Generative AI for Consumer Behavior Prediction: Techniques and Applications
Abstract
:1. Introduction
- What are the primary themes and trends in the current applications of AI for consumer behavior prediction, and how are these applications transforming consumer insights across industries?
- How do different AI models compare in effectiveness and suitability for consumer behavior prediction and what factors influence their optimal application in various contexts?
- What are the major challenges and limitations associated with integrating AI in consumer behavior prediction, including ethical, technical, and practical considerations, and how can these challenges be mitigated?
2. Theoretical Background
2.1. Overview of Generative AI Models
2.2. The Role of AI in Consumer Behavior Prediction
2.3. Theoretical Models of Consumer Behavior
2.4. Generative AI Applications in Consumer Insights and Marketing
3. Methodology
- (“Generative AI” OR “Generative Adversarial Network” OR “GAN” OR “Variational Autoencoder” OR “VAE” OR “Transformer” OR “AI-driven” OR “Deep Learning” OR “Neural Networks”);
- (Title, abstract, and keywords: “Consumer behavior” OR “Customer behavior” OR “Consumer prediction” OR “Customer prediction” OR “Consumer insights” OR “Customer insights” OR “Behavioral prediction” OR “Shopping behavior” OR “Purchase intent”).
4. Findings
4.1. AI in Customer Insights
4.2. Generative AI for Consumer Behavior Prediction
4.3. Generative AI for Energy Data Modeling
5. Discussion
5.1. Thematic Analysis
5.2. Comparative Analysis
5.3. Challenges and Limitations
5.4. Implications for Practice, Research, and Future Agenda
5.5. Proposed Framework
6. Conclusions
Funding
Conflicts of Interest
References
- Lim, W.M.; Rasul, T.; Kumar, S.; Ala, M. Past, present, and future of customer engagement. J. Bus. Res. 2022, 140, 439–458. [Google Scholar] [CrossRef]
- Ciasullo, M.V.; Lim, W.M.; Manesh, M.F.; Palumbo, R. The patient as a prosumer of healthcare: Insights from a bibliometric-interpretive review. J. Health Organ. Manag. 2022, 36, 133–157. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Verma, S.; Lim, W.M.; Kumar, S.; Donthu, N. Personalization in personalized marketing: Trends and ways forward. Psychol. Mark. 2022, 39, 1529–1562. [Google Scholar] [CrossRef]
- Davenport, T.; Guha, A.; Grewal, D.; Bressgott, T. How artificial intelligence will change the future of marketing. J. Acad. Mark. Sci. 2020, 48, 24–42. [Google Scholar] [CrossRef]
- Mahoney, L.M.; Tang, T. Strategic Social Media: From Marketing to Social Change; John Wiley & Sons: Hoboken, NJ, USA, 2024. [Google Scholar]
- Nosi, C.; Zollo, L.; Rialti, R.; Ciappei, C. Sustainable consumption in organic food buying behavior: The case of quinoa. Br. Food J. 2020, 122, 976–994. [Google Scholar] [CrossRef]
- Avotra, A.A.R.N.; Chenyun, Y.; Yongmin, W.; Lijuan, Z.; Nawaz, A. Conceptualizing the state of the art of corporate social responsibility (CSR) in green construction and its nexus to sustainable development. Front. Environ. Sci. 2021, 9, 774822. [Google Scholar] [CrossRef]
- Dias, A.; Sousa, B.; Santos, V.; Ramos, P.; Madeira, A. Wine tourism and sustainability awareness: A consumer behavior perspective. Sustainability 2023, 15, 5182. [Google Scholar] [CrossRef]
- Ramya, N.; Ali, S.M. Factors affecting consumer buying behavior. Int. J. Appl. Res. 2016, 2, 76–80. [Google Scholar]
- Verma, Y.; Singh, M.R. Marketing mix, customer satisfaction and loyalty: An empirical study of telecom sector in Bhutan. Indian J. Commer. Manag. Stud. 2017, 8, 121–129. [Google Scholar]
- Abd Wahab, N.; Hassan, L.F.A.; Shahid, S.A.M.; Maon, S.N. The relationship between marketing mix and customer loyalty in hijab industry: The mediating effect of customer satisfaction. Procedia Econ. Financ. 2016, 37, 366–371. [Google Scholar] [CrossRef]
- Galvano, D.F. Integrating Consumer Behavior Insights into Effective Marketing Strategies. Available online: https://www.researchgate.net/publication/380075292_Integrating_Consumer_Behavior_Insights_into_Effective_Marketing_Strategies (accessed on 24 August 2024).
- Sama, R. Impact of media advertisements on consumer behaviour. J. Creat. Commun. 2019, 14, 54–68. [Google Scholar] [CrossRef]
- Glickman, M.; Zhang, Y. AI and generative AI for research discovery and summarization. Harv. Data Sci. Rev. 2024, 6, 1–34. [Google Scholar] [CrossRef]
- Taherdoost, H.; Madanchian, M. Artificial intelligence and sentiment analysis: A review in competitive research. Computers 2023, 12, 37. [Google Scholar] [CrossRef]
- Bandi, A.; Adapa, P.V.S.R.; Kuchi, Y.E.V.P.K. The power of generative ai: A review of requirements, models, input–output formats, evaluation metrics, and challenges. Future Internet 2023, 15, 260. [Google Scholar] [CrossRef]
- Gupta, P.; Ding, B.; Guan, C.; Ding, D. Generative AI: A systematic review using topic modelling techniques. Data Inf. Manag. 2024, 8, 100066. [Google Scholar] [CrossRef]
- Zhou, G.; Xie, S.; Hao, G.; Chen, S.; Huang, B.; Xu, X.; Wang, C.; Zhu, L.; Yao, L.; Zhang, K. Emerging synergies in causality and deep generative models: A survey. arXiv 2023, arXiv:2301.12351. [Google Scholar]
- Brophy, E.; Wang, Z.; She, Q.; Ward, T. Generative adversarial networks in time series: A systematic literature review. ACM Comput. Surv. 2023, 55, 1–31. [Google Scholar] [CrossRef]
- Cronin, I. Understanding Generative AI Business Applications; Springer Nature: Dordrecht, The Netherlands, 2024. [Google Scholar]
- Ayemowa, M.O.; Ibrahim, R.; Khan, M.M. Analysis of Recommender System Using Generative Artificial Intelligence: A Systematic Literature Review. IEEE Access 2024, 12, 87742–87766. [Google Scholar] [CrossRef]
- Yu, H.; Guo, Y. Generative artificial intelligence empowers educational reform: Current status, issues, and prospects. In Frontiers in Education; Frontiers Media SA: Lausanne, Switzerland, 2023; p. 1183162. [Google Scholar]
- Eke, D.O. ChatGPT and the rise of generative AI: Threat to academic integrity? J. Responsible Technol. 2023, 13, 100060. [Google Scholar] [CrossRef]
- Banh, L.; Strobel, G. Generative artificial intelligence. Electron. Mark. 2023, 33, 63. [Google Scholar] [CrossRef]
- Perov, V.; Perova, N. AI Hallucinations: Is “Artificial Evil” Possible? In Proceedings of the 2024 IEEE Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), Yekaterinburg, Russian, 13–15 May 2024; pp. 114–117. [Google Scholar]
- Elahi, M.; Afolaranmi, S.O.; Martinez Lastra, J.L.; Perez Garcia, J.A. A comprehensive literature review of the applications of AI techniques through the lifecycle of industrial equipment. Discov. Artif. Intell. 2023, 3, 43. [Google Scholar] [CrossRef]
- Jain, V.; Wadhwani, K.; Eastman, J.K. Artificial intelligence consumer behavior: A hybrid review and research agenda. J. Consum. Behav. 2024, 23, 676–697. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Basirat, M.; Yousefi, A.; Nekmahmud, M.; Gholampour, A.; Fekete-Farkas, M. Social networks marketing and consumer purchase behavior: The combination of SEM and unsupervised machine learning approaches. Big Data Cogn. Comput. 2022, 6, 35. [Google Scholar] [CrossRef]
- Kliestik, T.; Zvarikova, K.; Lăzăroiu, G. Data-driven machine learning and neural network algorithms in the retailing environment: Consumer engagement, experience, and purchase behaviors. Econ. Manag. Financ. Mark. 2022, 17, 57–69. [Google Scholar]
- Wang, Y.; Yu, C. Social interaction-based consumer decision-making model in social commerce: The role of word of mouth and observational learning. Int. J. Inf. Manag. 2017, 37, 179–189. [Google Scholar] [CrossRef]
- Howard, J.A. The Theory of Buyer Behavior; John Willey & Sons: Hoboken, NJ, USA, 1969; Volume 145. [Google Scholar]
- Azad, M.S.; Khan, S.S.; Hossain, R.; Rahman, R.; Momen, S. Predictive modeling of consumer purchase behavior on social media: Integrating theory of planned behavior and machine learning for actionable insights. PLoS ONE 2023, 18, e0296336. [Google Scholar] [CrossRef]
- Sharma, P.; Kumar, M.; Sharma, H.K.; Biju, S.M. Generative adversarial networks (GANs): Introduction, Taxonomy, Variants, Limitations, and Applications. Multimed. Tools Appl. 2024, 1–48. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Advances in Neural Information Processing Systems 27; NeurIPS: San Diego, CA, USA, 2014. [Google Scholar]
- Kingma, D.P. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar]
- Babu, S.M.; Kumar, P.P.; Devi, S.; Reddy, K.P.; Satish, M. Predicting Consumer Behaviour with Artificial Intelligence. In Proceedings of the 2023 IEEE 5th International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA), Hamburg, Germany, 7–8 October 2023; pp. 698–703. [Google Scholar]
- Naveeenkumar, N.; Rallapalli, S.; Sasikala, K.; Priya, P.V.; Husain, J.; Boopathi, S. Enhancing Consumer Behavior and Experience Through AI-Driven Insights Optimization. In AI Impacts in Digital Consumer Behavior; IGI Global: Hershey, PA, USA, 2024; pp. 1–35. [Google Scholar]
- Pasupulati, R.; Mahendran, J.; Majumdar, A. Predictive Analysis of Digital Consumer Behaviour: Key to Understanding Success and Failure of a Brand. In Enhancing and Predicting Digital Consumer Behavior with AI; IGI Global: Hershey, PA, USA, 2024; pp. 238–267. [Google Scholar]
- Feuerriegel, S.; Hartmann, J.; Janiesch, C.; Zschech, P. Generative ai. Bus. Inf. Syst. Eng. 2024, 66, 111–126. [Google Scholar] [CrossRef]
- Akhtar, Z.B. Unveiling the evolution of generative AI (GAI): A comprehensive and investigative analysis toward LLM models (2021–2024) and beyond. J. Electr. Syst. Inf. Technol. 2024, 11, 22. [Google Scholar] [CrossRef]
- Kalota, F. A Primer on Generative Artificial Intelligence. Educ. Sci. 2024, 14, 172. [Google Scholar] [CrossRef]
- Sun, Q.; Cui, Y.; Zhang, X.; Zhang, F.; Yu, Q.; Wang, Y.; Rao, Y.; Liu, J.; Huang, T.; Wang, X. Generative multimodal models are in-context learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 14398–14409. [Google Scholar]
- Meskó, B. The impact of multimodal large language models on health care’s future. J. Med. Internet Res. 2023, 25, e52865. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, Y. Prediction of Sensitive Consumer Behavior Based on Random Forest with Grid Search Cross-Validation. In Proceedings of the 2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC), Tumkur, India, 4–5 December 2023; pp. 1–4. [Google Scholar]
- Prosvetov, A. GAN for recommendation system. J. Phys. Conf. Ser. 2019, 1405, 012005. [Google Scholar] [CrossRef]
- Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.P.; Glorot, X.; Botvinick, M.M.; Mohamed, S.; Lerchner, A. beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR (Poster) 2017, 3, 1–22. [Google Scholar]
- Yoon, J.H.; Jang, B. Evolution of deep learning-based sequential recommender systems: From current trends to new perspectives. IEEE Access 2023, 11, 54265–54279. [Google Scholar] [CrossRef]
- Yenduri, G.; Ramalingam, M.; Selvi, G.C.; Supriya, Y.; Srivastava, G.; Maddikunta, P.K.R.; Raj, G.D.; Jhaveri, R.H.; Prabadevi, B.; Wang, W. Gpt (generative pre-trained transformer)—A comprehensive review on enabling technologies, potential applications, emerging challenges, and future directions. IEEE Access 2024, 12, 54608–54649. [Google Scholar] [CrossRef]
- Gupta, R.; Nair, K.; Mishra, M.; Ibrahim, B.; Bhardwaj, S. Adoption and impacts of generative artificial intelligence: Theoretical underpinnings and research agenda. Int. J. Inf. Manag. Data Insights 2024, 4, 100232. [Google Scholar] [CrossRef]
- Paz, M.D.R.; Vargas, J.C.R. Main theoretical consumer behavioural models. A review from 1935 to 2021. Heliyon 2023, 9, e13895. [Google Scholar]
- Manuere, H.T.; Chikazhe, L.; Manyeruke, J. Theoretical models of consumer behaviour: A literature review. Int. J. Educ. Humanit. Soc. Sci. 2022, 5, 105–112. [Google Scholar] [CrossRef]
- Khegay, E.; Aubakirov, S. Theoretical Exploration of Consumer Behavior. Eurasian J. Econ. Bus. Stud. 2021, 61, 49–61. [Google Scholar] [CrossRef]
- Ajzen, I. The Theory of Planned Behavior. In Organizational Behavior and Human Decision Processes; Elsevier: Amsterdam, The Netherlands, 1991. [Google Scholar]
- Zulfikar, R.; Suryadi, N.; Prasarry, Y.V.; Barqiah, S. Penggunaan Theory of Planned Behavior dalam Kajian Perilaku Konsumen Hijau. JKBM (JURNAL KONSEP BISNIS DAN MANAJEMEN) 2023, 10, 28–41. [Google Scholar] [CrossRef]
- Kurniawati, M.; Adeline, M.; Ramadhan, K.; Irwansyah, I. Implementation theory of planned behavior on the purchase decision online and offline. Asian J. Eng. Soc. Health 2023, 2, 1119–1132. [Google Scholar] [CrossRef]
- Blackwell, R.D.; Miniard, P.W.; Engel, J.F. Consumer Behavior Thomson; South-Western: Mason, OH, USA, 2006. [Google Scholar]
- Ajzen, I. Consumer attitudes and behavior: The theory of planned behavior applied to food consumption decisions. Ital. Rev. Agric. Econ. 2015, 70, 121–138. [Google Scholar]
- Rozenkowska, K. Theory of planned behavior in consumer behavior research: A systematic literature review. Int. J. Consum. Stud. 2023, 47, 2670–2700. [Google Scholar] [CrossRef]
- Islam, Q.; Ali Khan, S.M.F. Assessing consumer behavior in sustainable product markets: A structural equation modeling approach with partial least squares analysis. Sustainability 2024, 16, 3400. [Google Scholar] [CrossRef]
- Mariani, M.; Dwivedi, Y.K. Generative artificial intelligence in innovation management: A preview of future research developments. J. Bus. Res. 2024, 175, 114542. [Google Scholar] [CrossRef]
- Mancisidor, R.A.; Kampffmeyer, M.; Aas, K.; Jenssen, R. Learning latent representations of bank customers with the variational autoencoder. Expert Syst. Appl. 2021, 164, 114020. [Google Scholar] [CrossRef]
- Sun, F.-Y.; Hoffmann, J.; Verma, V.; Tang, J. Infograph: Unsupervised and semi-supervised graph-level representation learning via mutual information maximization. arXiv 2019, arXiv:1908.01000. [Google Scholar]
- Makhrout, S.; Chouhbi, A. Fundamental Models of Consumer Purchasing Behavior: An In-Depth Analysis Since the 1960s. [RMd] Rev. 2024, 6, e202419. [Google Scholar]
- Gavilanes, J.M.; Flatten, T.C.; Brettel, M. Content strategies for digital consumer engagement in social networks: Why advertising is an antecedent of engagement. J. Advert. 2018, 47, 4–23. [Google Scholar] [CrossRef]
- Harmeling, C.M.; Moffett, J.W.; Arnold, M.J.; Carlson, B.D. Toward a theory of customer engagement marketing. J. Acad. Mark. Sci. 2017, 45, 312–335. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372. [Google Scholar] [CrossRef]
- Ha, S.; Marchetto, D.J.; Dharur, S.; Asensio, O.I. Topic classification of electric vehicle consumer experiences with transformer-based deep learning. Patterns 2021, 2, 100195. [Google Scholar] [CrossRef] [PubMed]
- Raja, A.; Prema, S. Unlocking Customer Insights: A Hybrid SVM-GPT Transformer Model for User Engagement. Int. J. Intell. Syst. Appl. Eng. 2024, 12, 441–448. [Google Scholar]
- Liu, Y.; Hou, J.; Zhao, W. Deep Learning and User Consumption Trends Classification and Analysis Based on Shopping Behavior. J. Organ. End User Comput. 2024, 36, 1–23. [Google Scholar] [CrossRef]
- Peng, Z.; Rong, Y.; Zhu, T. Transformer-based choice model: A tool for assortment optimization evaluation. Nav. Res. Logist. 2024, 71, 854–877. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, J.; Ma, X.; Wen, H.; Fortino, G. Aspect-Based Sentiment Analysis for User Reviews. Cogn. Comput. 2021, 13, 1114–1127. [Google Scholar] [CrossRef]
- Wang, Y.; Willis, E.; Yeruva, V.K.; Ho, D.; Lee, Y. A case study of using natural language processing to extract consumer insights from tweets in American cities for public health crises. BMC Public Health 2023, 23, 935. [Google Scholar] [CrossRef]
- Zhang, H.; Mu, X.; Li, G.; Xu, Z.; Yu, X.; Ma, J. Mannequin2Real: A Two-Stage Generation Framework for Transforming Mannequin Images Into Photorealistic Model Images for Clothing Display. IEEE Trans. Consum. Electron. 2024, 70, 2773–2783. [Google Scholar] [CrossRef]
- Sohn, K.; Sung, C.E.; Koo, G.; Kwon, O. Artificial intelligence in the fashion industry: Consumer responses to generative adversarial network (GAN) technology. Int. J. Retail Distrib. Manag. 2021, 49, 61–80. [Google Scholar] [CrossRef]
- Mamta, K.; Sangwan, S. AaPiDL: An ensemble deep learning-based predictive framework for analyzing customer behaviour and enhancing sales in e-commerce systems. Int. J. Inf. Technol. 2024, 16, 3019–3025. [Google Scholar] [CrossRef]
- Wei, S.; Zhou, X.; An, X.; Yang, X.; Xiao, Y. A heterogeneous E-commerce user alignment model based on data enhancement and data representation. Expert Syst. Appl. 2023, 228, 120258. [Google Scholar] [CrossRef]
- Hasumoto, K.; Goto, M. Predicting customer churn for platform businesses: Using latent variables of variational autoencoder as consumers’ purchasing behavior. Neural Comput. Appl. 2022, 34, 18525–18541. [Google Scholar] [CrossRef]
- Mena, G.; Coussement, K.; De Bock, K.W.; De Caigny, A.; Lessmann, S. Exploiting time-varying RFM measures for customer churn prediction with deep neural networks. Ann. Oper. Res. 2024, 339, 765–787. [Google Scholar] [CrossRef]
- Crisp, D.; Newsted, J.; Brendon, B.; Barnes, D.; Hayes, C.; Prantner, J. Customising generative AI: Harnessing document retrieval and fine-tuning alternatives for dynamic marketing insights. Appl. Mark. Anal. 2024, 10, 18–31. [Google Scholar] [CrossRef]
- Hermann, E.; Puntoni, S. Artificial intelligence and consumer behavior: From predictive to generative AI. J. Bus. Res. 2024, 180, 114720. [Google Scholar] [CrossRef]
- Wu, X.; Li, P.; Zhao, M.; Liu, Y.; Crespo, R.G.; Herrera-Viedma, E. Customer churn prediction for web browsers. Expert Syst. Appl. 2022, 209, 118177. [Google Scholar] [CrossRef]
- Ahmad, N.; Awan, M.J.; Nobanee, H.; Zain, A.M.; Naseem, A.; Mahmoud, A. Customer Personality Analysis for Churn Prediction Using Hybrid Ensemble Models and Class Balancing Techniques. IEEE Access 2024, 12, 1865–1879. [Google Scholar] [CrossRef]
- Kim, H.; Moon, N. TN-GAN-Based Pet Behavior Prediction through Multiple-Dimension Time-Series Augmentation. Sensors 2023, 23, 4157. [Google Scholar] [CrossRef]
- Azadravesh, H.; Sheibani, R.; Forghani, Y. Predicted consumer buying behavior in neural marketing based on convolutional neural network and short-term long-term memory. Multimed. Tools Appl. 2024, 1–7. [Google Scholar] [CrossRef]
- Gandhudi, M.; Alphonse, P.J.A.; Velayudham, V.; Nagineni, L.; Gangadharan, G.R. Explainable causal variational autoencoders based equivariant graph neural networks for analyzing the consumer purchase behavior in E-commerce. Eng. Appl. Artif. Intell. 2024, 136, 108988. [Google Scholar] [CrossRef]
- Gao, Y.; Ma, Q.; Cao, J.; Wang, Y.; Yang, X.; Xu, Q.; Liang, Q.; Sun, Y. Recent advances in microfluidic-aided chitosan-based multifunctional materials for biomedical applications. Int. J. Pharm. 2021, 600, 120465. [Google Scholar] [CrossRef]
- Elsayed, M.; Zafar, K.; Esa, Y.; Soujad, T.; Mohamed, A. Impact of 100% vehicle electrification on the distribution grid in dense urban regions. Energy Rep. 2024, 11, 5315–5322. [Google Scholar] [CrossRef]
- Theocharis, A.; Hamanee, S. Battery Storage at the Secondary Distribution Electricity Grid by Investigating End-Users Load Demand Measurements. Energies 2022, 15, 2743. [Google Scholar] [CrossRef]
- Machado, L.F.M.; Santo, S.G.D.; Junior, G.M.; Itiki, R.; Manjrekar, M.D. Multi-Source Distributed Energy Resources Management System Based on Pattern Search Optimal Solution Using Nonlinearized Power Flow Constraints. IEEE Access 2021, 9, 30374–30385. [Google Scholar] [CrossRef]
- Ismail, A.G.; El-Dabah, M.A.; Nassar, I.A. Enhancement of Electrical Distribution Networks Performance Using the Load Management Methodology. Energy Rep. 2020, 6, 2066–2074. [Google Scholar] [CrossRef]
- Al-Bahrani, L.T.; Seyedmahmoudian, M.; Horan, B.; Stojcevski, A. Distribution transformer load behavior, burden, and characteristics of residential consumers: A case study of Baghdad City. Energy Build. 2020, 210, 109693. [Google Scholar] [CrossRef]
- McGarry, C.; Dixon, J.; Elders, I.; Galloway, S. A high-resolution geospatial and socio-technical methodology for assessing the impact of electrified heat and transport on distribution network infrastructure. Sustain. Energy Grids Netw. 2023, 35, 101118. [Google Scholar] [CrossRef]
- Wang, Z.; Hong, T. Generating realistic building electrical load profiles through the Generative Adversarial Network (GAN). Energy Build. 2020, 224, 110299. [Google Scholar] [CrossRef]
- Xu, W.; Jiang, C.; Zhang, Q.; Zheng, J. An intelligent non-intrusive load monitoring model based on power encoding and convolutional state modules. Meas. Sci. Technol. 2024, 35, 086210. [Google Scholar] [CrossRef]
- Tao, Y.; Qiu, J.; Lai, S.; Wang, Y.; Sun, X. Reserve Evaluation and Energy Management of Micro-grids in Joint Electricity Markets Based on Non-Intrusive Load Monitoring. IEEE Trans. Ind. Appl. 2023, 59, 207–219. [Google Scholar] [CrossRef]
- Langevin, A.; Cheriet, M.; Gagnon, G. Efficient deep generative model for short-term household load forecasting using non-intrusive load monitoring. Sustain. Energy Grids Netw. 2023, 34, 101006. [Google Scholar] [CrossRef]
- Amer, A.; Shaban, K.; Gaouda, A.; Massoud, A. Home energy management system embedded with a multi-objective demand response optimization model to benefit customers and operators. Energies 2021, 14, 257. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef] [PubMed]
- Whang, S.E.; Roh, Y.; Song, H.; Lee, J.-G. Data collection and quality challenges in deep learning: A data-centric AI perspective. VLDB J. 2023, 32, 791–813. [Google Scholar] [CrossRef]
- Zhang, E.Y.; Cheok, A.D.; Pan, Z.; Cai, J.; Yan, Y. From Turing to Transformers: A Comprehensive Review and Tutorial on the Evolution and Applications of Generative Transformer Models. Sci 2023, 5, 46. [Google Scholar] [CrossRef]
- Liang, L.; Wenjun, W.; Dichen, D.; Fei, Z.; Yizhou, Y.; Yaokuan, M. A resource scheduling algorithm of cloud computing based on energy efficient optimization methods. In Proceedings of the 2012 International Green Computing Conference (IGCC), San Jose, CA, USA, 4–8 June 2012; pp. 1–6. [Google Scholar]
- Madaan, G.; Asthana, S.K.; Kaur, J. Generative AI: Applications, Models, Challenges, Opportunities, and Future Directions. In Generative AI and Implications for Ethics, Security, and Data Management; Gomathi Sankar, J., David, A., Eds.; IGI Global: Hershey, PA, USA, 2024; pp. 88–121. [Google Scholar] [CrossRef]
- Díaz-Rodríguez, N.; Del Ser, J.; Coeckelbergh, M.; López de Prado, M.; Herrera-Viedma, E.; Herrera, F. Connecting the dots in trustworthy Artificial Intelligence: From AI principles, ethics, and key requirements to responsible AI systems and regulation. Inf. Fusion 2023, 99, 101896. [Google Scholar] [CrossRef]
- van Esch, P.; Cui, Y.; Heilgenberg, K. Using Artificial Intelligence (AI) to Implement Diversity, Equity and Inclusion (DEI) into Marketing Materials: The ‘CONSIDER’ Framework. Australas. Mark. J. 2024, 32, 250–262. [Google Scholar] [CrossRef]
- Barredo Arrieta, A.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef]
Architecture | Overview | Functionality | Primary Use Cases | Reference(s) |
---|---|---|---|---|
Generative Pre-trained Transformers (GPT) | Models designed for NLP tasks | Capable of generating coherent and contextually relevant text | NLP, Text Generation | [40,41] |
Diffusion Models | Models used for visual content creation | Iteratively refine random noise into coherent images | Image Generation, Visual Content Creation | [39] |
Multimodal Models | Models that can handle multiple data types (e.g., text and images) | Process and generate content across different data types, enhancing versatility | Cross-Modal Content Generation, Unified AI Tasks | [42,43] |
Study | Generative AI Model | Findings | Year | Cited by |
---|---|---|---|---|
[67] | Transformer-based deep learning | Achieved >91% classification accuracy in analyzing EV charging station reviews; informs public policy and infrastructure planning | 2021 | 21 |
[68] | Hybrid SVM-GPT transformer model | Hybrid model improves accuracy in classifying and clustering consumer data and aids in customer segmentation and targeted marketing | 2024 | 0 |
[69] | VATA model (VAE, transformer, attention mechanism) | Captures implicit characteristics of user behavior; enhances analysis of complex shopping scenarios in e-commerce | 2024 | 5 |
[70] | Transformer-based choice model | Generates synthetic datasets to simulate consumer purchasing behavior; evaluates effectiveness of decision algorithms in inventory management | 2024 | 1 |
[71] | BERT for ABSA | Improves sentiment classification accuracy; provides detailed understanding of consumer preferences and emotions | 2021 | 31 |
[72] | NLP techniques (LDA, BERT) | Analyzes COVID-19-related tweets to understand public sentiment; offers insights for effective health communication strategies | 2023 | 2 |
[73] | Mannequin2Real framework (generative model) | Transforms mannequin images into photorealistic model images; enhances online shopping experience by reducing modeling costs | 2024 | 0 |
[74] | GANs | Higher willingness to pay for GAN-generated fashion products; use of GANs enhances perceived value and consumers’ willingness to pay | 2021 | 38 |
Study | Generative AI Model | Findings | Year | Cited by |
---|---|---|---|---|
[75] | GAN, CNN, LSTM-RNN | Proposed ensemble framework improving personalized recommendations and accuracy in e-commerce sales predictions | 2024 | 1 |
[76] | Double-GAN | Developed model to address data sparsity and computational complexity, improving user alignment across platforms | 2023 | 2 |
[77] | VAE | Extracted latent features for improved churn prediction, showing 1.5% improvement in F-measure | 2022 | 9 |
[78] | RNN, Transformers | RNNs outperformed transformers in churn prediction using time-varying features, with hybrid models showing no improvement | 2024 | 5 |
[79] | LLMs | Highlighted effectiveness of document retrieval techniques for dynamic marketing insights | 2024 | 0 |
[80] | Generative AI (Convergent and Divergent Thinking) | Analyzed AI’s impact on consumer behavior, focusing on predictive and generative AI advancements | 2024 | 2 |
[81] | Multivariate Behavior Sequence Transformer (MBST) | Achieved high F-score and AUC in churn prediction with novel transformer-based model | 2022 | 11 |
[82] | Conditional GAN (CTGAN), SMOTE, Ensemble Models | Used class balancing techniques and hybrid ensemble models to improve churn prediction accuracy | 2024 | 0 |
[83] | TN-GAN, CNN, LSTM | Improved behavioral prediction using TN-GAN and hybrid CNN-LSTM model for pet monitoring systems | 2023 | 2 |
[84] | CNN, LSTM | Enhanced priority detection in neuromarketing using EEG features and machine learning | 2024 | 0 |
[85] | Causal VAEs, Graph Neural Networks | Developed explainable model with high accuracy in predicting e-commerce purchase behavior | 2024 | 0 |
[86] | M-GAN-XGBOOST | Proposed model combining LSTM, GAN, and XGBOOST for accurate sales predictions and marketing strategies | 2021 | 22 |
[87] | Generative AI | Evaluated EV charging impact on grids, finding that proper siting can handle 100% EV adoption without upgrades | 2024 | 0 |
[88] | Battery Storage Systems | Explored battery storage solutions based on consumer energy behavior to improve grid operability | 2022 | 0 |
[89] | Distributed Energy Resources Management | Proposed system optimizing power dispatch, leading to significant cost savings and improved power quality | 2021 | 9 |
[90] | Load Management Methodology | Demonstrated improved load management and system stability through new methodology | 2020 | 10 |
[91] | Orthogonal Particle Swarm Optimization | Developed model for load demand forecasting and transformer burden analysis in Baghdad City | 2020 | 5 |
[92] | Generative AI | Assessed impact of low-carbon technologies on grid infrastructure, highlighting spatial and temporal variations | 2023 | 4 |
Study | Generative AI Model | Findings | Year | Cited by |
---|---|---|---|---|
[93] | GAN | GAN approach captures real load profile patterns and maintains data privacy | 2020 | 64 |
[94] | BERT-LSTM, CNN | Improves classification accuracy (0.957) and power disaggregation | 2024 | 0 |
[95] | Coupled GANs (C-GAN) | Enhanced NILM framework saves energy costs and boosts market revenue | 2023 | 10 |
[96] | VAE, Temporal Convolutional Networks | Two-stage model improves forecasting accuracy (16% MAE; 19% MAPE) | 2023 | 10 |
[97] | Multi-Objective Optimization Model | HEMS reduces costs (31%), demand peak (18%), and transformer Loss of Life (28%) | 2021 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madanchian, M. Generative AI for Consumer Behavior Prediction: Techniques and Applications. Sustainability 2024, 16, 9963. https://doi.org/10.3390/su16229963
Madanchian M. Generative AI for Consumer Behavior Prediction: Techniques and Applications. Sustainability. 2024; 16(22):9963. https://doi.org/10.3390/su16229963
Chicago/Turabian StyleMadanchian, Mitra. 2024. "Generative AI for Consumer Behavior Prediction: Techniques and Applications" Sustainability 16, no. 22: 9963. https://doi.org/10.3390/su16229963
APA StyleMadanchian, M. (2024). Generative AI for Consumer Behavior Prediction: Techniques and Applications. Sustainability, 16(22), 9963. https://doi.org/10.3390/su16229963