPI | aSPI | RDI | eRDI |
---|---|---|---|---|
Timescale of 3 Months | ||||
Exceptional Drought | - | - | - | - |
Severe Drought | 5.65 | 5.70 | - | - |
Moderate Drought | 15.32 | 15.35 | 12.10 | 12.10 |
Mild Drought | 29.82 | 24.19 | 56.45 | 54.03 |
Normal conditions | 37.90 | 37.90 | 16.94 | 19.35 |
Moderate wet | 8.06 | 12.10 | 4.03 | 4.84 |
Severe wet | 1.61 | 4.03 | 4.03 | 3.23 |
Exceptional wet | 1.61 | 0.81 | 6.45 | 6.45 |
Timescale of 6 Months | ||||
Exceptional Drought | - | - | - | - |
Severe Drought | 6.45 | 6.45 | 6.45 | 6.45 |
Moderate Drought | 11.29 | 9.68 | 9.68 | 9.68 |
Mild Drought | 33.87 | 35.48 | 33.87 | 30.65 |
Normal conditions | 25.81 | 24.19 | 27.42 | 30.65 |
Moderate wet | 12.90 | 14.52 | 14.52 | 14.52 |
Severe wet | 8.06 | 9.68 | 6.45 | 8.06 |
Exceptional wet | 1.61 | - | 1.61 | - |
Timescale of 12 Months | ||||
Exceptional Drought | 3.33 | 3.33 | 3.33 | 3.33 |
Severe Drought | - | - | - | - |
Moderate Drought | 10.00 | 10.00 | 13.33 | 13.33 |
Mild Drought | 43.33 | 43.33 | 40.00 | 33.33 |
Normal conditions | 20.00 | 20.00 | 20.00 | 33.33 |
Moderate wet | 13.33 | 16.67 | 16.67 | 10.00 |
Severe wet | 6.67 | 3.33 | 3.33 | 3.33 |
Exceptional wet | 3.33 | 3.33 | 3.33 | 3.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, H.M.; Alghamdi, A.G.; Aly, A.A. Assessing Drought Patterns in Al-Baha: Implications for Water Resources and Climate Adaptation. Sustainability 2024, 16, 9882. https://doi.org/10.3390/su16229882
Ibrahim HM, Alghamdi AG, Aly AA. Assessing Drought Patterns in Al-Baha: Implications for Water Resources and Climate Adaptation. Sustainability. 2024; 16(22):9882. https://doi.org/10.3390/su16229882
Chicago/Turabian StyleIbrahim, Hesham M., Abdulaziz G. Alghamdi, and Anwar A. Aly. 2024. "Assessing Drought Patterns in Al-Baha: Implications for Water Resources and Climate Adaptation" Sustainability 16, no. 22: 9882. https://doi.org/10.3390/su16229882
APA StyleIbrahim, H. M., Alghamdi, A. G., & Aly, A. A. (2024). Assessing Drought Patterns in Al-Baha: Implications for Water Resources and Climate Adaptation. Sustainability, 16(22), 9882. https://doi.org/10.3390/su16229882