Building Extraction from Unmanned Aerial Vehicle (UAV) Data in a Landslide-Affected Scattered Mountainous Area Based on Res-Unet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. UAV Data Collection and Processing
2.3. Methodology
2.3.1. ResNet
2.3.2. U-Net
2.3.3. Res-Unet
2.3.4. Res-Unet-Based Building Extraction from UAV Data
2.4. Loss Function
2.5. Validation Metrics
3. Results and Discussions
4. Conclusions and Further Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Si, R.; Wen, J.; Yin, Z. Emergency events database (EM-DAT) and its applications. Sci. Technol. Rev. 2007, 25, 60–67. [Google Scholar]
- Pereira, S.; Garcia, R.A.; Zêzere, J.L.; Oliveira, S.C.; Silva, M. Landslide quantitative risk analysis of buildings at the municipal scale based on a rainfall triggering scenario. Geomat. Nat. Hazards Risk 2017, 8, 624–648. [Google Scholar] [CrossRef]
- Qiu, H.; Nie, W.; Zhou, L.; Wei, Y.; Wang, J. Regional Emigration—China’s New Approach to Geo-Disaster Mitigation. J. Earth Sci. 2024, 35, 1786–1788. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, Z.; Huang, D.; Xiao, D.; Yan, L.; Huang, Y.; Zhang, Y. Extraction of Complex Buildings in the Karst Mountains Based on U-Net Deep Learning Model. In Proceedings of the 2022 3rd International Conference on Geology, Mapping and Remote Sensing (ICGMRS), Zhoushan, China, 22–24 April 2022; pp. 127–138. [Google Scholar]
- Dutta, D.; Serker, N. Urban building inventory development using very high-resolution remote sensing data for urban risk analysis. Int. J. Geoinf. 2005, 1, 109–116. [Google Scholar]
- Matsuoka, M.; Mito, S.; Midorikawa, S.; Miura, H.; Quiroz, L.G.; Maruyama, Y.; Estrada, M. Development of building inventory data and earthquake damage estimation in Lima, Peru for future earthquakes. J. Disaster Res. 2014, 9, 1032–1041. [Google Scholar] [CrossRef]
- Yamazaki, F.; Matsuoka, M. Remote sensing technologies in post-disaster damage assessment. J. Earthq. Tsunami 2007, 1, 193–210. [Google Scholar] [CrossRef]
- Moselhi, O.; Bardareh, H.; Zhu, Z. Automated data acquisition in construction with remote sensing technologies. Appl. Sci. 2020, 10, 2846. [Google Scholar] [CrossRef]
- Fua, P.; Hanson, A.J. An optimization framework for feature extraction. Mach. Vis. Appl. 1991, 4, 59–87. [Google Scholar] [CrossRef]
- Li, Q.; Mou, L.; Sun, Y.; Hua, Y.; Shi, Y.; Zhu, X.X. A Review of Building Extraction from Remote Sensing Imagery: Geometrical Structures and Semantic Attributes. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–15. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X.; Qin, X.; Ye, X.; Qin, Q. An efficient approach for automatic rectangular building extraction from very high resolution optical satellite imagery. IEEE Geosci. Remote Sens. Lett. 2014, 12, 487–491. [Google Scholar] [CrossRef]
- Gu, L.; Cao, Q.; Ren, R. Building extraction method based on the spectral index for high-resolution remote sensing images over urban areas. J. Appl. Remote Sens. 2018, 12, 045501. [Google Scholar] [CrossRef]
- Luo, L.; Li, P.; Yan, X. Deep learning-based building extraction from remote sensing images: A comprehensive review. Energies 2021, 14, 7982. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, Q.; Wu, G.; Xu, Y.; Shibasaki, R.; Shao, X. Village building identification based on ensemble convolutional neural networks. Sensors 2017, 17, 2487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wu, J.; Fan, Y.; Gao, H.; Shao, Y. An efficient building extraction method from high spatial resolution remote sensing images based on improved mask R-CNN. Sensors 2020, 20, 1465. [Google Scholar] [CrossRef]
- Abdollahi, A.; Pradhan, B.; Alamri, A.M. An ensemble architecture of deep convolutional Segnet and Unet networks for building semantic segmentation from high-resolution aerial images. Geocarto Int. 2022, 37, 3355–3370. [Google Scholar] [CrossRef]
- Alsabhan, W.; Alotaiby, T. Automatic building extraction on satellite images using Unet and ResNet50. Comput. Intell. Neurosci. 2022, 2022, 5008854. [Google Scholar] [CrossRef]
- Hui, J.; Du, M.; Ye, X.; Qin, Q.; Sui, J. Effective building extraction from high-resolution remote sensing images with multitask driven deep neural network. IEEE Geosci. Remote Sens. Lett. 2018, 16, 786–790. [Google Scholar] [CrossRef]
- Wang, H.; Miao, F. Building extraction from remote sensing images using deep residual U-Net. Eur. J. Remote Sens. 2022, 55, 71–85. [Google Scholar] [CrossRef]
- Qiu, W.; Gu, L.; Gao, F.; Jiang, T. Building extraction from very high-resolution remote sensing images using refine-UNet. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Wald, L.; Ranchin, T.; Mangolini, M. Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images. Photogramm. Eng. Remote Sens. 1997, 63, 691–699. [Google Scholar]
- Raghavan, R.; Verma, D.C.; Pandey, D.; Anand, R.; Pandey, B.K.; Singh, H. Optimized building extraction from high-resolution satellite imagery using deep learning. Multimed. Tools Appl. 2022, 81, 42309–42323. [Google Scholar] [CrossRef]
- Nurkarim, W.; Wijayanto, A.W. Building footprint extraction and counting on very high-resolution satellite imagery using object detection deep learning framework. Earth Sci. Inform. 2023, 16, 515–532. [Google Scholar] [CrossRef]
- Li, X.; Zhou, G.; Zhou, L.; Lv, X.; Li, X.; He, X.; Tian, Z. A New Technique for Urban and Rural Settlement Boundary Extraction Based on Spectral–Topographic–Radar Polarization Features and Its Application in Xining, China. Remote Sens. 2024, 16, 1091. [Google Scholar] [CrossRef]
- Chen, T.-H.K.; Pandey, B.; Seto, K.C. Detecting subpixel human settlements in mountains using deep learning: A case of the Hindu Kush Himalaya 1990–2020. Remote Sens. Environ. 2023, 294, 113625. [Google Scholar] [CrossRef]
- Ma, J.; Lei, D.; Ren, Z.; Tan, C.; Xia, D.; Guo, H. Automated machine learning-based landslide susceptibility mapping for the three gorges reservoir area, China. Math. Geosci. 2024, 56, 975–1010. [Google Scholar] [CrossRef]
- Lei, D.; Ma, J.; Zhang, G.; Wang, Y.; Deng, X.; Liu, J. Bayesian ensemble learning and Shapley additive explanations for fast estimation of slope stability with a physics-informed database. Nat. Hazards 2024, 1–30. [Google Scholar] [CrossRef]
- Yin, Y.; Huang, B.; Wang, W.; Wei, Y.; Ma, X.; Ma, F.; Zhao, C. Reservoir-induced landslides and risk control in Three Gorges Project on Yangtze River, China. J. Rock Mech. Geotech. Eng. 2016, 8, 577–595. [Google Scholar] [CrossRef]
- Gao, D.; Li, K.; Cai, Y.; Wen, T. Landslide Displacement Prediction Based on Time Series and PSO-BP Model in Three Georges Reservoir, China. J. Earth Sci. 2024, 35, 1079–1082. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, Z.; Lin, Y.; Li, Y.; Shen, W. Sentinel-1 Quasi-PS InSAR for identification and monitoring of landslide deformation. In Proceedings of the IET International Radar Conference (IET IRC 2020), Online, 4–6 November 2020; pp. 946–949. [Google Scholar]
- Deng, M.; Huang, X.; Yi, Q.; Liu, Y.; Yi, W.; Huang, H. Fifteen-year professional monitoring and deformation mechanism analysis of a large ancient landslide in the Three Gorges Reservoir Area, China. Bull. Eng. Geol. Environ. 2023, 82, 243. [Google Scholar] [CrossRef]
- Ren, Z.; Ma, J.; Liu, J.; Deng, X.; Zhang, G.; Guo, H. Enhancing deep learning-based landslide detection from open satellite imagery via multisource data fusion of spectral, textural, and topographical features: A case study of old landslide detection in the Three Gorges Reservoir Area (TGRA). Geocarto Int. 2024, 39, 2421224. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, N.; Xin, B.; Wang, W.; Xing, W.; Lu, S. A novel three-dimensional surface reconstruction method for the complex fabrics based on the MVS. Opt. Laser Technol. 2020, 131, 106415. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Shafiq, M.; Gu, Z. Deep residual learning for image recognition: A survey. Appl. Sci. 2022, 12, 8972. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Proceedings, Part III, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Zhou, Z.; Wang, F.; Xi, W.; Chen, H.; Gao, P.; He, C. Joint multi-frame detection and segmentation for multi-cell tracking. In Proceedings of the Image and Graphics: 10th International Conference, ICIG 2019, Proceedings, Part II, Beijing, China, 23–25 August 2019; pp. 435–446. [Google Scholar]
- Chen, W.; Liu, B.; Peng, S.; Sun, J.; Qiao, X. S3D-UNet: Separable 3D U-Net for brain tumor segmentation. In Proceedings of the Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Revised Selected Papers, Part II, Granada, Spain, 16 September 2018; pp. 358–368. [Google Scholar]
- Singh, N.J.; Nongmeikapam, K. Semantic segmentation of satellite images using deep-unet. Arab. J. Sci. Eng. 2023, 48, 1193–1205. [Google Scholar] [CrossRef]
- Abderrahim, N.Y.Q.; Abderrahim, S.; Rida, A. Road segmentation using u-net architecture. In Proceedings of the 2020 IEEE International Conference of Moroccan Geomatics (Morgeo), Casablanca, Morocco, 11–13 May 2020; pp. 1–4. [Google Scholar]
- Karki, S.; Kulkarni, S. Ship detection and segmentation using unet. In Proceedings of the 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 19–20 February 2021; pp. 1–7. [Google Scholar]
- Cao, K.; Zhang, X. An improved res-unet model for tree species classification using airborne high-resolution images. Remote Sens. 2020, 12, 1128. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Q.; Wang, Y. Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [Google Scholar] [CrossRef]
- Buslaev, A.; Seferbekov, S.; Iglovikov, V.; Shvets, A. Fully convolutional network for automatic road extraction from satellite imagery. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–23 June 2018; pp. 207–210. [Google Scholar]
- Zhang, H.; Hong, X.; Zhou, S.; Wang, Q. Infrared image segmentation for photovoltaic panels based on Res-UNet. In Proceedings of the Chinese Conference on Pattern Recognition and Computer Vision (PRCV), Xi’an, China, 8–11 November 2019; pp. 611–622. [Google Scholar]
- Jadon, S. A survey of loss functions for semantic segmentation. In Proceedings of the 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Via del Mar, Chile, 27–29 October 2020; pp. 1–7. [Google Scholar]
- Wang, H.; Liu, J.; Zeng, S.; Xiao, K.; Yang, D.; Yao, G.; Yang, R. A novel landslide identification method for multi-scale and complex background region based on multi-model fusion: YOLO+ U-Net. Landslides 2024, 21, 901–917. [Google Scholar] [CrossRef]
- Hou, H.; Chen, M.; Tie, Y.; Li, W. A universal landslide detection method in optical remote sensing images based on improved YOLOX. Remote Sens. 2022, 14, 4939. [Google Scholar] [CrossRef]
- Nava, L.; Bhuyan, K.; Meena, S.R.; Monserrat, O.; Catani, F. Rapid mapping of landslides on SAR data by attention U-Net. Remote Sens. 2022, 14, 1449. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, M.; Ke, H.; Fang, X.; Zhan, Z.; Chen, S. Landslide recognition by deep convolutional neural network and change detection. IEEE Trans. Geosci. Remote Sens. 2020, 59, 4654–4672. [Google Scholar] [CrossRef]
- Chen, L.-C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Deng, S.; Wu, S.; Bian, A.; Zhang, J.; Di, B.; Nienkötter, A.; Deng, T.; Feng, T. Scattered mountainous area building extraction from an open satellite imagery dataset. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Li, C.; Fu, L.; Zhu, Q.; Zhu, J.; Fang, Z.; Xie, Y.; Guo, Y.; Gong, Y. Attention enhanced u-net for building extraction from farmland based on google and worldview-2 remote sensing images. Remote Sens. 2021, 13, 4411. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Teng, F.; Lin, Y.; Wang, M.; Cai, H. Improved mask R-CNN for rural building roof type recognition from uav high-resolution images: A case study in hunan province, China. Remote Sens. 2022, 14, 265. [Google Scholar] [CrossRef]
- Wang, X.; Liang, K.; Sui, L.; Zhong, M.; Zhu, J. Rural buildings extraction based on deep learning model with dilated convolution and pyramid representation. Bull. Surv. Mapp. 2022, 61–65. [Google Scholar]
Camera Sensor | Field of View | Max Image Size | Effective Pixels | Focal Length | Positioning ACC (RTK-Enabled and Functioning Properly) |
---|---|---|---|---|---|
1” CMOS | 84° | 5472 × 3648 (3:2) | 20 M | 24 mm | Horizontal: ±0.1 m Vertical: ±0.1 m |
Model | Precision | Recall | ACC | F1 | IOU |
---|---|---|---|---|---|
Deeplabv3 | 0.9854 | 0.9808 | 0.9760 | 0.9831 | 0.9668 |
PSP-Net | 0.9809 | 0.9680 | 0.9643 | 0.9744 | 0.9500 |
Res-Unet | 0.9903 | 0.9881 | 0.9849 | 0.9892 | 0.9785 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, C.; Chen, T.; Liu, J.; Deng, X.; Wang, H.; Ma, J. Building Extraction from Unmanned Aerial Vehicle (UAV) Data in a Landslide-Affected Scattered Mountainous Area Based on Res-Unet. Sustainability 2024, 16, 9791. https://doi.org/10.3390/su16229791
Tan C, Chen T, Liu J, Deng X, Wang H, Ma J. Building Extraction from Unmanned Aerial Vehicle (UAV) Data in a Landslide-Affected Scattered Mountainous Area Based on Res-Unet. Sustainability. 2024; 16(22):9791. https://doi.org/10.3390/su16229791
Chicago/Turabian StyleTan, Chunhai, Tao Chen, Jiayu Liu, Xin Deng, Hongfei Wang, and Junwei Ma. 2024. "Building Extraction from Unmanned Aerial Vehicle (UAV) Data in a Landslide-Affected Scattered Mountainous Area Based on Res-Unet" Sustainability 16, no. 22: 9791. https://doi.org/10.3390/su16229791
APA StyleTan, C., Chen, T., Liu, J., Deng, X., Wang, H., & Ma, J. (2024). Building Extraction from Unmanned Aerial Vehicle (UAV) Data in a Landslide-Affected Scattered Mountainous Area Based on Res-Unet. Sustainability, 16(22), 9791. https://doi.org/10.3390/su16229791