The Impact of Seasonal Climate on Dryland Vegetation NPP: The Mediating Role of Phenology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Estimation of Vegetation NPP
2.3.2. Information Extraction of Vegetation Phenology
2.3.3. Analysis of Causal Mediation
2.3.4. Data Statistics and Analysis
3. Results
3.1. Characteristics of Spatial and Temporal Changes of NPP in Typical Ecological Function Reserve Areas
3.2. Spatial and Temporal Characteristics of Vegetation Climatic Changes
3.3. Influence Pathways of Climate and Phenology Changes on Vegetation NPP Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Paths | Direct Effects | Paths | Indirect Effects | Paths | Total Effects |
---|---|---|---|---|---|
PRE → SOS | 0.703 | PRE → SOS → NPP | 0.116 | PRE → SOS | 0.703 |
PRE → EOS | NS | PRE → EOS → NPP | NS | PRE → EOS | 0.432 |
PRE → NPP | 0.748 | PRE → SOS → EOS | 0.432 | PRE → NPP | 0.819 |
TEMP → SOS | 0.372 | TEMP → SOS → NPP | 0.061 | TEMP → SOS | 0.372 |
TEMP → SOS → EOS | 0.229 | TEMP → EOS | 0.229 | ||
TEMP → SOS | 0.061 | ||||
DEM → SOS | 0.464 | DEM → SOS → EOS | 0.285 | DEM → SOS | 0.464 |
DEM → EOS | −0.101 | DEM → SOS → NPP | 0.077 | DEM → EOS | 0.149 |
DEM → EOS → NPP | 0.022 | DEM → NPP | 0.099 | ||
SOS → EOS | 0.615 | SOS → EOS → NPP | −0.135 | SOS → EOS | 0.615 |
SOS → NPP | 0.165 | SOS → NPP | 0.030 | ||
EOS → NPP | −0.220 | / | EOS → NPP | −0.220 |
References
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, Y.; Liu, S.; Xiao, J. Regional contributions to interannual variability of net primary production and climatic attributions. Agric. For. Meteorol. 2021, 303, 108384. [Google Scholar] [CrossRef]
- Poulter, B.; Frank, D.; Ciais, P.; Myneni, R.B.; Andela, N.; Bi, J.; Broquet, G.; Canadell, J.G.; Chevallier, F.; Liu, Y.Y.; et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 2014, 509, 600–603. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Fu, B.; Wei, F.; Piao, S.; Maestre, F.T.; Wang, L.; Jiao, W.; Liu, Y.; Li, Y.; Li, C.; et al. Drylands contribute disproportionately to observed global productivity increases. Sci. Bull. 2023, 68, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, L.; Zheng, J.; Yu, X.; Tian, R.; Han, W.; Guan, J. Increasing influence of minimum temperature on grassland spring phenology in arid Central Asia. Agric. For. Meteorol. 2024, 355, 110122. [Google Scholar] [CrossRef]
- Lyu, J.; Fu, X.; Lu, C.; Zhang, Y.; Luo, P.; Guo, P.; Huo, A.; Zhou, M. Quantitative assessment of spatiotemporal dynamics in vegetation NPP, NEP and carbon sink capacity in the Weihe River Basin from 2001 to 2020. J. Clean. Prod. 2023, 428, 139384. [Google Scholar] [CrossRef]
- Li, C.; Wang, R.; Cui, X.; Wu, F.; Yan, Y.; Peng, Q.; Qian, Z.; Xu, Y. Responses of vegetation spring phenology to climatic factors in Xinjiang, China. Ecol. Indic. 2021, 124, 107286. [Google Scholar] [CrossRef]
- Jiang, Q.; Yuan, Z.; Yin, J.; Yao, M.; Qin, T.; Lü, X.; Wu, G. Response of vegetation phenology to climate factors in the source region of the Yangtze and Yellow Rivers. J. Plant Ecol. 2024, 17, rtae046. [Google Scholar] [CrossRef]
- Ji, Z.; Wang, L. Differential responses of vegetation phenology to climatic elements during extreme events on the Chinese loess plateau. Sci. Total Environ. 2024, 933, 173146. [Google Scholar] [CrossRef]
- Mou, C.; Sun, G.; Luo, P.; Wang, Z.; Luo, G. 4Flowering Responses of Alpine Meadow Plant in the Qinghai-Tibetan Plateau to Extreme Drought Imposed in Different Periods. Chin. J. Appl. Environ. Biol. 2013, 19, 272–279. [Google Scholar] [CrossRef]
- Chen, L.; Hänninen, H.; Rossi, S.; Smith, N.G.; Pau, S.; Liu, Z.; Feng, G.; Gao, J.; Liu, J. Leaf senescence exhibits stronger climatic responses during warm than during cold autumns. Nat. Clim. Change 2020, 10, 777–780. [Google Scholar] [CrossRef]
- Kang, X.; Hao, Y.; Cui, X.; Chen, H.; Huang, S.; Du, Y.; Li, W.; Kardol, P.; Xiao, X.; Cui, L. Variability and changes in climate, phenology, and gross primary production of an alpine Wetland ecosystem. Remote Sens. 2016, 8, 391. [Google Scholar] [CrossRef]
- Richardson, A.D.; Black, T.A.; Ciais, P.; Delbart, N.; Friedl, M.A.; Gobron, N.; Hollinger, D.Y.; Kutsch, W.L.; Longdoz, B.; Luyssaert, S.; et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3227–3246. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Xu, L.; Gao, G.; Wang, X.; Fu, B. Distinguishing the effects of climate change and vegetation greening on soil moisture variability along aridity gradient in the drylands of northern China. Agric. For. Meteorol. 2023, 343, 109786. [Google Scholar] [CrossRef]
- Jie, X.; Yu, X.; Gaodi, X.; Yangyang, W.; Yuan, J.; Wenhui, C. Assessment of wind erosion prevention service and its beneficiary areas identification of national key ecological function zone of windbreak and sand fixation type in China. Acta Ecol. Sin. 2019, 39, 5857–5873. [Google Scholar] [CrossRef]
- Li, H.; Feng, J.; Bai, L.; Zhang, J. Populus euphratica Phenology and Its Response to Climate Change in the Upper Tarim River Basin, NW China. Forests 2021, 12, 1315. [Google Scholar] [CrossRef]
- Han, H.; Bai, J.; Ma, G.; Yan, J.; Wang, X.; Ta, Z.; Wang, P. Seasonal responses of net primary productivity of vegetation to phenological dynamics in the Loess Plateau, China. Chin. Geogr. Sci. 2022, 32, 340–357. [Google Scholar] [CrossRef]
- Kang, W.; Wang, T.; Liu, S. The response of vegetation phenology and productivity to drought in Semi-Arid regions of northern China. Remote Sens. 2018, 10, 727. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Li, Y. Extended warm temperate zone and opportunities for cropping system change in the Loess Plateau of China. Int. J. Climatol. 2018, 39, 658–669. [Google Scholar] [CrossRef]
- Wu, L.; Ma, X.; Dou, X.; Zhu, J.; Zhao, C. Impacts of climate change on vegetation phenology and net primary productivity in arid Central Asia. Sci. Total Environ. 2021, 796, 149055. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.K.; Dannenberg, M.P.; Yan, D.; Herrmann, S.; Barnes, M.L.; Barron-Gafford, G.A.; Biederman, J.A.; Ferrenberg, S.; Fox, A.M.; Hudson, A.; et al. Remote sensing of dryland ecosystem structure and function: Progress, challenges, and opportunities. Remote Sens. Environ. 2019, 233, 111401. [Google Scholar] [CrossRef]
- Hayes, A.F.; Montoya, A.K.; Rockwood, N.J. The Analysis of Mechanisms and Their Contingencies: PROCESS versus Structural Equation Modeling. Australas. Mark. J. 2017, 25, 76–81. [Google Scholar] [CrossRef]
- Schweiger, E.W.; Grace, J.B.; Cooper, D.; Bobowski, B.; Britten, M. Using structural equation modeling to link human activities to wetland ecological integrity. Ecosphere 2016, 7, e01548. [Google Scholar] [CrossRef]
- Ren, L.; Li, J.; Li, C.; Dang, P. Can ecotourism contribute to ecosystem? Evidence from local residents’ ecological behaviors. Sci. Total Environ. 2021, 757, 143814. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Xue, Y.; Xue, Y.; Peng, J.; Guo, J.; Liang, H. Assessing the effects of climate and human activity on vegetation change in Northern China. Environ. Res. 2024, 247, 118233. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Tang, Q.; Zhou, Y.; Zeng, T.; Zhou, T. The Sensitivity of Vegetation Dynamics to Climate Change across the Tibetan Plateau. Atmosphere 2022, 13, 1112. [Google Scholar] [CrossRef]
- Ling, H. Spatio-temporal dynamics of vegetation in key ecological function zone of wind-break and sand-fixation over the last 20 years. Acta Ecol. Sin. 2021, 41, 8341–8351. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef]
- Xue, C.; Wu, H.; Jiang, X. Temporal and Spatial Change Monitoring of Drought Grade Based on ERA5 Analysis Data and BFAST Method in the Belt and Road Area during 1989–2017. Adv. Meteorol. 2019, 2019, 4053718. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, J. A MODIS EVI based dataset of vegetation phenology for the key ecological observation stations in China (2001–2016) [Dataset]. Sci. Data Bank 2017. [Google Scholar] [CrossRef]
- Yin, C.; Luo, M.; Meng, F.; Sa, C.; Yuan, Z.; Bao, Y. Contributions of climatic and anthropogenic drivers to net primary productivity of vegetation in the Mongolian Plateau. Remote Sens. 2022, 14, 3383. [Google Scholar] [CrossRef]
- He, T.; Dai, X.; Li, W.; Zhou, J.; Zhang, J.; Li, C.; Dai, T.; Li, W.; Lu, H.; Ye, Y.; et al. Response of net primary productivity of vegetation to drought: A case study of Qinba Mountainous area, China (2001–2018). Ecol. Indic. 2023, 149, 110148. [Google Scholar] [CrossRef]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Zhu, W.; Pan, Y.; He, H.; Yu, D.; Hu, H. Simulation of maximum light use efficiency for some typical vegetation types in China. Chin. Sci. Bull. 2006, 51, 457–463. [Google Scholar] [CrossRef]
- Kong, D.; McVicar, T.R.; Xiao, M.; Zhang, Y.; Peña-Arancibia, J.L.; Filippa, G.; Xie, Y.; Gu, X. phenofit: An R package for extracting vegetation phenology from time series remote sensing. Methods Ecol. Evol. 2022, 13, 1508–1527. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Schwalm, C.R.; Gentine, P.; Smith, W.K.; Ciais, P.; Kimball, J.S.; Gazol, A.; Kannenberg, S.A.; Chen, A.; et al. Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems. Nat. Clim. Change 2023, 13, 182–188. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Sisheber, B.; Marshall, M.; Mengistu, D.; Nelson, A. Tracking crop phenology in a highly dynamic landscape with knowledge-based Landsat–MODIS data fusion. Int. J. Appl. Earth Obs. Geoinf. 2022, 106, 102670. [Google Scholar] [CrossRef]
- Guo, J.; Yang, X.; Niu, J.; Jin, Y.; Xu, B.; Shen, G.; Zhang, W.; Zhao, F.; Zhang, Y. Remote sensing monitoring of green-up dates in the Xilingol grasslands of northern China and their correlations with meteorological factors. Int. J. Remote Sens. 2018, 40, 2190–2211. [Google Scholar] [CrossRef]
- Jonsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens. 2022, 40, 1824–1832. [Google Scholar] [CrossRef]
- Hou, D.; Al-Tabbaa, A.; Chen, H.; Mamic, I. Factor analysis and structural equation modelling of sustainable behaviour in contaminated land remediation. J. Clean. Prod. 2014, 84, 439–449. [Google Scholar] [CrossRef]
- Lu, J.; Qin, T.; Yan, D.; Lv, X.; Yuan, Z.; Wen, J.; Xu, S.; Yang, Y.; Feng, J.; Li, W. Response of vegetation to drought in the source region of the Yangtze and Yellow Rivers based on causal analysis. Remote Sens. 2024, 16, 630. [Google Scholar] [CrossRef]
- Cheung, M.W. Comparison of approaches to constructing confidence intervals for mediating effects using structural equation models. Struct. Equ. Model. A Multidiscip. J. 2007, 14, 227–246. [Google Scholar] [CrossRef]
- Chen, A.; Yang, X.; Xu, B.; Jin, Y.; Guo, J.; Xing, X.; Yang, D.; Wang, P.; Zhu, L. Monitoring the spatiotemporal dynamics of aeolian desertification using Google Earth Engine. Remote Sens. 2021, 13, 1730. [Google Scholar] [CrossRef]
- Lin, M.; Hou, L.; Qi, Z.; Wan, L. Impacts of climate change and human activities on vegetation NDVI in China’s Mu Us Sandy Land during 2000–2019. Ecol. Indic. 2022, 142, 109164. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Liu, L.; Liu, H.; Liu, Y.; Li, M. On potential salient climatic factors tied to late-summer compound drought and heatwaves around Horqin sandy land, Northeast China. Theor. Appl. Climatol. 2024, 155, 6829–6842. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, H.; Dong, S.; Su, X.; Liu, Q.; Zhang, X. Landscape dynamics along a river corridor in alpine desert region and its driving factor analysis: A case study in Altun National Nature Reserve. Chin. J. Ecol. 2014, 33, 1647–1654. Available online: https://www.researchgate.net/publication/288442867_Landscape_dynamics_along_a_river_corridor_in_alpine_desert_region_and_its_driving_factor_analysis_A_case_study_in_Altun_National_Nature_Reserve (accessed on 27 July 2024).
- Zhang, Y.; Lu, Y.; Sun, G.; Li, L.; Zhang, Z.; Zhou, X. Dynamic Changes in Vegetation Ecological Quality in the Tarim Basin and Its Response to Extreme Climate during 2000–2022. Forests 2024, 15, 505. [Google Scholar] [CrossRef]
- Feng, J.; Yan, D.; Li, C.; Gao, Y.; Liu, J. Regional Frequency Analysis of Extreme Precipitation after Drought Events in the Heihe River Basin, Northwest China. J. Hydrol. Eng. 2014, 19, 1101–1112. [Google Scholar] [CrossRef]
- Ma, S.; Ren, J.; Wu, C.; He, Q. Extreme precipitation events trigger abrupt vegetation succession in emerging coastal wetlands. Catena 2024, 241, 108066. [Google Scholar] [CrossRef]
- Tuo, M.; Xu, G.; Zhang, T.; Guo, J.; Zhang, M.; Gu, F.; Wang, B.; Yi, J. Contribution of climatic factors and human activities to vegetation changes in arid grassland. Sustainability 2024, 16, 794. [Google Scholar] [CrossRef]
- Dong, T.; Liu, J.; Shi, M.; He, P.; Li, P.; Liu, D. Seasonal scale climatic factors on Grassland phenology in Arid and Semi-Arid Zones. Land 2024, 13, 653. [Google Scholar] [CrossRef]
- Ying, H.; Zhang, H.; Zhao, J.; Shan, Y.; Zhang, Z.; Guo, X.; Rihan, W.; Deng, G. Effects of spring and summer extreme climate events on the autumn phenology of different vegetation types of Inner Mongolia, China, from 1982 to 2015. Ecol. Indic. 2019, 111, 105974. [Google Scholar] [CrossRef]
- He, Z.; Du, J.; Chen, L.; Zhu, X.; Lin, P.; Zhao, M.; Fang, S. Impacts of recent climate extremes on spring phenology in arid-mountain ecosystems in China. Agric. For. Meteorol. 2018, 260–261, 31–40. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, J.; Liang, S.; Liu, S.; Zhou, Y. A perception of the nexus “resistance, recovery, resilience” of vegetations responded to extreme precipitation pulses in arid and semi-arid regions: A case study of the Qilian Mountains Nature Reserve, China. Sci. Total Environ. 2022, 843, 157105. [Google Scholar] [CrossRef]
- Shen, Y.; Shen, Y.; Guo, Y.; Zhang, Y.; Pei, H.; Brenning, A. Review of historical and projected future climatic and hydrological changes in mountainous semiarid Xinjiang (northwestern China), central Asia. Catena 2020, 187, 104343. [Google Scholar] [CrossRef]
- Xu, B.; Arain, M.A.; Black, T.A.; Law, B.E.; Pastorello, G.Z.; Chu, H. Seasonal variability of forest sensitivity to heat and drought stresses: A synthesis based on carbon fluxes from North American forest ecosystems. Glob. Change Biol. 2019, 26, 901–918. [Google Scholar] [CrossRef]
- Shao, H.; Zhang, Y.; Gu, F.; Shi, C.; Miao, N.; Liu, S. Impacts of climate extremes on ecosystem metrics in southwest China. Sci. Total Environ. 2021, 776, 145979. [Google Scholar] [CrossRef]
Data | Description | Resolution | Period | Source |
---|---|---|---|---|
Vegetation type | National 1:1,000,000 vegetation type map | Raster/1 km | China National Data Center for Glaciology and Geocryology, accessed on 10 November 2022. (http://www.ncdc.ac.cn) | |
NDVI | MOD13A3 | Raster/1 km | NASA, accessed on 14 May 2023. (https://ladsweb.modaps.eosdis.nasa.gov/) | |
DEM | SETMDEMUTM | Raster/90 m | 2000 | Geospatial data cloud, accessed on 3 July 2023. (https://www.gscloud.cn) |
ASTER_GDEM_30M | Raster/30 m | 2009 | ||
GDEMV2 | Raster/30 m | 2015 | ||
GDEMV3 | Raster/30 m | 2019 | ||
Meteorological data | Precipitation and temperature | Gridded/0.5° | 2000–2020 | CRU TS v. 4.07, accessed on 15 November 2022. (https://crudata.uea.ac.uk/cru/data/hrg/) |
Solar radiation | Gridded/0.1° | 2000–2020 | ERA5-Land monthly averaged data from 1981 to present, accessed on 15 November 2022. (https://cds.climate.copernicus.eu) | |
Phenological data | Start of Season | Point | 2001–2016 | Vegetation phenology data set from major ecological observation stations in China, accessed on 27 July 2023. (https://doi.org/10.11922/sciencedb.449) |
A1/A2 | SOS | EOS |
---|---|---|
10% | 87.71 | 321.95 |
20% | 92.51 | 316.79 |
30% | 105.85 | 306.74 |
40% | 119.05 | 297.19 |
50% | 129.54 | 287.73 |
60% | 141.69 | 278.00 |
70% | 154.55 | 267.48 |
80% | 168.98 | 255.84 |
Ground monitoring data | 122.81 | 278.14 |
Wind Speed | Temperature | SOS | Precipitation | NPP | EOS | |
---|---|---|---|---|---|---|
Wind Speed | 1.000 | −0.108 * | 0.061 | −0.040 | −0.013 | −0.005 |
Temperature | −0.108 * | 1.000 | 0.012 | −0.291 ** | −0.227 ** | 0.077 |
SOS | 0.061 | 0.012 | 1.000 | 0.035 | −0.084 | 0.639 ** |
Precipitation | −0.040 | −0.291 ** | 0.035 | 1.000 | 0.613 ** | 0.045 |
NPP | −0.013 | −0.277 ** | −0.084 | 0.613 ** | 1.000 | −0.056 |
EOS | −0.005 | 0.077 | 0.639 ** | 0.045 | −0.056 | 1.000 |
Year | Maximum | Minimum | Mean | Standard Deviation | |
---|---|---|---|---|---|
Precipitation (mm) | 2000 | 1.34 | 47.57 | 15.011 | 11.021 |
2005 | 2.073 | 49.575 | 15.293 | 11.952 | |
2010 | 1.104 | 53.538 | 17.402 | 13.942 | |
2015 | 1.518 | 40.80 | 16.515 | 12.976 | |
2020 | 0.61 | 48.461 | 17.624 | 16.23 | |
annual average | 1.329 | 47.9888 | 16.369 | 13.2242 | |
Temperature (degree centigrade) | 2000 | −5.424 | 13.26 | 6.42 | 3.88 |
2005 | −5.41 | 13.61 | 6.77 | 3.79 | |
2010 | −5.4 | 13.2 | 6.28 | 3.74 | |
2015 | −5.4 | 13.72 | 6.69 | 3.89 | |
2020 | −5.17 | 13.45 | 6.92 | 3.84 | |
annual average | −5.3608 | 13.448 | 6.616 | 3.828 | |
NDVI | 2000 | −0.196 | 0.53 | 0.1 | 0.06 |
2005 | −0.196 | 0.6 | 0.11 | 0.06 | |
2010 | −0.194 | 0.646 | 0.106 | 0.057 | |
2015 | −0.2 | 0.658 | 0.11 | 0.595 | |
2020 | −0.192 | 0.675 | 0.12 | 0.066 | |
annual average | −0.1956 | 0.6218 | 0.1092 | 0.1676 | |
DEM (m) | 66 | 6063 | 1574.127 | 1176.76 |
CHISQ | GFI | CFI | RMR | SRMR | RMSEA | |
---|---|---|---|---|---|---|
Annual scale | 0.036 | 0.998 | 0.999 | 0.014 | 0.007 | 0.034 |
Seasonal scale | 0.103 | 0.997 | 0.998 | 0.019 | 0.01 | 0.021 |
Paths | Direct Effects | Paths | Indirect Effects | Paths | Total Effects |
---|---|---|---|---|---|
PRE-Spring → NPP | 0.441 | / | / | PRE-Spring → NPP | 0.441 |
PRE-Summer → SOS | 0.433 | PRE-Summer → SOS → NPP | 0.074 | PRE-Summer → SOS | 0.433 |
PRE-Summer → EOS | −0.271 | PRE-Summer → EOS → NPP | 0.059 | PRE-Summer → EOS | −0.007 |
PRE-Summer → NPP | 0.243 | PRE-Summer → SOS → EOS | 0.264 | PRE-Summer → NPP | 0.376 |
PRE-Autumn → NPP | 0.147 | / | / | PRE-Autumn → NPP | 0.147 |
PRE-Winter → EOS | 0.251 | PRE-Winter → EOS → NPP | −0.054 | PRE-Winter → EOS | 0.251 |
PRE-Winter → NPP | −0.071 | PRE-Winter → NPP | −0.125 | ||
TEMP-Spring → SOS | 0.37 | TEMP-Spring → SOS → NPP | 0.063 | TEMP-Spring → SOS | 0.37 |
TEMP-Spring → NPP | NS | TEMP-Spring → NPP | 0.063 | ||
TEMP-Summer → SOS | −0.507 | TEMP-Summer → SOS → NPP | −0.086 | TEMP-Summer → SOS | 0.37 |
TEMP-Summer → NPP | NS | TEMP-Summer → NPP | −0.086 | ||
TEMP-Autumn → SOS | 0.173 | TEMP-Autumn → SOS → NPP | 0.029 | TEMP-Autumn → SOS | 0.173 |
TEMP-Autumn → NPP | NS | TEMP-Autumn → NPP | 0.029 | ||
TEMP-Winter → EOS | −0.08 | TEMP-Winter → EOS → NPP | 0.016 | TEMP-Winter → EOS | −0.072 |
TEMP-Winter → NPP | −0.072 | TEMP-Winter → NPP | −0.064 | ||
SOS → EOS | 0.610 | SOS → EOS → NPP | −0.132 | SOS → EOS | 0.610 |
SOS → NPP | 0.170 | / | / | SOS → NPP | 0.038 |
EOS → NPP | −0.216 | / | / | EOS → NPP | −0.216 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Li, H.; Zhou, Y.; Yu, Y.; Wang, X. The Impact of Seasonal Climate on Dryland Vegetation NPP: The Mediating Role of Phenology. Sustainability 2024, 16, 9835. https://doi.org/10.3390/su16229835
Liu X, Li H, Zhou Y, Yu Y, Wang X. The Impact of Seasonal Climate on Dryland Vegetation NPP: The Mediating Role of Phenology. Sustainability. 2024; 16(22):9835. https://doi.org/10.3390/su16229835
Chicago/Turabian StyleLiu, Xian, Hengkai Li, Yanbing Zhou, Yang Yu, and Xiuli Wang. 2024. "The Impact of Seasonal Climate on Dryland Vegetation NPP: The Mediating Role of Phenology" Sustainability 16, no. 22: 9835. https://doi.org/10.3390/su16229835
APA StyleLiu, X., Li, H., Zhou, Y., Yu, Y., & Wang, X. (2024). The Impact of Seasonal Climate on Dryland Vegetation NPP: The Mediating Role of Phenology. Sustainability, 16(22), 9835. https://doi.org/10.3390/su16229835