Sustainability of Nonisocyanate Polyurethanes (NIPUs)
Abstract
:1. Introduction
2. Methodology
3. Methods of NIPU and Substrate Synthesis
3.1. Rearrangement (Curtius, Hofmann, or Lossen)
3.2. Transurethanization
3.3. Ring-Opening Polymerization
3.4. Polyadditon of Bis-Cyclic Carbonates (CCs) and Diamines
3.4.1. Reaction of Cyclic Carbonates
3.4.2. Nonisocyanate Polyurethanes
4. Renewable Substrates for the Synthesis of NIPUs
5. Waterborne and Solvent-Free NIPUs
6. NIPU Lifetime, Degradation, Recycling, and Environment Influence
6.1. Self-Healing
6.2. Thermal Stability
6.3. Flame Retardancy
6.4. Hydrolytic Resistance [163,164]
6.5. Recyclability
6.6. Biodegradability
7. Summary and Future Insights
Author Contributions
Funding
Conflicts of Interest
Abbreviations
5,5BCC DGDC | 5,5-membered bis-cyclic diglycerol carbonate |
5,6BCC DGDC | 5,6-membered bis-cyclic diglycerol carbonate |
5CC | 5-membered cyclic carbonate |
AMNB | bis(aminomethyl) norbornane |
BDA | butane-1,4-diamine |
BHAs | bis(hydroxyethyloxycarbonylamino) alkanes |
CAGR | compound annual growth rate |
CCs | cyclic carbonates |
CLSO | carbonated linseed oil |
CMR | Carcinogenic, Mutagenic, Reprotoxic |
CNSL | cashew nutshell liquid |
CO2-AA | carbon dioxide-based amino alcohol compound |
CSO | carbonated soybean oil |
CSS | carbonated sucrose soyate |
DA | diacid |
DA10 | decane diamine |
DAA | diamide amine |
DAB | 1,4-diaminobutane |
DAC | direct air capture |
DBU | 1,8-diazabicyclo[5.4.0]undec-7-ene |
DEE | diethyl ester |
DES | deep eutectic solvent |
DETA | diethylenetriamine |
DGDC | diglycerol dicarbonate |
DGDC | diglycerol carbonate |
DIFFA | difurfurylamine |
DiNHBoc | 2-methylpentamethylene dicarbamate |
DMC | dimethyl carbonate |
DMPA | 3,3′-diamino-N-methyldipropylamine |
EBC | erythritol bis-carbonate |
EDA | ethylene diamine |
EEP | 3-ethoxypropionate |
EOL | end-of-life analysis |
ESFO | epoxidated sunflower oil |
FDA | fatty acid diamine |
G1000 | oligooxypropylene triol |
GDE | diglycerol glycerol ether |
GWP | global warming potential |
H12MDA | methylene bis(cyclohexyl amine) |
HAGS | high amylose gelatinized starch |
HDA | hexane-1,6-diamine |
HMEC | polyhexamethylenecarbonate |
HMMM | hexa(methoxymethyl) melamine |
IEFADs | internal epoxy fatty acid diesters |
IPDA | isophorone diamine |
KL | kraft lignin |
LCA | life cycle assessment |
LOA | linseed oil acid |
LOACC | linseed oil acid cyclic carbonate |
MDI | methylene diphenyl diisocyanate |
OSL | organosolv lignin |
PAPO | polyamine-polyol |
PHU | polyhydroxyurethane |
PTMG | polytetramethylene glycol |
PU | polyurethanes |
SB Bis CC | sebacic biscyclocarbonate |
TAEA | tris(2-aminoethyl)amine |
TBD | 1,5,7-triazabicyclo[4.4.0]dec-5-ene |
TDI | toluene diisocyanate |
TEAA | triester amide amine |
TEAc | triester acid |
TEE | tri-ethyl ester |
TEFADs | terminal epoxy fatty acid diesters |
TEPA | tetraethylenepentamine |
TETA | triethylenetetramine |
TMLAD | tetramethylol diacetylene diurea |
TPU | thermoplastic polyurethane elastomer |
TREN | tris(2-aminoethyl)amine |
TTE | trimethylolpropane triglycidyl ether |
VOC | volatile organic compound |
WPU | water-borne polyurethanes waterborne polyurethane |
XDA | xylylenediamine |
References
- Roubal, J. Polyurethanes: A toxico-hygienic problem. Prac. Lek. 1961, 13, 444–449. [Google Scholar] [PubMed]
- Silk, S.J.; Hardy, H.L. Control Limits for Isocyanates. Ann. Occup. Hyg. 1983, 27, 333–339. [Google Scholar] [CrossRef]
- Blank, W.J. Non-isocyanate routes to polyurethanes. In Proceedings of the Water-Borne and Higher-Solids Coatings Symposium, New Orleans, LA, USA, 21–23 February 1990; pp. 279–291. [Google Scholar]
- Ecochard, Y.; Caillol, S. Hybrid polyhydroxyurethanes: How to overcome limitations and reach cutting edge properties? Eur. Polym. J. 2020, 137, 109915. [Google Scholar] [CrossRef]
- Chen, L.; Yan, H. Research progress in detection methods of amine compounds in air. Chin. J. Ind. Hyg. Occup. Dis. 2021, 39, 316–320. [Google Scholar] [CrossRef]
- Christie, A.O.; Crisp, D.J. Toxicity of aliphatic amines to barnacle larvae. Comp. Biochem. Physiol. 1966, 18, 59–69. [Google Scholar] [CrossRef]
- Finlay, J.A.; Callow, M.E. The toxicity of alkyl amines: The effects of pH. Biofouling 1997, 11, 19–30. [Google Scholar] [CrossRef]
- Poste, A.E.; Grung, M.; Wright, R.F. Amines and amine-related compounds in surface waters: A review of sources, concentrations and aquatic toxicity. Sci. Total Environ. 2014, 481, 274–279. [Google Scholar] [CrossRef]
- Wang, S.; Hanna, D.; Sugamori, K.S.; Grant, D.M. Primary aromatic amines and cancer: Novel mechanistic insights using 4-aminobiphenyl as a model carcinogen. Pharmacol. Ther. 2019, 200, 179–189. [Google Scholar] [CrossRef]
- Boon, Y.H.; Zain, N.N.M.; Mohamad, S.; Fauzi, H.M.; Alias, Y.; Chandrasekaram, K.; Rahim, N.Y.; Yahaya, N.; Raoov, M. Determination of Aromatic Amines in Urine using Extraction and Chromatographic Analysis: A Minireview. Anal. Lett. 2019, 52, 2974–2992. [Google Scholar] [CrossRef]
- Kreye, O.; Mutlu, H.; Meier, M.A.R. Sustainable routes to polyurethane precursors. Green. Chem. 2013, 15, 1431–1455. [Google Scholar] [CrossRef]
- Thébault, M.; Pizzi, A.; Dumarçay, S.; Gerardin, P.; Fredon, E.; Delmotte, L. Polyurethanes from hydrolysable tannins obtained without using isocyanates. Ind. Crops Prod. 2014, 59, 329–336. [Google Scholar] [CrossRef]
- Thébault, M.; Pizzi, A.; Essawy, H.A.; Barhoum, A.; Assche, G.V. Isocyanate free condensed tannin-based polyurethanes. Eur. Polym. J. 2015, 67, 513–526. [Google Scholar] [CrossRef]
- Thébault, M.; Pizzi, A.; Santiago-Medina, F.J.; Al-Marzouki, F.M.; Abdalla, S. Isocyanate-free polyurethanes by coreaction of condensed tannins with aminated tannins. J. Renew. Mater. 2017, 5, 21–29. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Xi, X.; Pizzi, A.; Zhou, X.; Fredon, E.; Du, G.; Gerardin, C. Condensed tannin-glucose-based NIPU bio-foams of improved fire retardancy. Polym. Degrad. Stab. 2020, 175, 109121. [Google Scholar] [CrossRef]
- Chen, X.; Pizzi, A.; Fredon, E.; Gerardin, C.; Zhou, X.; Zhang, B.; Du, G. Low curing temperature tannin-based non-isocyanate polyurethane (NIPU) wood adhesives: Preparation and properties evaluation. Int. J. Adhes. Adhes. 2022, 112, 103001. [Google Scholar] [CrossRef]
- Arias, A.; Entrena-Barbero, E.; Feijoo, G.; Moreira, M.T. Sustainable non-isocyanate polyurethanes bio-adhesives for engineered wood panels are revealed as promising candidates to move from formaldehyde-based alternatives. J. Environ. Chem. Eng. 2022, 10, 107053. [Google Scholar] [CrossRef]
- Janvier, M.; Ducrot, P.H.; Allais, F. Isocyanate-Free Synthesis and Characterization of Renewable Poly(hydroxy)urethanes from Syringaresinol. ACS Sustain. Chem. Eng. 2017, 5, 8648–8656. [Google Scholar] [CrossRef]
- Miao, P.; Liu, J.; He, M.; Leng, X.; Li, Y. Bio-based non-isocyanate polyurethane with closed-loop recyclability and its potential application. Chem. Eng. J. 2023, 475, 146398. [Google Scholar] [CrossRef]
- Lee, A.; Deng, Y. Green polyurethane from lignin and soybean oil through non-isocyanate reactions. Eur. Polym. J. 2015, 63, 67–73. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Daver, F.; Ivanova, E.P.; Adhikari, B. Synthesis of green hybrid materials using starch and non-isocyanate polyurethanes. Carbohydr. Polym. 2020, 229, 115535. [Google Scholar] [CrossRef]
- Xi, X.; Pizzi, A.; Delmotte, L. Isocyanate-free polyurethane coatings and adhesives from mono- and di-saccharides. Polymers 2018, 10, 402. [Google Scholar] [CrossRef]
- Xi, X.; Pizzi, A.; Gerardin, C.; Du, G. Glucose-biobased non-isocyanate polyurethane rigid foams. J. Renew. Mater. 2019, 7, 301–312. [Google Scholar] [CrossRef]
- Xi, X.; Pizzi, A.; Gerardin, C.; Lei, H.; Chen, X.; Amirou, S. Preparation and Evaluation of Glucose Based Non-Isocyanate Polyurethane Self-Blowing Rigid Foams. Polym. 2019, 11, 1802. [Google Scholar] [CrossRef] [PubMed]
- Figovsky, O.L.; Shapovalov, L.; Leykin, A.; Birukova, O.; Potashnikova, R. Progress in Elaboration of Nonisocyanate Polyurethanes Based on Cyclic Carbonates. Int. Lett. Chem. Phys. Astron. 2013, 3, 52–66. [Google Scholar] [CrossRef]
- Farid, M.E.; EL-Saeed, M.A.E.-S.A.M.; Hashem, A.I.; Elenien, O.M.A.; Selim, M.S.; Park, S.E. An eco-friendly non-isocyanate polyurethane treated by CO2 as flame retardant nanocomposite coating/ZrO2@SiO2. Mater. Res. Express 2019, 6, 065042. [Google Scholar] [CrossRef]
- Dong, J.; Liu, B.; Ding, H.; Shi, J.; Liu, N.; Dai, B.; Kim, I. Bio-based healable non-isocyanate polyurethanes driven by the cooperation of disulfide and hydrogen bonds. Polym. Chem. 2020, 11, 7524–7532. [Google Scholar] [CrossRef]
- Pathak, R.; Kathalewar, M.; Wazarkar, K.; Sabnis, A. Non-isocyanate polyurethane (NIPU) from tris-2-hydroxy ethyl isocyanurate modified fatty acid for coating applications. Prog. Org. Coatings 2015, 89, 160–169. [Google Scholar] [CrossRef]
- Doley, S.; Bora, A.; Saikia, P.; Ahmed, S.; Dolui, S.K. Blending of cyclic carbonate based on soybean oil and glycerol: A non-isocyanate approach towards the synthesis of polyurethane with high performance. J. Polym. Res. 2021, 28, 146. [Google Scholar] [CrossRef]
- Farhadian, A.; Ahmadi, A.; Omrani, I.; Miyardan, A.B.; Varfolomeev, M.A.; Nabid, M.R. Synthesis of fully bio-based and solvent free non-isocyanate poly (ester amide/urethane) networks with improved thermal stability on the basis of vegetable oils. Polym. Degrad. Stab. 2018, 155, 111–121. [Google Scholar] [CrossRef]
- Doley, S.; Dolui, S.K. Solvent and catalyst-free synthesis of sunflower oil based polyurethane through non-isocyanate route and its coatings properties. Eur. Polym. J. 2018, 102, 161–168. [Google Scholar] [CrossRef]
- Rayung, M.; Ghani, N.A.; Hasanudin, N. A review on vegetable oil-based non isocyanate polyurethane: Towards a greener and sustainable production route. RSC Adv. 2024, 14, 9273–9299. [Google Scholar] [CrossRef] [PubMed]
- Haniffa, M.A.C.M.; Ching, Y.C.; Chuah, C.H.; Kuan, Y.C.; Liu, D.-S.; Liou, N.-S. Synthesis, Characterization and the Solvent Effects on Interfacial Phenomena of Jatropha Curcas Oil Based Non-Isocyanate Polyurethane. Polymers 2017, 9, 162. [Google Scholar] [CrossRef] [PubMed]
- Stachak, P.; Łukaszewska, I.; Ozimek, J.; Raftopoulos, K.; Bukowczan, A.; Hebda, E.; Calduch, C.; Pielichowski, K. Isocyanate-free fabrication of sustainable polyurethane/POSS hybrid materials with tunable thermo-mechanical response. Express Polym. Lett. 2024, 18, 2–26. [Google Scholar] [CrossRef]
- Schmidt, S.; Ritter, B.S.; Kratzert, D.; Bruchmann, B.; Mülhaupt, R. Isocyanate-free route to poly(carbohydrate-urethane) thermosets and 100% bio-based coatings derived from glycerol feedstock. Macromolecules 2016, 49, 7268–7276. [Google Scholar] [CrossRef]
- Ling, Z.; Zhou, Q. Synthesis and properties of linseed oil-based waterborne non-isocyanate polyurethane coating. Green. Chem. 2023, 25, 10082–10090. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H.; Zhou, Q. Waterborne isocyanate-free polyurethane epoxy hybrid coatings synthesized from sustainable fatty acid diamine. Green. Chem. 2020, 22, 1329–1337. [Google Scholar] [CrossRef]
- Liu, J.; Wang, K.; Xie, Y.; Gao, F.; Zeng, Q.; Yuan, Y.; Liu, R.; Liu, X. Novel partially bio-based fluorinated polyimides from dimer fatty diamine for UV-cured coating. J. Coatings Technol. Res. 2017, 14, 1325–1334. [Google Scholar] [CrossRef]
- Błażek, K.; Datta, J. Renewable natural resources as green alternative substrates to obtain bio-based non-isocyanate polyurethanes-review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 173–211. [Google Scholar] [CrossRef]
- Unverferth, M.; Kreye, O.; Prohammer, A.; Meier, M.A.R. Renewable Non-Isocyanate Based Thermoplastic Polyurethanes via Polycondensation of Dimethyl Carbamate Monomers with Diols. Macromol. Rapid Commun. 2013, 34, 1569–1574. [Google Scholar] [CrossRef]
- Weidlich, T.; Kamenická, B. Utilization of CO2-Available Organocatalysts for Reactions with Industrially Important Epoxides. Catalysts 2022, 12, 298. [Google Scholar] [CrossRef]
- Maisonneuve, L.; Lebarbé, T.; Grau, E.; Cramail, H. Structure-properties relationship of fatty acid-based thermoplastics as synthetic polymer mimics. Polym. Chem. 2013, 4, 5472–5517. [Google Scholar] [CrossRef]
- Suryawanshi, Y.; Sanap, P.; Wani, V. Advances in the synthesis of non-isocyanate polyurethanes. Polym. Bull. 2019, 76, 3233–3246. [Google Scholar] [CrossRef]
- Blattmann, H.; Fleischer, M.; Bähr, M.; Mülhaupt, R. Isocyanate- and phosgene-free routes to polyfunctional cyclic carbonates and green polyurethanes by fixation of carbon dioxide. Macromol. Rapid Commun. 2014, 35, 1238–1254. [Google Scholar] [CrossRef] [PubMed]
- Chelike, D.K.; Gurusamy Thangavelu, S.A. Catalyzed and Non-catalyzed Synthetic Approaches to Obtain Isocyanate-free Polyurethanes. ChemistrySelect 2023, 8, e202300921. [Google Scholar] [CrossRef]
- Mangal, M.; Supriya, H.; Bose, S.; Banerjee, T. Innovations in applications and prospects of non-isocyanate polyurethane bioplastics. Biopolymers 2023, 114, e23568. [Google Scholar] [CrossRef]
- Włoch, M.; Datta, J. Non-isocyanate Polyurethanes. In Polyurethane Polymers: Blends and Interpenetrating Polymer Networks; Elsevier: Amsterdam, The Netherlands, 2017; pp. 169–202. [Google Scholar]
- Guan, J.; Song, Y.; Lin, Y.; Yin, X.; Zuo, M.; Zhao, Y.; Tao, X.; Zheng, Q. Progress in study of non-isocyanate polyurethane. Ind. Eng. Chem. Res. 2011, 50, 6517–6527. [Google Scholar] [CrossRef]
- Figovsky, O.; Shapovalov, L.; Axenov, O. Advanced coatings based upon non-isocyanate polyurethanes for industrial applications Des revêtements avancé pour applications industrielles Fortgeschrittene Anstriche für industrielle Anwendungen. Surf. Coat. Int. Part B Coat. Trans. 2004, 87, 83–90. [Google Scholar] [CrossRef]
- Figovsky, O.; Shapovalov, L.; Buslov, F. Ultraviolet and thermostable non-isocyanate polyurethane coatings. Surf. Coatings Int. Part. B Coatings Trans. 2005, 88, 67–71. [Google Scholar] [CrossRef]
- Choong, P.S.; Rusli, W.; Seayad, A.M.; Seayad, J.; Jana, S. Crosslinked succinic acid based non-isocyanate polyurethanes for corrosion resistant protective coatings. Prog. Org. Coatings 2024, 186, 107961. [Google Scholar] [CrossRef]
- Matsumoto, K.; Kokai, A.; Endo, T. Synthesis and properties of novel poly(hydroxyurethane) from difunctional alicyclic carbonate and m-xylylenediamine and its possibility as gas barrier materials. Polym. Bull. 2016, 73, 677–686. [Google Scholar] [CrossRef]
- Beniah, G.; Fortman, D.; Heath, W.; Dichtel, W.; Torkelson, J. Non-Isocyanate Polyurethane Thermoplastic Elastomer: Amide-Based Chain Extender Yields Enhanced Nanophase Separation and Properties in Polyhydroxyurethane. Macromolecules 2017, 50, 4425–4434. [Google Scholar] [CrossRef]
- Grignard, B.; Thomassin, J.M.; Gennen, S.; Poussard, L.; Bonnaud, L.; Raquez, J.M.; Dubois, P.; Tran, M.P.; Park, C.B.; Jerome, C.; et al. CO2-blown microcellular non-isocyanate polyurethane (NIPU) foams: From bio- and CO2-sourced monomers to potentially thermal insulating materials. Green. Chem. 2016, 18, 2206–2215. [Google Scholar] [CrossRef]
- Aduba, D.C.; Zhang, K.; Kanitkar, A.; Sirrine, J.M.; Verbridge, S.S.; Long, T.E. Electrospinning of plant oil-based, non-isocyanate polyurethanes for biomedical applications. J. Appl. Polym. Sci. 2018, 135, 46464. [Google Scholar] [CrossRef]
- Cornille, A.; Auvergne, R.; Figovsky, O.; Boutevin, B.; Caillol, S. A perspective approach to sustainable routes for non-isocyanate polyurethanes. Eur. Polym. J. 2017, 87, 535–552. [Google Scholar] [CrossRef]
- Raghunath, J.; Georgiou, G.; Armitage, D.; Nazhat, S.N.; Sales, K.M.; Butler, P.E.; Seifalian, A.M. Degradation studies on biodegradable nanocomposite based on polycaprolactone/polycarbonate (80:20%) polyhedral oligomeric silsesquioxane. J. Biomed. Mater. Res. Part A 2008, 91A, 834–844. [Google Scholar] [CrossRef]
- Janowski, B.; Pielichowski, K. Thermo (oxidative) stability of novel polyurethane/POSS nanohybrid elastomers. Thermochim. Acta 2008, 478, 51–53. [Google Scholar] [CrossRef]
- Ozimek, J.; Sternik, D.; Radzik, P.; Hebda, E.; Pielichowski, K. Thermal degradation of POSS-containing nanohybrid linear polyurethanes based on 1,6-hexamethylene diisocyanate. Thermochim. Acta 2021, 697, 178851. [Google Scholar] [CrossRef]
- Sui, H.; Ju, X.; Liu, X.; Cheng, K.; Luo, Y.; Zhong, F. Primary thermal degradation effects on the polyurethane film. Polym. Degrad. Stab. 2014, 101, 109–113. [Google Scholar] [CrossRef]
- Kathalewar, M.S.; Joshi, P.B.; Sabnis, A.S.; Malshe, V.C. Non-isocyanate polyurethanes: From chemistry to applications. RSC Adv. 2013, 3, 4110–4129. [Google Scholar] [CrossRef]
- Kathalewar, M.; Sabnis, A. Preparation of novel CNSL-based urethane polyol via nonisocyanate route: Curing with melamine-formaldehyde resin and structure-property Relationship. J. Appl. Polym. Sci. 2014, 132. [Google Scholar] [CrossRef]
- Shen, Z.; Zheng, L.; Li, C.; Liu, G.; Xiao, Y.; Wu, S.; Liu, J.; Zhang, B. A comparison of non-isocyanate and HDI-based poly(ether urethane): Structure and properties. Polymer 2019, 175, 186–194. [Google Scholar] [CrossRef]
- Leitsch, E.K.; Beniah, G.; Liu, K.; Lan, T.; Heath, W.H.; Scheidt, K.A.; Torkelson, J.M. Nonisocyanate Thermoplastic Polyhydroxyurethane Elastomers via Cyclic Carbonate Aminolysis: Critical Role of Hydroxyl Groups in Controlling Nanophase Separation. ACS Macro Lett. 2016, 5, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Beniah, G.; Uno, B.E.; Lan, T.; Jeon, J.; Heath, W.H.; Scheidt, K.A.; Torkelson, J.M. Tuning nanophase separation behavior in segmented polyhydroxyurethane via judicious choice of soft segment. Polymer 2017, 110, 218–227. [Google Scholar] [CrossRef]
- Hebda, E.; Ozimek, J.; Szołdrowska, K.; Pielichowski, K. Synthesis of Bis(cyclic carbonates) from Epoxy Resin under Microwave Irradiation: The Structural Analysis and Evaluation of Thermal Properties. Molecules 2024, 29, 250. [Google Scholar] [CrossRef]
- Hybrid Non-Isocyanate Polyurethanes Market, By Product Type (Foams, Coatings, Adhesives & Sealants, Elastomers, and Others), By Application (Construction, Automotive & Transportation, Furniture & Bedding, Packaging, and Others), and By Region Forecast to 2032. Available online: https://www.reportsanddata.com/report-detail/hybrid-non-isocyanate-polyurethanes-hnipu-market (accessed on 29 September 2024).
- NIPU-EJD, an H2020 Project. Available online: https://www.nipu-ejd.eu/ (accessed on 29 September 2024).
- Filippi, L. Novel Lossen Rearrangement and Derived Non-Isocyanate Polyurethanes (NIPUs); Karlsruher Institut für Technologie: Karlsruhe, Germany, 2021. [Google Scholar]
- Filippi, L.; Meier, M.A.R. Fully Renewable Non-Isocyanate Polyurethanes via the Lossen Rearrangement. Macromol. Rapid Commun. 2021, 42, 2000440. [Google Scholar] [CrossRef]
- Datta, J.; Włoch, M. Progress in non-isocyanate polyurethanes synthesized from cyclic carbonate intermediates and di- or polyamines in the context of structure-properties relationship and from an environmental point of view. Polym. Bull. 2016, 73, 1459–1496. [Google Scholar] [CrossRef]
- Chaturvedi, D. Perspectives on the synthesis of organic carbamates. Tetrahedron 2012, 68, 15–45. [Google Scholar] [CrossRef]
- Paul, F. Catalytic synthesis of isocyanates or carbamates from nitroaromatics using Group VIII transition metal catalysts. Coord. Chem. Rev. 2000, 203, 269–323. [Google Scholar] [CrossRef]
- Chen, Z.; Hadjichristidis, N.; Feng, X.; Gnanou, Y. Poly(urethane-carbonate)s from Carbon Dioxide. Macromolecules 2017, 50, 2320–2328. [Google Scholar] [CrossRef]
- Visser, D.; Bakhshi, H.; Rogg, K.; Fuhrmann, E.; Wieland, F.; Schenke-Layland, K.; Meyer, W.; Hartmann, H. Green Chemistry for Biomimetic Materials: Synthesis and Electrospinning of High-Molecular-Weight Polycarbonate-Based Nonisocyanate Polyurethanes. ACS Omega 2022, 7, 39772–39781. [Google Scholar] [CrossRef]
- Hall, H.K.; Schneider, A.K. Polymerization of Cyclic Esters, Urethans, Ureas and Imides. J. Am. Chem. Soc. 1959, 81, 6533. [Google Scholar] [CrossRef]
- Drechsel, E.K. Polymerization of Cyclic Carbamates. U.S. Patent 2806017, 10 September 1957. [Google Scholar]
- Ihata, O.; Kayaki, Y.; Ikariya, T. Synthesis of Thermoresponsive Polyurethane from 2-Methylaziridine and Supercritical Carbon Dioxide. Angew. Chem. Int. Ed. 2004, 43, 717–719. [Google Scholar] [CrossRef] [PubMed]
- Włoch, M.; Błazek, K. Isocyanate-Free Polyurethanes. In ACS Symposium Series; Polyurethane Chemistry: Renewable Polyols and Isocyanates; American Chemical Society: Washington, WA, USA, 2021; pp. 107–166. [Google Scholar]
- Blattmann, H.; Lauth, M.; Mülhaupt, R. Flexible and Bio-Based Nonisocyanate Polyurethane (NIPU) Foams. Macromol. Mater. Eng. 2016, 301, 944–952. [Google Scholar] [CrossRef]
- Kopchev, V.P.; Bayryamov, S.G. The influence of temperature on reaction rate during the oleic acid esterification process with trimethylolpropane. In Proceedings of the 2022 8th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE), Ruse, Bulgaria, 30 June–2 July 2022. [Google Scholar] [CrossRef]
- Wu, Z.; Cai, W.; Chen, R.; Qu, J. Synthesis and properties of ambient-curable non-isocyanate polyurethanes. Prog. Org. Coat. 2018, 119, 116–122. [Google Scholar] [CrossRef]
- Yu, A.Z.; Setien, R.A.; Sahouani, J.M.; Docken, J.; Webster, D.C. Catalyzed non-isocyanate polyurethane (NIPU) coatings from bio-based poly(cyclic carbonates). J. Coatings Technol. Res. 2019, 16, 41–57. [Google Scholar] [CrossRef]
- Gong, Q.; Luo, H.; Cao, J.; Shang, Y.; Zhang, H.; Wang, W.; Zhou, X. Synthesis of Cyclic Carbonate From Carbon Dioxide and Epoxide Using Amino Acid Ionic Liquid Under 1 atm Pressure. Aust. J. Chem. 2012, 65, 381–386. [Google Scholar] [CrossRef]
- Hu, Z.; Fan, G.; Wang, Y.; Li, J.; Song, G. Synthesis of cyclic carbonate via the coupling reaction of carbon dioxide with epoxide at ambient pressure. Greenh. Gases Sci. Technol. 2018, 8, 570–579. [Google Scholar] [CrossRef]
- Bresciani, G.; Bortoluzzi, M.; Marchetti, F.; Pampaloni, G. Iron (III) N,N-Dialkylcarbamate-Catalyzed Formation of Cyclic Carbonates from CO2 and Epoxides under Ambient Conditions by Dynamic CO2 Trapping as Carbamato Ligands. ChemSusChem 2018, 11, 2737–2743. [Google Scholar] [CrossRef]
- Saptal, V.B.; Singh, R.; Juneja, G.; Singh, S.; Chauhan, S.M.; Polshettiwar, V.; Bhanage, B.M. Nitridated Fibrous Silica/Tetrabutylammonium Iodide (N-DFNS/TBAI): Robust and Efficient Catalytic System for Chemical Fixation of Carbon Dioxide to Cyclic Carbonates. ChemCatChem 2021, 13, 2907–2914. [Google Scholar] [CrossRef]
- Chand, H.; Choudhary, P.; Kumar, A.; Krishnan, V. Atmospheric pressure conversion of carbon dioxide to cyclic carbonates using a metal-free Lewis acid-base bifunctional heterogeneous catalyst. J. CO2 Util. 2021, 51, 101646. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, D.; Guo, B.; Zhao, J.; Zhou, Z.; Jin, L.; Lei, Y. Chemical fixation of carbon dioxide into cyclic carbonates by multi-hydroxyl carboxylic acid ionic liquids under atmospheric pressure. Mol. Catal. 2023, 551, 113664. [Google Scholar] [CrossRef]
- Biswas, T.; Mahalingam, V. G-C3N4 and tetrabutylammonium bromide catalyzed efficient conversion of epoxide to cyclic carbonate under ambient conditions. N. J. Chem. 2017, 41, 14839–14842. [Google Scholar] [CrossRef]
- Ge, Y.; Cheng, G.; Ke, H. Triethanolamine borate as bifunctional Lewis pair catalyst for the cycloaddition of CO2 with epoxides. J. CO2 Util. 2022, 57, 101873. [Google Scholar] [CrossRef]
- Cokoja, M.; Wilhelm, M.E.; Anthofer, M.H.; Herrmann, W.A.; Kühn, F.E. Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide by Using Organocatalysts. ChemSusChem 2015, 8, 2436–2454. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wu, Y.; Yan, X.; Chunjun, C.; Tianbin, W.; Honglei, F.; Zhimin, F.; Buxing, H. Efficient synthesis of cyclic carbonates from CO2 under ambient conditions over Zn(betaine)2Br2: Experimental and theoretical studies. Phys. Chem. Chem. Phys. 2022, 24, 4298–4304. [Google Scholar] [CrossRef]
- Hu, J.; Ma, J.; Liu, H.; Qian, Q.; Xie, C.; Han, B. Dual-ionic liquid system: An efficient catalyst for chemical fixation of CO2 to cyclic carbonates under mild conditions. Green. Chem. 2018, 20, 2990–2994. [Google Scholar] [CrossRef]
- Wang, T.; Zheng, D.; Hu, Y.; Zhou, J.; Liu, Y.; Zhang, J.; Wang, L. Efficient responsive ionic liquids with multiple active centers for the transformation of CO2 under mild conditions: Integrated experimental and theoretical study. J. CO2 Util. 2021, 49, 101573. [Google Scholar] [CrossRef]
- Hui, W.; Wang, X.; Li, X.N.; Wang, H.J.; He, X.M.; Xu, X.Y. Protic ionic liquids tailored by different cationic structures for efficient chemical fixation of diluted and waste CO2 into cyclic carbonates. N. J. Chem. 2021, 45, 10741–10748. [Google Scholar] [CrossRef]
- Yue, Z.; Pudukudy, M.; Chen, S.; Liu, Y.; Zhao, W.; Wang, J.; Shan, S.; Jia, Q. A non-metal Acen-H catalyst for the chemical fixation of CO2 into cyclic carbonates under solvent- and halide-free mild reaction conditions. Appl. Catal. A Gen. 2020, 601, 117646. [Google Scholar] [CrossRef]
- Ravi, S.; Puthiaraj, P.; Ahn, W.S. Hydroxylamine-Anchored Covalent Aromatic Polymer for CO2 Adsorption and Fixation into Cyclic Carbonates. ACS Sustain. Chem. Eng. 2018, 6, 9324–9332. [Google Scholar] [CrossRef]
- Isik, M.; Ruiperez, F.; Sardon, H.; Gonzalez, A.; Zulfiqar, S.; Mecerreyes, D. Innovative Poly(Ionic Liquid)s by the Polymerization of Deep Eutectic Monomers. Macromol. Rapid Commun. 2016, 37, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Calmanti, R.; Sargentoni, N.; Selva, M.; Perosa, A. One-pot tandem catalytic epoxidation—CO2 insertion of monounsaturated methyl oleate to the corresponding cyclic organic carbonate. Catalysts 2021, 11, 1477. [Google Scholar] [CrossRef]
- Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the valorization of exhaust carbon: From CO2 to chemicals, materials, and fuels. technological use of CO2. Chem. Rev. 2014, 114, 1709–1742. [Google Scholar] [CrossRef] [PubMed]
- Fairuzov, D.; Gerzeliev, I.; Maximov, A.; Naranov, E. Catalytic Dehydrogenation of Ethane: A Mini Review of Recent Advances and Perspective of Chemical Looping Technology. Catalysts 2021, 11, 833. [Google Scholar] [CrossRef]
- Khokarale, S.; Shelke, G.; Mikkola, J.P. Integrated and Metal Free Synthesis of Dimethyl Carbonate and Glycidol from Glycerol Derived 1,3-Dichloro-2-propanol via CO2 Capture. Clean. Technol. 2021, 3, 685–698. [Google Scholar] [CrossRef]
- Chagas, J.A.O.; Marciniak, A.A.; Mota, C.J.A. Trends in Carbon Dioxide Capture and Conversion. J. Braz. Chem. Soc. 2022, 33, 801–814. [Google Scholar] [CrossRef]
- De Andrade, K.N.; Da Costa, L.M.; José, J.W. Formation of Dimethyl Carbonate from CO2 and Methanol Catalyzed by Me2SnO: A Density Functional Theory Approach. J. Phys. Chem. A 2021, 125, 2413–2424. [Google Scholar] [CrossRef]
- Wei, D.; Junge, H.; Beller, M. An amino acid based system for CO2 capture and catalytic utilization to produce formates. Chem. Sci. 2021, 12, 6020–6024. [Google Scholar] [CrossRef]
- Kortunov, P.V.; Baugh, L.S.; Siskin, M.; Calabro, D.C. In Situ Nuclear Magnetic Resonance Mechanistic Studies of Carbon Dioxide Reactions with Liquid Amines in Mixed Base Systems: The Interplay of Lewis and Brønsted Basicities. Energy Fuels 2015, 29, 5967–5989. [Google Scholar] [CrossRef]
- Pyo, S.H.; Hatti-Kaul, R. Selective, Green Synthesis of Six-Membered Cyclic Carbonates by Lipase-Catalyzed Chemospecific Transesterification of Diols with Dimethyl Carbonate. Adv. Synth. Catal. 2012, 354, 797–802. [Google Scholar] [CrossRef]
- Liu, T.; Wang, G.; Yang, X. Controlled synthesis of aliphatic polycarbonate diols using dimethyl carbonate and various diols. J. Chin. Chem. Soc. 2022, 69, 995–1001. [Google Scholar] [CrossRef]
- Pyo, S.H.; Hatti-Kaul, R. Chlorine-Free Synthesis of Organic Alkyl Carbonates and Five- and Six-Membered Cyclic Carbonates. Adv. Synth. Catal. 2016, 358, 834–839. [Google Scholar] [CrossRef]
- Carré, C.; Bonnet, L.; Avérous, L. Original biobased nonisocyanate polyurethanes: Solvent- and catalyst-free synthesis, thermal properties and rheological behaviour. RSC Adv. 2014, 4, 54018–54025. [Google Scholar] [CrossRef]
- Stachak, P.; Łukaszewska, I.; Hebda, E.; Pielichowski, K. Recent advances in fabrication of non-isocyanate polyurethane-based composite materials. Materials 2021, 14, 3497. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.H.; Farmer, T.J.; Ingram, I.D.V.; Lie, Y.; North, M. Renewable Self-Blowing Non-Isocyanate Polyurethane Foams from Lysine and Sorbitol. Eur. J. Org. Chem. 2018, 2018, 4265–4271. [Google Scholar] [CrossRef]
- Mohammadi, F.A. Non-Isocyanate Based Polyurethanes. ACS Symp. Ser. 2023, 1452, 21–38. [Google Scholar] [CrossRef]
- Saralegi, A.; Rueda, L.; Fernández-D’Arlas, B.; Mondragon, I.; Eceiza, A.; Corcuera, M.A. Thermoplastic polyurethanes from renewable resources: Effect of soft segment chemical structure and molecular weight on morphology and final properties. Polym. Int. 2013, 62, 106–115. [Google Scholar] [CrossRef]
- He, X.; Xu, X.; Wan, Q.; Bo, G.; Yan, Y. Solvent- and catalyst-free synthesis, hybridization and characterization of biobased nonisocyanate polyurethane (NIPU). Polymers 2019, 11, 1026. [Google Scholar] [CrossRef]
- Alves, M.; Grignard, B.; Mereau, R.; Jerome, C.; Tassaing, T.; Detrembleur, C. Organocatalyzed coupling of carbon dioxide with epoxides for the synthesis of cyclic carbonates: Catalyst design and mechanistic studies. Catal. Sci. Technol. 2017, 7, 2651–2684. [Google Scholar] [CrossRef]
- Mubofu, E.B.; Mgaya, J.E. Chemical Valorization of Cashew Nut Shell Waste. Top. Curr. Chem. 2018, 376, 8. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Yasui, T.; Takeda, A.; Kanehashi, S.; Ogin, K. Synthesis of bisphenol compounds from non-edible cashew nut shell liquid. Tetrahedron Lett. 2023, 118, 154384. [Google Scholar] [CrossRef]
- Pereira, R.C.S.; da Silva, L.R.R.; Carvalho, B.A.; Mattos, A.L.A.; Mazzetto, S.E.; Lomonaco, D. Development of Bio-based Polyurethane Wood Adhesives from Agroindustrial Waste. J. Polym. Environ. 2022, 30, 1959–1972. [Google Scholar] [CrossRef]
- Kathalewar, M.; Sabnis, A.; D’Mello, D. Isocyanate free polyurethanes from new CNSL based bis-cyclic carbonate and its application in coatings. Eur. Polym. J. 2014, 57, 99–108. [Google Scholar] [CrossRef]
- Wilkes, G.; Sohn, S.; Tamami, B. Nonisocyanate Polyurethane Materials, and Their Preparation from Epoxidized Soybean Oils and Related Epoxidized Vegetable Oils, Incorporation of Carbon Dioxide into Soybean Oil, and Carbonation of Vegetable Oils. U.S. Patent 7045577, 16 May 2006. [Google Scholar]
- Javni, I.; Hong, D.P.; Petrovic, Z.S. Polyurethanes from soybean oil, aromatic, and cycloaliphatic diamines by nonisocyanate route. J. Appl. Polym. Sci. 2013, 128, 566–571. [Google Scholar] [CrossRef]
- Boyer, A.; Cloutet, E.; Tassaing, T.; Gadenne, B.; Alfos, C.; Cramail, H. Solubility in CO2 and carbonation studies of epoxidized fatty acid diesters: Towards novel precursors for polyurethane synthesis. Green. Chem. 2010, 12, 2205–2213. [Google Scholar] [CrossRef]
- Bähr, M.; Mülhaupt, R. Linseed and soybean oil-based polyurethanes prepared via the non-isocyanate route and catalytic carbon dioxide conversion. Green. Chem. 2012, 14, 483–489. [Google Scholar] [CrossRef]
- Jones, M.; Dhore, N.; Prasad, E.; Rao, C.R.K.; Palanisamy, A. Studies on Biobased Non-Isocyanate Polyurethane Coatings with Potential Corrosion Resistance. Sustain. Chem. 2023, 4, 95–109. [Google Scholar] [CrossRef]
- Gholami, H.; Yeganeh, H. Soybean oil-derived non-isocyanate polyurethanes containing azetidinium groups as antibacterial wound dressing membranes. Eur. Polym. J. 2021, 142, 110142. [Google Scholar] [CrossRef]
- Catalá, J.; Guerra, I.; García-Vargas, J.M.; Ramos, M.J.; García, M.T.; Rodríguez, J.F. Tailor-Made Bio-Based Non-Isocyanate Polyurethanes (NIPUs). Polymers 2023, 15, 1589. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, T.; Zheng, Z.; Quirino, R.L.; Xie, F.; Li, Y.; Zhang, C. Plant oil-based non-isocyanate waterborne poly(hydroxyl urethane)s. Chem. Eng. J. 2023, 452, 138965. [Google Scholar] [CrossRef]
- Wang, D.K.; Varanasi, S.; Strounina, E.; Hill, D.J.T.; Symons, A.L.; Whittaker, A.K.; Rasoul, F. Synthesis and characterization of a POSS-PEG macromonomer and POSS-PEG-PLA hydrogels for periodontal applications. Biomacromolecules 2014, 15, 666–679. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Deng, H.; Li, N.; Xie, F.; Shi, H.; Wu, M.; Zhang, C. Mechanically strong non-isocyanate polyurethane thermosets from cyclic carbonate linseed oil. Green. Chem. 2022, 24, 8355–8366. [Google Scholar] [CrossRef]
- Malik, M.; Kaur, R. Synthesis of NIPU by the carbonation of canola oil using highly efficient 5,10,15-tris(pentafluorophenyl)corrolato-manganese (III) complex as novel catalyst. Polym. Adv. Technol. 2017, 29, 1078–1085. [Google Scholar] [CrossRef]
- Smith, D.L.; Rodriguez-Melendez, D.; Cotton, S.M.; Quan, Y.; Wang, Q.; Grunlan, J.C. Non-Isocyanate Polyurethane Bio-Foam with Inherent Heat and Fire Resistance. Polymers 2022, 14, 5019. [Google Scholar] [CrossRef] [PubMed]
- Kirchberg, A.; Esfahani, K.; Röpert, M.C.; Wilhelm, M.; Meier, M.A.R. Sustainable Synthesis of Non-Isocyanate Polyurethanes Based on Renewable 2,3-Butanediol. Macromol. Chem. Phys. 2022, 223, 2200010. [Google Scholar] [CrossRef]
- Singh, P.; Kaur, R. Fructose-Based Non-Isocyanate Polyurethane/Poly (Sodium Acrylate) Hydrogels: Design, Synthesis and Environmental Applications. J. Polym. Environ. 2024, 32, 2897–2911. [Google Scholar] [CrossRef]
- Liu, J.; Miao, P.; Leng, X.; Che, J.; Wei, Z.; Li, Y. Chemically Recyclable Biobased Non-Isocyanate Polyurethane Networks from CO2-Derived Six-membered Cyclic Carbonates. Macromol. Rapid Commun. 2023, 44, e2300263. [Google Scholar] [CrossRef]
- Brege, A.; Grignard, B.; Méreau, R.; Detrembleur, C.; Jerome, C.; Tassaing, T. En Route to CO2-Based (a)Cyclic Carbonates and Polycarbonates from Alcohols Substrates by Direct and Indirect Approaches. Catalysts 2022, 12, 124. [Google Scholar] [CrossRef]
- Dannecker, P.K.; Meier, M.A.R. Facile and Sustainable Synthesis of Erythritol bis(carbonate), a Valuable Monomer for Non-Isocyanate Polyurethanes (NIPUs). Sci. Rep. 2019, 9, 9858. [Google Scholar] [CrossRef]
- Sternberg, J.; Pilla, S. Chemical recycling of a lignin-based non-isocyanate polyurethane foam. Nat. Sustain. 2023, 6, 316–324. [Google Scholar] [CrossRef]
- D’Arrigo, P.; Rossato, L.A.M.; Strini, A.; Serra, S. From Waste to Value: Recent Insights into Producing Vanillin from Lignin. Molecules 2024, 29, 442. [Google Scholar] [CrossRef] [PubMed]
- Ahmat, Y.M.; Madadi, S.; Charbonneau, L.; Kaliaguine, S. Epoxidation of terpenes. Catalysts 2021, 11, 847. [Google Scholar] [CrossRef]
- Faiz Mukhtar, M.; Resul, G.; Rehman, A.; Saleem, F.; Usman, M.; López, F.A.M.; Eze, V.C.; Harvey, A.P. Recent advances in catalytic and non-catalytic epoxidation of terpenes: A pathway to bio-based polymers from waste biomass. RSC Adv. 2023, 13, 32940–32971. [Google Scholar] [CrossRef] [PubMed]
- Clara, F.; Scheelje, M.; Meier, M.A.R. Non-isocyanate polyurethanes synthesized from terpenes using thiourea organocatalysis and thiol-ene-chemistry. Commun. Chem. 2023, 6, 239. [Google Scholar] [CrossRef]
- Rastegari, H.; Jazini, H.; Ghaziaskar, H.S.; Yalpani, M. Applications of Biodiesel By-products. In Biodiesel; Springer: Berlin/Heidelberg, Germany, 2019; pp. 101–125. [Google Scholar]
- Guillaume, S.; Helou, M.; Carpentier, J.M.S. Isocyanate-Free Method for Preparing Poly(Carbonate Urethane) or Poly(Ester-Urethane). U.S. Patent 9080016, 14 July 2015. [Google Scholar]
- Ochiai, B.; Ootani, Y.; Maruyama, T.; Endo, T. Synthesis and properties of polymethacrylate bearing cyclic carbonate through urethane linkage. J. Polym. Sci. Part. A Polym. Chem. 2007, 45, 5781–5789. [Google Scholar] [CrossRef]
- Tryznowski, M.; Świderska, A. Novel high reactive bifunctional five- and six-membered bicyclic dicarbonate—Synthesis and characterisation. RSC Adv. 2018, 8, 11749–11753. [Google Scholar] [CrossRef]
- Bizet, B.; Grau, É.; Cramail, H.; Asua, J.M. Water-based non-isocyanate polyurethane-ureas (NIPUUs). Polym. Chem. 2020, 11, 3786–3799. [Google Scholar] [CrossRef]
- Gupta, R.K.; Mishra, A.K. Eco-Friendly Waterborne Polyurethanes: Synthesis, Properties, and Applications; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Ling, Z.; Zhang, C.; Zhou, Q. Synthesis and characterization of 1 K waterborne non-isocyanate polyurethane epoxy hybrid coating. Prog. Org. Coat. 2022, 169, 106915. [Google Scholar] [CrossRef]
- Pichon, E.; De Smet, D.; Rouster, P.; Freulings, K.; Pich, A.; Bernaerts, K.V. Bio-based non-isocyanate polyurethane(urea) waterborne dispersions for water resistant textile coatings. Mater. Today Chem. 2023, 34, 101822. [Google Scholar] [CrossRef]
- Choong, P.S.; Chong, N.X.; Tam, E.K.W.; Seayad, A.M.; Seayad, J.; Jana, S. Biobased Nonisocyanate Polyurethanes as Recyclable and Intrinsic Self-Healing Coating with Triple Healing Sites. ACS Macro Lett. 2021, 10, 635–641. [Google Scholar] [CrossRef]
- Khatoon, H.; Iqbal, S.; Irfan, M.; Abu Darda, A.; Rawat, N.K. A review on the production, properties and applications of non-isocyanate polyurethane: A greener perspective. Prog. Org. Coatings 2021, 154, 106124. [Google Scholar] [CrossRef]
- Bossion, A.; Olazabal, I.; Aguirresarobe, R.H.; Marina, S.; Martín, J.; Irusta, L.; Taton, D.; Sardon, H. Synthesis of self-healable waterborne isocyanate-free poly(hydroxyurethane)-based supramolecular networks by ionic interactions. Polym. Chem. 2019, 10, 2723–2733. [Google Scholar] [CrossRef]
- Li, N.; Yin, P.; Zhang, Y.; Liu, Y.; Zhang, X.; Wang, G.; Zeng, F.; Liu, H.; Yi, G.; Wang, Z. Preparation and properties of multi-responsive self-healing non-isocyanate polyurethane gel coating. J. Adhes. 2023, 100, 1138–1154. [Google Scholar] [CrossRef]
- Anna, C.; Damian, K.; Agnieszka, S. Reprocessable Non-Isocyanate Polyurethane Vitrimers. Open J. Chem. 2023, 9, 016–020. [Google Scholar] [CrossRef]
- Wu, H.; Jin, B.; Wang, H.; Wu, W.; Cao, Z.; Wu, J.; Huang, G.A. A Degradable and Self-Healable Vitrimer Based on Non-isocyanate Polyurethane. Front. Chem. 2020, 8, 585569. [Google Scholar] [CrossRef]
- Ou, Y.; Zhang, Z.; Tang, Z.; Yang, Z.; Zhang, Y.; Tao, L.; Wang, T.; Wang, Q.; Chen, S. High strength, recyclable and shape memory polyhydroxyurethanes with intrinsic fluorescent properties. J. Polym. Sci. 2023, 61, 1360–1371. [Google Scholar] [CrossRef]
- Bukowczan, A.; Łukaszewska, I.; Pielichowski, K. Thermal degradation of non-isocyanate polyurethanes. J. Therm. Anal. Calorim. 2024, 149, 10885–10899. [Google Scholar] [CrossRef]
- Karami, Z.; Kabiri, K.; Zohuriaan-Mehr, M.J. Non-isocyanate polyurethane thermoset based on a bio-resourced star-shaped epoxy macromonomer in comparison with a cyclocarbonate fossil-based epoxy resin: A preliminary study on thermo-mechanical and antibacterial properties. J. CO2 Util. 2019, 34, 558–567. [Google Scholar] [CrossRef]
- Guillaume, S.; Khalil, H.; Misra, M.; Torkelson, J.M. Tuning the properties of segmented polyhydroxyurethanes via chain extender structure. J. Appl. Polym. Sci. 2017, 134, 44942. [Google Scholar] [CrossRef]
- Asemani, H.R.; Mannari, V. Synthesis and evaluation of non-isocyanate polyurethane polyols for heat-cured thermoset coatings. Prog. Org. Coatings 2019, 131, 247–258. [Google Scholar] [CrossRef]
- Yang, T.; Pizzi, A.; Xi, X.; Zhou, X.; Zhang, Q. Preparation and Characterization of Glucose-Based Self-Blowing Non-Isocyanate Polyurethane (NIPU) Foams with Different Acid Catalysts. Polymers 2024, 16, 2899. [Google Scholar] [CrossRef] [PubMed]
- Azadeh, E.; Chen, X.; Pizzi, A.; Gérardin, C.; Gérardin, P.; Essawy, H. Self-Blowing Non-Isocyanate Polyurethane Foams Based on Hydrolysable Tannins. J. Renew. Mater. 2022, 10, 3217–3227. [Google Scholar] [CrossRef]
- Li, M.; Hu, R.; Gao, Y.; Yang, Q. Combustion behavior of end-sealed nitroamine propellant by photocurable composite deterrents. FirePhysChem 2023, 3, 37–42. [Google Scholar] [CrossRef]
- Li, C.; Dong, Y.; Yuan, X.; Zhang, Y.; Gao, X.; Zhu, B.; Qiao, K. Waterborne polyurethane sizing agent with excellent water resistance and thermal stability for improving the interfacial performance of carbon fibers/epoxy resin composites. Colloids Surf. A Physicochem. Eng. Asp. 2024, 681, 132817. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Kang, M.; Zhao, Y.; Li, Q.; Liang, C. Preparation of green waterborne polyurethane with improved hydrolysis repellency from CO2 derived amino-alcohol. Eur. Polym. J. 2020, 127, 109571. [Google Scholar] [CrossRef]
- Gomez-Lopez, A.; Elizalde, F.; Calvo, I.; Sardon, H. Trends in non-isocyanate polyurethane (NIPU) development. Chem. Commun. 2021, 57, 12254–12265. [Google Scholar] [CrossRef]
- Bakar, M.; Białkowska, A.; Hanulikova, B.; Masař, M.; Zarzyka, I. Effect of structure of nonisocyanate condensation polyurethanes based on benzoic acid on its susceptibility to biodegradation. J. Polym. Res. 2020, 27, 379. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozimek, J.; Pielichowski, K. Sustainability of Nonisocyanate Polyurethanes (NIPUs). Sustainability 2024, 16, 9911. https://doi.org/10.3390/su16229911
Ozimek J, Pielichowski K. Sustainability of Nonisocyanate Polyurethanes (NIPUs). Sustainability. 2024; 16(22):9911. https://doi.org/10.3390/su16229911
Chicago/Turabian StyleOzimek, Jan, and Krzysztof Pielichowski. 2024. "Sustainability of Nonisocyanate Polyurethanes (NIPUs)" Sustainability 16, no. 22: 9911. https://doi.org/10.3390/su16229911
APA StyleOzimek, J., & Pielichowski, K. (2024). Sustainability of Nonisocyanate Polyurethanes (NIPUs). Sustainability, 16(22), 9911. https://doi.org/10.3390/su16229911