Modelling of Carbon Monoxide and Suspended Particulate Matter Concentrations in a Rural Area Using Artificial Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sites of the Experimental Activities
2.2. Components of the Field-Portable Device and Characteristics of the Sensors
2.3. Building the Artificial Neural Network Model
2.4. Determining the Relative Contributions of Each Input Variable to the Output
2.5. Evaluation of the ANN Model Performance
3. Results and Discussion
3.1. Weather Variables Analysis
3.2. Analysis of Carbone Monoxide Concentrations
3.3. Analysis of SPM Concentrations
3.4. Correlation Analysis
3.5. Performance of Established ANN Model for CO and SPM Prediction
3.6. Contribution of Each Input Parameter to the Prediction of CO and SPM Concentrations Using the Developed ANN Model
3.7. Application of Biases and Weights of Developed ANN Model to Predict CO and SPM Concentrations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monitoring, Modelling and Management of Agricultural Air Pollutants and Greenhouse Gases. Available online: https://www.mdpi.com/journal/agriculture/special_issues/63U986XY8F (accessed on 9 August 2024).
- Hanapi, N.; Mohd Din, S.A. A Study on the Airborne Particulates Matter in Selected Museums of Peninsular Malaysia. Procedia Soc. Behav. Sci. 2012, 50, 602–613. [Google Scholar] [CrossRef]
- British-Colombia Air Quality. Air Quality and Climate Change. 2009. Available online: http://www.bcairquality.ca/climatechange/index.html (accessed on 9 August 2024).
- The Two-Way Relationship Between Agriculture and Air Pollution. Article 7 December 2022. Available online: https://www.clarity.io/blog/the-two-way-relationship-between-agriculture-and-air-pollution (accessed on 13 July 2024).
- Heck, W.W.; Taylor, O.C.; Tingey, D.T. Assessment of Crop Loss from Air Pollutants; Elsevier Applied Science: London, UK, 1988. [Google Scholar]
- Effects of Air Pollution on Agricultural Crops. Available online: https://www.ontario.ca/page/effects-air-pollution-agricultural-crops (accessed on 11 August 2024).
- Aragon, F.M.; Rud, J.P. Modern Industries, Pollution and Agricultural Productivity: Evidence from Ghana. Working Paper. 2013. Available online: https://www.theigc.org/wp-content/uploads/2014/09/Aragon-Rud-2013-Working-Paper.pdf (accessed on 13 July 2024).
- Wei, W.; Wang, Z. Impact of Industrial Air Pollution on Agricultural Production. Atmosphere 2021, 12, 639. [Google Scholar] [CrossRef]
- Vallero, D.A. Fundamentals of Air Pollution, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- 10.6.4. Suspended particulates (TSP/SPM). Available online: https://www.eea.europa.eu/publications/2-9167-057-X/page021 (accessed on 10 September 2024).
- Basic Information about Carbon Monoxide (CO) Outdoor Air Pollution. Available online: https://www.epa.gov/co-pollution/basic-information-about-carbon-monoxide-co-outdoor-air-pollution#:~:text=The%20greatest%20sources%20of%20CO,can%20affect%20air%20quality%20indoors (accessed on 10 September 2024).
- Environmental Health Criteria 13. Carbon Monoxide. International Programme on Chemical Safety. Carbon monoxide. World Health Organization Geneva, 1979. Available online: https://iris.who.int/bitstream/handle/10665/336055/9241540737-eng.pdf (accessed on 12 November 2024).
- Penney, D.; Benignus, V.; Kephalopoulos, S.; Kotzias, D.; Kleinman, M.; Verrier, A. Carbon monoxide. In WHO Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization: Geneva, Switzerland, 2010; p. 2. Available online: https://www.ncbi.nlm.nih.gov/books/NBK138710/ (accessed on 10 September 2024).
- Borghi, F.; Spinazzè, A.; De Nardis, N.; Straccini, S.; Rovelli, S.; Fanti, G.; Oxoli, D.; Cattaneo, A.; Cavallo, D.M.; Brovelli, M.A. Studies on Air Pollution and Air Quality in Rural and Agricultural Environments: A Systematic Review. Environments 2023, 10, 208. [Google Scholar] [CrossRef]
- Adaku, O. Automobile Carbon Monoxide Emissions and their Effects on the Environment and Human Health. Adv. Automob. Eng. 2024, 13, 1000268. [Google Scholar]
- Khunarak, C.; Lutz, M.; Kerdcharoen, T. Wi-Fi Electronic Nose For Indoor Air Monitoring. In Proceedings of the 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Phetchaburi, Thailand, 16–18 May 2012; pp. 1–4. [Google Scholar]
- Marshall, F.; Ashmore, M.; Hinchcliffe, F. A Hidden Threat to Food Production: Air Pollution and Agriculture in the Developing World; Gatekeeper Series; International Institute for Environment and Development (IIED): London, UK, 1997; p. 24, No. 73; Available online: https://www.iied.org/6132iied (accessed on 5 July 2024)ISBN 9781843693796.
- Alshammari, R.K.; Alrwais, O.; Aksoy, M.S. Machine Learning Forecast of Dust Storm Frequency in Saudi Arabia Using Multiple Features. Atmosphere 2024, 15, 520. [Google Scholar] [CrossRef]
- Al Ahasan, M.A.; Roy, S.; Saim, A.H.M.; Akter, R.; Hossain, M.Z. Arduino-based real time air quality and pollution monitoring system. Int. J. Innov. Res. Comput. Sci. Technol. 2018, 6, 81–86. [Google Scholar] [CrossRef]
- Raju, D.T.; Shivani, K.; Bharathi, T.S.; Yamini, M.; Charishma, P. Air quality monitoring system using arduino. Dogo Rangsang Res. J. 2021, 11, 612–615. [Google Scholar]
- Kelechi, A.H.; Alsharif, M.H.; Agbaetuo, C.; Ubadike, O.; Aligbe, A.; Uthansakul, P.; Kannadasan, R.; Aly, A.A. Design of a Low-Cost Air Quality Monitoring System Using Arduino and ThingSpeak. Comput. Mater. Contin. Tech Sci. Press 2022, 70, 151–169. [Google Scholar] [CrossRef]
- Bakri, N.A.M.; Al Junid, S.A.; Abdul Razak, A.; Idros, M.F.M.; Halim, A. Mobile Carbon Monoxide Monitoring System Based on Arduino-Matlab for Environmental Monitoring Application. 4th International Conference on Electronic Devices, Systems and Applications 2015 (ICEDSA) IOP Publishing IOP Conf. Ser. Mater. Sci. Eng. 2015, 99, 012009. [Google Scholar] [CrossRef]
- Husain, A.M.; Rini, T.H.; Haque, M.I.; Alam, M.R. Air Quality Monitoring: The Use of Arduino and Android. J. Mod. Sci. Technol. 2016, 4, 86–96. [Google Scholar]
- Kaneri, N.; Bhalekar, K.; Kharvatkar, S. Carbon Monoxide Monitoring System Based On Arduino-GSM for Environmental Monitoring Application. Int. J. Eng. Res. Appl. 2017, 7, 57–61. [Google Scholar] [CrossRef]
- Agrawaal, H.; Jones, C.; Thompson, J.E. Personal Exposure Estimates via Portable and Wireless Sensing and Reporting of Particulate Pollution. Int. J. Environ. Res. Public Health 2020, 17, 843. [Google Scholar] [CrossRef] [PubMed]
- Beyaz, A. Air quality evaluation with a low-cost dust sensor for a hencoop. Agric. Sci. Dig. A Res. J. 2019, 39, 236–243. [Google Scholar] [CrossRef]
- Biswal, A.; Subhashini, J.; Pasayat, A.K. Air quality monitoring system for indoor environments using IoT. AIP Conf. Proc. 2019, 2112, 020180:1–020180:11. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Fatima, N.; Ahmad, A. Smart Air Pollution Monitoring System with Smog Prediction Model using Machine Learning. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 401–409. [Google Scholar] [CrossRef]
- Hastak, O.G.; Verma, K.; Zagdamwar, A.; Patil, A.; Tembhurnikar, R. IOT based weather forecasting system using Arduino board. Int. J. Res. Publ. Rev. 2022, 3, 2664–2669. [Google Scholar]
- Gimena, R.Z.A.; Narvadez, C.A.A.; Balitaon, A.G.; Abad, A.C.; Arada, G.P. Arduino-based Remotely Accessed Weather Monitoring Station. Int. J. Adv. Trends Comput. Sci. Eng. 2020, 9, 8860–8865. [Google Scholar]
- Cordova, C.H.; Portocarrero, M.N.L.; Salas, R.; Torres, R.; Rodrigues, P.C.; López-Gonzales, J.L. Air quality assessment and pollution forecasting using artificial neural networks in Metropolitan Lima-Peru. Sci. Rep. 2021, 11, 24232. [Google Scholar] [CrossRef]
- Ding, W.; Zhang, J.; Leung, Y. Prediction of air pollutant concentration based on sparse response back-propagation training feedforward neural networks. Environ. Sci. Pollut. Res. 2016, 23, 19481–19494. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Wahab, S.A.; Al-Rubiei, R.; Al-Shamsi, A. A statistical model for predicting carbon monoxide levels. Int. J. Environ. Pollut. 2003, 19, 209–224. [Google Scholar] [CrossRef]
- Dong, J.; Goodman, N.; Rajagopalan, P. A Review of Artificial Neural Network Models Applied to Predict Indoor Air Quality in Schools. Int. J. Environ. Res. Public Health 2023, 20, 6441. [Google Scholar] [CrossRef] [PubMed]
- Gulati, S.; Bansal, A.; Pal, A.; Mittal, N.; Sharma, A.; Gared, F. Estimating PM2.5 utilizing multiple linear regression and ANN techniques. Sci. Rep. 2023, 13, 22578. [Google Scholar] [CrossRef] [PubMed]
- Campos, D.S.; de Souza Tadano, Y.; Alves, T.A.; Siqueira, H.V.; de Nóbrega Marinho, M.H. Unorganized machines and linear multivariate regression model applied to atmospheric pollutant forecasting. Acta Scientiarum. Technol. 2020, 42, e48203. [Google Scholar] [CrossRef]
- Moustris, K.P.; Nastos, P.T.; Larissi, I.K.; Paliatsos, A.G. Application of multiple linear regression models and artificial neural networks on the surface ozone forecast in the greater Athens area, Greece. Adv. Meteorol. 2012, 2012, 894714. [Google Scholar] [CrossRef]
- Moustris, K.P.; Larissi, I.K.; Nastos, P.T.; Koukouletsos, K.V.; Paliatsos, A.G. Development and application of artificial neural network modeling in forecasting PM10 levels in a mediterranean city. Water Air Soil Pollut. 2013, 224, 1634. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Lu, J. Exploring the relationship between air pollution and meteorological conditions in China under environmental governance. Sci. Rep. 2020, 10, 14518. [Google Scholar] [CrossRef]
- Emekwuru, N.; Ejohwomu, O. Temperature, humidity and air pollution relationships during a period of rainy and dry seasons in Lagos, West Africa. Climate 2023, 11, 113. [Google Scholar] [CrossRef]
- Azeez, O.S.; Pradhan, B.; Shafri, H.Z.M.; Shukla, N.; Lee, C.-W.; Rizeei, H.M. Modeling of CO Emissions from Traffic Vehicles Using Artificial Neural Networks. Appl. Sci. 2019, 9, 313. [Google Scholar] [CrossRef]
- Asrari, E.; Rock, A. modeling of carbon monoxide, ozone and PM10 airborne pollutants in the air of Karaj using artificial neural network. J. Environ. Sci. Stud. 2022, 7, 4666–4677. [Google Scholar] [CrossRef]
- The Worst Times for Air Quality: Understanding Air Pollution Patterns and Trends. Article 15 November 2023. Available online: https://www.clarity.io/blog/worst-times-for-air-quality-understanding-air-pollution-patterns-and-trends (accessed on 15 July 2024).
- Yadav, V.; Yadav, A.K.; Singh, V.; Singh, T. Artificial neural network an innovative approach in air pollutant prediction for environmental applications: A review. Results Eng. 2024, 22, 102305. [Google Scholar] [CrossRef]
- Nayebare, S.R.; Aburizaiza, O.S.; Siddique, A.; Carpenter, D.O.; Hussain, M.M.; Zeb, J.; Aburiziza, A.J.; Khwaja, H.A. Ambient air quality in the holy city of Makkah: A source apportionment with elemental enrichment factors (EFs) and factor analysis (PMF). Environ. Pollut. 2018, 243, 1791–1801. [Google Scholar] [CrossRef] [PubMed]
- Gäbel, P.; Koller, C.; Hertig, E. Development of Air Quality Boxes Based on Low-Cost Sensor Technology for Ambient Air Quality Monitoring. Sensors 2022, 22, 3830. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.K.; Saraya, M.S.; Ali-Eldin, A.M.T.; Abdelsalam, M.M. Low-Cost IoT Air Quality Monitoring Station Using Cloud Platform and Blockchain Technology. Appl. Sci. 2024, 14, 5774. [Google Scholar] [CrossRef]
- Carbon Monoxide. MQ-7 GAS SENSOR. Available online: http://www.hwsensor.com (accessed on 23 July 2024).
- Pleva GmbH. Dht11. Melliand Textilberichte 1995, 76, 1112.
- Kalra, V.; Baweja, C.; Simmarpreet; Chopra, S. Influence of temperature and humidity on the output resistance ratio of the MQ-135 Sensor. Int. J. Adv. Res. Comput. Sci. Softw. Eng. Res. 2016, 6, 423–429. [Google Scholar]
- EPA. Criteria Air Pollutants. Available online: https://www.epa.gov/criteria-air-pollutants (accessed on 30 July 2024).
- Searched Topics: PM Pollution, NO2 Pollution, CO Pollution, PM Pollution, O3 Pollution. Available online: https://trends.google.com/trends (accessed on 30 July 2024).
- Kim, K.-H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Khan, M.; Khan, N.; Skibniewski, M.J.; Park, C. Environmental Particulate Matter (PM) Exposure Assessment of Construction Activities Using Low-Cost PM Sensor and Latin Hypercubic Technique. Sustainability 2021, 13, 7797. [Google Scholar] [CrossRef]
- Sharp Corporation Application Note of Sharp Dust Sensor GP2Y1010AU0F. 2006. Available online: http://www.sharp-world.com/products/device/lineup/data/pdf/datasheet/gp2y1010au_appl_e.pdf (accessed on 30 July 2024).
- Thompson, J.E. Improved Measurement Performance for the Sharp GP2Y1010 Dust Sensor: Reduction of Noise. Atmosphere 2021, 12, 775. [Google Scholar] [CrossRef]
- Xia, H.; Wang, X.; Qiao, Y.; Jian, J.; Chang, Y. Using Multiple Barometers to Detect the Floor Location of Smart Phones with Built-in Barometric Sensors for Indoor Positioning. Sensors 2015, 15, 7857–7877. [Google Scholar] [CrossRef]
- Binghao, L.; Harvey, B.; Gallagher, T. Using barometers to determine the height for indoor positioning. In Proceedings of the 2013 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Montbeliard-Belfort, France, 28–31 October 2013. [Google Scholar]
- Medvediev, D.; Suprun, A.; Lysenko, Y.; Zadorozhnii, V.; Lavrinenko, Y. Development of Meteorological Station using Arduino and Android Application for Data Processing. In Proceedings of the 5th International Scientific Congress Society of Ambient Intelligence (ISC SAI 2022)—Volume Sustainable Development and Global Climate Change, Kryvyi Rih, Ukraine, 4–8 April 2022; pp. 248–255. [Google Scholar] [CrossRef]
- BMP-180 Sensor with Arduino. Available online: https://justdoelectronics.com/bmp-180-sensor-arduino-tutorial/ (accessed on 23 July 2024).
- Almady, S.S.; Al-Sager, S.M.; Al-Janobi, A.A.; Marey, S.A.; Aboukarima, A.M. Evaluation of Air Pollution Levels in Agricultural Settings Using Integrated Weather Variables and Air Pollutants. Appl. Sci. 2024, 14, 5713. [Google Scholar] [CrossRef]
- Reilly, M.K.; Birner, T.M.; Johnson, G.N. Measuring air quality using wireless self-powered devices. In Proceedings of the 2015 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 8–11 October 2015; pp. 267–272. [Google Scholar] [CrossRef]
- Lee, D.; Jeong, J.-W.; Choi, G. Short Term Prediction of PV Power Output Generation Using Hierarchical Probabilistic Model. Energies 2021, 14, 2822. [Google Scholar] [CrossRef]
- Kuo, P.; Huang, C. A high precision artificial neural networks model for short-term energy load forecasting. Energies 2018, 11, 213. [Google Scholar] [CrossRef]
- Kuo, P.; Huang, C. An electricity price forecasting model by hybrid structured deep neural networks. Sustainability 2018, 10, 1280. [Google Scholar] [CrossRef]
- Yaïci, W.; Longo, M.; Entchev, E.; Foiadelli, F. Simulation study on the effect of reduced inputs of artificial neural networks on the predictive performance of the solar energy system. Sustainability 2017, 9, 1382. [Google Scholar] [CrossRef]
- Cervone, G.; Clemente-Harding, L.; Alessandrini, S.; Monache, L.D. Short-term photovoltaic power forecasting using artificial neural networks and an analog ensemble. Renew. Energy 2017, 108, 274–286. [Google Scholar] [CrossRef]
- Khanale, P.B.; Chitnis, S.D. Handwritten Devanagari Character Recognition using Artificial Neural Network. J. Artif. Intell. 2011, 4, 55–62. [Google Scholar] [CrossRef]
- State, I.; Uyo, A.; Offiong, A. Neural networks in materials science and engineering: A review of salient issues. Eur. J. Eng. Technol. 2016, 3, 40–54. [Google Scholar]
- Fogno Fotso, H.R.; Aloyem Kazé, C.V.; Kenmoe, G.D. Optimal Input Variables Disposition of Artificial Neural Networks Models for Enhancing Time Series Forecasting Accuracy. Appl. Artif. Intell. 2020, 34, 792–815. [Google Scholar] [CrossRef]
- Crone, S.F.; Kourentzes, N. Input-variable specification for neural networks—An analysis of forecasting low and high time series frequency. In Proceedings of the International Joint Conference on Neural Networks, Atlanta, GA, USA, 14–19 June 2009; pp. 619–626. [Google Scholar]
- Fazeli, H.; Soleimani, R.; Ahmadi, M.A.; Badrnezhad, R.; Mohammadi, A.H. Experimental Study and Modeling of Ultrafiltration of Refinery Effluents Using a Hybrid Intelligent Approach. J. Energy 2013, 27, 3523–3537. [Google Scholar] [CrossRef]
- Vesta Services, Inc. Qnet2000 Shareware. Vesta Services. Inc. 1001 Green Bay Rd, STE 196. Winnetka. IL 60093, 2000. QnetV2kt. Qnet v2000 for Windows, the Complete Solution for Backpropagation Neural Network. Available online: https://qnetv2kt.software.informer.com/ (accessed on 12 November 2024).
- Al-Sager, S.M.; Almady, S.S.; Marey, S.A.; Al-Hamed, S.A.; Aboukarima, A.M. Prediction of Specific Fuel Consumption of a Tractor during the Tillage Process Using an Artificial Neural Network Method. Agronomy 2024, 14, 492. [Google Scholar] [CrossRef]
- Bakas, I.; Kontoleon, K.J. Performance Evaluation of Artificial Neural Networks (ANN) Predicting Heat Transfer through Masonry Walls Exposed to Fire. Appl. Sci. 2021, 11, 11435. [Google Scholar] [CrossRef]
- Normalizing Inputs for an Artificial Neural Network. Available online: http://www.baeldung.com (accessed on 20 September 2024).
- Chng, Z.M. Using Normalization Layers to Improve Deep Learning Models. Available online: https://machinelearningmastery.com/using-normalization-layers-to-improve-deep-learning-models/ (accessed on 20 September 2024).
- An Overview of Categorical Input Handling for Neural Networks. Available online: http://towerdsdatascience.com (accessed on 20 September 2024).
- Geographic Coordinate Encoding Using TensorFlow Feature Columns. Available online: https://mediuem.com (accessed on 20 September 2024).
- Neelamegam, M. Predicting Air Quality Using Weather Forecasting and Machine Learning. Master’s Thesis, Computer Science, Johannes Kepler University, Linz, Austria, 2022; 70p. [Google Scholar]
- Pratiwi, H.; Windarto, A.P.; Susliansyah, S.; Aria, R.R.; Susilowati, S.; Rahayu, L.K.; Fitriani, Y.; Merdekawati, A.; Rahadjeng, I.R. Sigmoid Activation Function in Selecting the Best Model of Artificial Neural Networks. 1st Bukittinggi International Conference on Education IOP Conf. Series. J. Phys. Conf. Ser. 2020, 1471, 012010. [Google Scholar] [CrossRef]
- Pentoś, K. The methods of extracting the contribution of variables in artificial neural network models—Comparison of inherent instability. Comput. Electron. Agric. 2016, 127, 141–146. [Google Scholar] [CrossRef]
- Lawson, D.; Marion, G. An Introduction to Mathematical Modelling. 2008. Available online: https://people.maths.bris.ac.uk/~madjl/course_text.pdf (accessed on 30 July 2024).
- Al-Dosary, N.M.N.; Alnajjar, F.M.; Aboukarima, A.E.W.M. Estimation of wheel slip in 2WD mode for an agricultural tractor during plowing operation using an artificial neural network. Sci. Rep. 2023, 13, 5975. [Google Scholar] [CrossRef]
- Tsae, N.B.; Adachi, T.; Kawamura, Y. Application of artificial neural network for the prediction of copper ore grade. Minerals 2023, 13, 658. [Google Scholar] [CrossRef]
- Sammen, S.S.; Kisi, O.; Ehteram, M.; El-Shafie, A.; Al-Ansari, N.; Ghorbani, M.A.; Bhat, S.A.; Ahmed, A.N.; Shahid, S. Rainfall modeling using two different neural networks improved by metaheuristic algorithms. Environ. Sci. Eur. 2023, 35, 112. [Google Scholar] [CrossRef]
- Alharbi, B.H.; Alhazmi, H.A.; Aldhafeeri, Z.M. Air Quality of Work, Residential, and Traffic Areas during the COVID-19 Lockdown with Insights to Improve Air Quality. Int. J. Environ. Res. Public Health 2022, 19, 727. [Google Scholar] [CrossRef]
- Elbayoumi, M.; Ramli, N.A.; Yusof, N.F.F.M.; Madhoun, W.A. The effect of seasonal variation on indoor and outdoor carbon monoxide concentrations in Eastern Mediterranean climate. Atmos. Pollut. Res. 2014, 5, 315–324. [Google Scholar] [CrossRef]
- ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological Profile for Carbon Monoxide; U.S. Department of Health and Human Services: Atlanta, GA, USA, 2012.
- HPA (Public Health England), 2009. Available online: http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1202487036268 (accessed on 30 July 2024).
- Li, D.-C.; Huang, W.-K.; Lin, Y.-S. New Product Short-Term Demands Forecasting with Boxplot-Based Fractional Grey Prediction Model. Appl. Sci. 2022, 12, 5131. [Google Scholar] [CrossRef]
- Tukey, J.W. Exploratory Data Analysis; Reading Mass; Addison-Wesley: Menlo Park, CA, USA; London, UK; Amsterdam, The Netherlands, 1977. [Google Scholar]
- Hofstetter, D.; Fabian, E.; Dominguez, D.; Lorenzoni, A.G. Automatically Controlled Dust Generation System Using Arduino. Sensors 2022, 22, 4574. [Google Scholar] [CrossRef]
- Gaowa, S.; Zhang, Z.; Nie, J.; Li, L.; A-ru, H.; Yu, Z. Using artificial neural networks to predict indoor particulate matter and TVOC concentration in an office building: Model selection and method development. Energy Built Environ. 2024, in press. [Google Scholar] [CrossRef]
- Ipate, G.; Voicu, G.; Stefan, E.M.; Manea, D.; Dinca, M. Air dust particles monitoring in a greenhouse based on the Arduino. In Proceedings of the 43rd International Symposium on Agricultural Engineering, Actual Tasks on Agricultural Engineering, Opatija, Croatia, 24–27 February 2015; Volume 2015, pp. 461–471. [Google Scholar]
- Muhammed, Y.A.; Azeez, S.A. Using wireless sensors networks to investigate the air quality in outdoor and indoor environment in south of Erbil, Iraq. Int. J. IT Eng. 2020, 8, 1–10. [Google Scholar]
- Choudhary, A.; Kumar, P.; Pradhan, C.; Sahu, S.K.; Chaudhary, S.K.; Joshi, P.K.; Pandey, D.N.; Prakash, D.; Mohanty, A. Evaluating air quality and criteria pollutants prediction disparities by data mining along a stretch of urban-rural agglomeration includes coal-mine belts and thermal power plants. Front. Environ. Sci. 2023, 11, 1132159. [Google Scholar] [CrossRef]
- Ruwali, S.; Talebi, S.; Fernando, A.; Wijeratne, L.O.H.; Waczak, J.; Dewage, P.M.H.; Lary, D.J.; Sadler, J.; Lary, T.; Lary, M.; et al. Quantifying Inhaled Concentrations of Particulate Matter, Carbon Dioxide, Nitrogen Dioxide, and Nitric Oxide Using Observed Biometric Responses with Machine Learning. BioMedInformatics 2024, 4, 1019–1046. [Google Scholar] [CrossRef]
- Jierula, A.; Wang, S.; OH, T.-M.; Wang, P. Study on Accuracy Metrics for Evaluating the Predictions of Damage Locations in Deep Piles Using Artificial Neural Networks with Acoustic Emission Data. Appl. Sci. 2021, 11, 2314. [Google Scholar] [CrossRef]
- Jerrett, M.; Arain, A.; Kanaroglou, P.; Beckerman, B.; Potoglou, D.; Sahsuvaroglu, T.; Morrison, J.; Giovis, C. A review and evaluation of intraurban air pollution exposure models. J. Expo. Sci. Environ. Epidemiol. 2005, 15, 185–204. [Google Scholar] [CrossRef]
- Ghazali, S.; Ismail, L.H. Air Quality Prediction Using Artificial Neural Network. Corpus ID: 10799004. 2012. Available online: https://core.ac.uk/download/pdf/12007488.pdf (accessed on 9 August 2024).
- Suri, R.S.; Jain, A.K.; Kapoor, N.R.; Kumar, A.; Arora, H.C.; Kumar, K.; Jahangir, H. Air Quality Prediction—A Study Using Neural Network Based Approach. J. Soft Comput. Civ. Eng. 2023, 7-1, 93–113. [Google Scholar] [CrossRef]
- Ren, J.; He, J.; Novoselac, A. Predicting indoor particle concentration in mechanically ventilated classrooms using neural networks: Model development and generalization ability analysis. Build. Environ. 2023, 238, 110404. [Google Scholar] [CrossRef]
- Shams, S.R.; Jahani, A.; Moeinaddini, M.; Khorasani, N. Air carbon monoxide forecasting using an artifcial neural network in comparison with multiple regression. Model. Earth Syst. Environ. 2020, 6, 1467–1475. [Google Scholar] [CrossRef]
- Thomas, S.; Jacko, R.B. Model for Forecasting Expressway Fine Particulate Matter and Carbon Monoxide Concentration: Application of Regression and Neural Network Models. J. Air Waste Manag. Assoc. 2007, 57, 480–488. [Google Scholar] [CrossRef]
- Heng, S.Y.; Ridwan, W.M.; Kumar, P.; Ahmed, A.N.; Fai, C.M.; Birima, A.H.; El-Shafie, A. Artificial neural network model with different backpropagation algorithms and meteorological data for solar radiation prediction. Sci. Rep. 2022, 12, 10457. [Google Scholar] [CrossRef] [PubMed]
- Hanoon, M.S.; Ahmed, A.N.; Zaini, N.A.; Razzaq, A.; Kumar, P.; Sherif, M.; Sefelnasr, A.; El-Shafie, A. Developing machine learning algorithms for meteorological temperature and humidity forecasting at Terengganu state in Malaysia. Sci. Rep. 2021, 11, 18935. [Google Scholar] [CrossRef] [PubMed]
- Elangasinghe, M.A.; Singh, N.; Dirks, K.N.; Salmond, J.A.; Samarasinghe, S. Complex time series analysis of PM10 and PM2.5 for a coastal site using artificial neural network modeling and k-means clustering. Atmos. Environ. 2014, 94, 106–116. [Google Scholar] [CrossRef]
- Agarwal, S.; Sharma, S.; Suresh, R.; Rahman, M.H.; Vranckx, S.; Maiheu, B.; Blyth, L.; Janssen, S.; Gargava, P.; Shukla, V.K.; et al. Air quality forecasting using artificial neural networks with real time dynamic error correction in highly polluted regions. Sci. Total Environ. 2020, 735, 139454. [Google Scholar] [CrossRef]
- Sharma, E.; Deo, R.C.; Prasad, R.; Parisi, A.V.; Raj, N. Deep Air Quality Forecasts: Suspended Particulate Matter Modeling With Convolutional Neural and Long Short-Term Memory Networks. IEEE Access 2020, 8, 14. [Google Scholar] [CrossRef]
- Dai, X.; Liu, J.; Li, Y. A recurrent neural network using historical data to predict time series indoor PM2.5 concentrations for residential buildings. Indoor Air 2021, 31, 1228–1237. [Google Scholar] [CrossRef]
- Hatta, M.; Han, H. Predicting indoor PM2.5/PM10 concentrations using simplified neural network models. J. Mech. Sci. Technol. 2021, 35, 3249–3257. [Google Scholar] [CrossRef]
- Challoner, A.; Pilla, F.; Gill, L. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings. Int. J. Environ. Res. Public Health 2015, 12, 15233–15253. [Google Scholar] [CrossRef]
- Alkasassbeh, M.; Sheta, A.; Mouhammad, F.A.; Faris, H.; Turabieh, H. Prediction of PM10 and TSP air pollution parameters using artificial neural network autoregressive, external input models- A case study in salt, Jordan. Middle East J. Sci. Res. 2013, 14, 999–1009. [Google Scholar] [CrossRef]
- Skyrzypski, J.; Szakiel, J.E. Neural network prediction models as a tool for air quality management in cities. J. Environ. Prot. Eng. 2008, 34, 130–137. [Google Scholar]
- Arslan, S.; Aybek, A. Particulate Matter Exposure in Agriculture. From the Edited Volume Air Pollution—A Comprehensive Perspective, Edited by Budi Haryanto, 2011. Available online: https://www.intechopen.com/chapters/38344 (accessed on 30 July 2024).
Independent Variables (Explanatory Variables), Inputs | Outputs, Dependent Variables | |||||||
---|---|---|---|---|---|---|---|---|
Indoor Environment | Outdoor Environment | Atmospheric Pressure | Air Tempearture | Air Relative Humidity | Latitude of a Location | Longitude of a Location | CO | SPM |
(-) | (-) | (hPa) | (°C) | (%) | (°N) | (°E) | (ppm) | (µg/m3 air) |
1 | 0 | 945.65 | 21.80 | 40.00 | 24.81 | 46.52 | 11.99 | 145.71 |
1 | 0 | 941.50 | 34.40 | 54.00 | 25.39 | 45.33 | 10.60 | 254.78 |
1 | 0 | 940.83 | 38.80 | 12.00 | 25.39 | 45.33 | 12.45 | 214.06 |
1 | 0 | 945.73 | 21.10 | 41.00 | 24.81 | 46.52 | 14.17 | 143.06 |
1 | 0 | 938.54 | 44.80 | 16.00 | 25.40 | 45.33 | 10.49 | 218.99 |
1 | 0 | 938.46 | 44.30 | 16.00 | 25.40 | 45.33 | 10.15 | 227.37 |
0 | 1 | 840.03 | 34.20 | 16.00 | 21.29 | 40.42 | 12.86 | 253.51 |
0 | 1 | 840.06 | 34.60 | 17.00 | 21.29 | 40.42 | 12.86 | 244.88 |
0 | 1 | 944.89 | 29.90 | 24.00 | 24.81 | 46.52 | 8.10 | 161.77 |
0 | 1 | 944.70 | 25.70 | 32.00 | 24.81 | 46.52 | 10.89 | 246.43 |
Air Pressure | Air Temperature | Air Relative Humidity | Latitude | Longitude | CO | SPM | |
---|---|---|---|---|---|---|---|
Air Pressure | 1 | ||||||
Air Temperature | −0.351 ** | 1 | |||||
Air Relative Humidity | 0.270 ** | −0.383 ** | 1 | ||||
Latitude | 0.932 ** | −0.249 ** | 0.034 | 1 | |||
Longitude | 0.987 ** | −0.342 ** | 0.367 ** | 0.877 ** | 1 | ||
CO | −0.132 ** | −0.129 ** | 0.270 ** | −0.148 ** | −0.103 ** | 1 | |
SPM | −0.312 ** | 0.533 ** | −0.232 ** | −0.230 ** | −0.325 ** | −0.018 | 1 |
Air Pressure | Air Temperature | Air Relative Humidity | Latitude | Longitude | CO | SPM | |
---|---|---|---|---|---|---|---|
Air Pressure | 1 | ||||||
Air Temperature | −0.070 | 1 | |||||
Air Relative Humidity | 0.346 ** | −0.0615 ** | 1 | ||||
Latitude | 0.956 ** | −0.053 | 0.182 ** | 1 | |||
Longitude | 0.976 ** | −0.126 ** | 0.291 ** | 0.962 ** | 1 | ||
CO | −0.319 ** | 0.414 ** | −0.220 ** | −0.344 ** | −0.374 ** | 1 | |
SPM | −0.239 ** | 0.605 ** | −0.258 ** | −0.262 ** | −0.271 ** | 0.358 ** | 1 |
Performance Stage | Output Nodes | Bias | Maximum Error | Correlation Coefficient |
---|---|---|---|---|
Training | CO (ppm) | 0.019 | 5.958 | 0.806 |
SPM (µg/m3 air) | −0.049 | 119.566 | 0.724 | |
Testing | CO (ppm) | −0.094 | 6.872 | 0.758 |
SPM (µg/m3 air) | 4.705 | 129.892 | 0.705 |
Output Nodes | Training Dataset | Testing Dataset | ||||
---|---|---|---|---|---|---|
RMSE | MAE | R2 | RMSE | MAE | R2 | |
CO (ppm) | 1.490 | 0.994 | 0.6493 | 1.708 | 1.139 | 0.575 |
SPM (µg/m3 air) | 28.657 | 22.302 | 0.5244 | 30.301 | 23.889 | 0.497 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Sager, S.M.; Almady, S.S.; Al-Janobi, A.A.; Bukhari, A.M.; Abdel-Sattar, M.; Al-Hamed, S.A.; Aboukarima, A.M. Modelling of Carbon Monoxide and Suspended Particulate Matter Concentrations in a Rural Area Using Artificial Neural Networks. Sustainability 2024, 16, 9909. https://doi.org/10.3390/su16229909
Al-Sager SM, Almady SS, Al-Janobi AA, Bukhari AM, Abdel-Sattar M, Al-Hamed SA, Aboukarima AM. Modelling of Carbon Monoxide and Suspended Particulate Matter Concentrations in a Rural Area Using Artificial Neural Networks. Sustainability. 2024; 16(22):9909. https://doi.org/10.3390/su16229909
Chicago/Turabian StyleAl-Sager, Saleh M., Saad S. Almady, Abdulrahman A. Al-Janobi, Abdulla M. Bukhari, Mahmoud Abdel-Sattar, Saad A. Al-Hamed, and Abdulwahed M. Aboukarima. 2024. "Modelling of Carbon Monoxide and Suspended Particulate Matter Concentrations in a Rural Area Using Artificial Neural Networks" Sustainability 16, no. 22: 9909. https://doi.org/10.3390/su16229909
APA StyleAl-Sager, S. M., Almady, S. S., Al-Janobi, A. A., Bukhari, A. M., Abdel-Sattar, M., Al-Hamed, S. A., & Aboukarima, A. M. (2024). Modelling of Carbon Monoxide and Suspended Particulate Matter Concentrations in a Rural Area Using Artificial Neural Networks. Sustainability, 16(22), 9909. https://doi.org/10.3390/su16229909