Quantitative Determination of Nitrogen Fixed by Soybean and Its Uptake by Winter Wheat as Aftercrops Within Sustainable Agricultural Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment Description
2.2. Experimental Design
2.3. Chemical Analysis
2.4. Calculation of the Results and Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aczel, M.R. What is the nitrogen cycle and why is it key to life? Front. Young Minds 2019, 7. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Zhou, Y.; Duanmu, D. Use of CRISPR/Cas9 for symbiotic nitrogen fixation research in legumes. Prog. Mol. Biol. Transl. Sci. 2017, 149, 187–213. [Google Scholar] [PubMed]
- Mahmud, K.; Makaju, S.; Ibrahim, R.; Missaoui, A. Current progress in nitrogen fixing plants and microbiome research. Plants 2020, 9, 97. [Google Scholar] [CrossRef] [PubMed]
- Fowler, D.; Coyle, M.; Skiba, U.; Sutton, M.A.; Cape, J.N.; Reis, S.; Sheppard, L.J.; Jenkins, A.; Grizzetti, B.; Galloway, J.N.; et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20130164. [Google Scholar]
- Herridge, D.F.; Peoples, M.B.; Boddey, R.M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 2008, 311, 1–18. [Google Scholar] [CrossRef]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639. [Google Scholar] [CrossRef]
- Mistry, A.N.; Ganta, U.; Chakrabarty, J.; Dutta, S. A review on biological systems for CO2 sequestration: Organisms and their pathways. Environ. Prog. Sustain. Energy 2019, 38, 127–136. [Google Scholar] [CrossRef]
- Rogers, A.; Ainsworth, E.A.; Leakey, A.D. Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiol. 2009, 151, 1009–1016. [Google Scholar] [CrossRef]
- Chalk, P.M.; Lam, S.K.; Chen, D. 15N methodologies for quantifying the response of N2-fixing associations to elevated [CO2]: A review. Sci. Total Environ. 2016, 571, 624–632. [Google Scholar] [CrossRef]
- Bano, S.A.; Iqbal, S.M. Biological nitrogen fixation to improve plant growth and productivity. Int. J. Agric. Innov. Res 2016, 4. [Google Scholar]
- FAO. Global agriculture towards 2050. In High Level Expert Forum-How to Feed the World; FAO: Rome, Italy, 2009. [Google Scholar]
- GHGenius—A Model for Lifecycle Assessment of Transportation Fuels; Version 3.17; National Resources Canada: Ottawa, ON, Canada, 2010.
- FAO. FAOSTAT Database Collections; Foods and Agriculture of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Fang, C.; Kong, F. Soybean. Curr. Biol. 2022, 32, R902–R904. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Saini, P.K.; Bhati, J.; Kumar, D.; Shukla, S.; Yadav, S. Management of Nutrients in Soybean (Glycine max) Crops: A Review. J. Adv. Biol. Biotechnol. 2024, 27, 820–833. [Google Scholar] [CrossRef]
- Zimmer, S.; Messmer, M.; Haase, T.; Piepho, H.-P.; Mindermann, A.; Schulz, H.; Habekuß, A.; Ordon, F.; Wilbois, K.-P.; Heß, J. Effects of soybean variety and Bradyrhizobium strains on yield, protein content and biological nitrogen fixation under cool growing conditions in Germany. Eur. J. Agron. 2016, 72, 38–46. [Google Scholar] [CrossRef]
- Balboa, G.R.; Sadras, V.O.; Ciampitti, I.A. Shifts in soybean yield, nutrient uptake, and nutrient stoichiometry: A historical synthesis-analysis. Crop Sci. 2018, 58, 43–54. [Google Scholar] [CrossRef]
- Elli, E.F.; Ciampitti, I.A.; Castellano, M.J.; Purcell, L.C.; Naeve, S.; Grassini, P.; Archontoulis, S.V. Climate change and management impacts on soybean N fixation, soil N mineralization, N2O emissions, and seed yield. Front. Plant Sci. 2022, 13, 849896. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Cassman, K.G.; Specht, J.E.; Walters, D.T.; Weiss, A.; Dobermann, A. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Res. 2008, 108, 1–13. [Google Scholar] [CrossRef]
- Kehoe, E.; Rubio, G.; Salvagiotti, F. Contribution of different sources and origins of nitrogen in above-and below-ground structures to the partial nitrogen balance in soybean. Plant Soil 2022, 477, 405–422. [Google Scholar] [CrossRef]
- Sukhoveeva, O. Carbon and Nitrogen Allocation and Input in Soil with Grain Crops Post-Harvest Residues: East-European Plain Case Study. J. Soil Sci. Plant Nutr. 2024, 1–17. [Google Scholar] [CrossRef]
- Tripolskaja, L.; Kazlauskaite-Jadzevice, A.; Razukas, A. Organic carbon, nitrogen accumulation and nitrogen leaching as affected by legume crop residues on sandy loam in the eastern baltic region. Plants 2023, 12, 2478. [Google Scholar] [CrossRef]
- Sassenrath, G.F.; Schneider, J.M.; Gaj, R.; Grzebisz, W.; Halloran, J.M. Nitrogen balance as an indicator of environmental impact: Toward sustainable agricultural production. Renew. Agric. Food Syst. 2013, 28, 276–289. [Google Scholar] [CrossRef]
- Peoples, M.B.; Brockwell, J.; Herridge, D.F.; Rochester, I.J.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M.; Dakora, F.D.; Bhattarai, S.; Maskey, S.L.; et al. The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; An, J.; Shi, H.; Tang, Z.; Zhao, X.; Guo, J.; Jin, L.; Xiang, Y.; Li, Z.; et al. Effects of nitrogen supply on dry matter accumulation, water-nitrogen use efficiency and grain yield of soybean (Glycine max L.) under different mulching methods. Agronomy 2023, 13, 606. [Google Scholar] [CrossRef]
- Herridge, D.F.; Giller, K.E.; Jensen, E.S.; Peoples, M.B. Quantifying country-to-global scale nitrogen fixation for grain legumes II. Coefficients, templates and estimates for soybean, groundnut and pulses. Plant Soil 2022, 474, 1–15. [Google Scholar] [CrossRef]
- Reckling, M.; Hecker, J.M.; Bergkvist, G.; Watson, C.A.; Zander, P.; Schläfke, N.; Stoddard, F.L.; Eory, V.; Topp, C.F.E.; Maire, J.; et al. A cropping system assessment framework—Evaluating effects of introducing legumes into crop rotations. Eur. J. Agron. 2016, 76, 186–197. [Google Scholar] [CrossRef]
- Kalembasa, S.; Siczek, A.; Kalembasa, D.; Spychaj-Fabisiak, E.U.; Becher, M.; Gebus-Czupyt, B. Fractions of nitrogen (including 15N) and also carbon in the soil as affected by different crop residues. Int. Agrophysics 2023, 37, 265–278. [Google Scholar] [CrossRef]
- Unkovich, M. Isotope discrimination provides new insight into biological nitrogen fixation. New Phytol. 2013, 198, 643–646. [Google Scholar] [CrossRef]
- Nguyen, M.L. Nitrogen Fixation by Pulse Crops and the Use of Nitrogen Isotopic Techniques to Measure the Fixation Capacity. In Soil Nitrogen Uses and Environmental Impacts; Series: Advances in Soil Science; CRC Press: Boca Raton, FL, USA, 2018; pp. 21–38. [Google Scholar]
- European-Commission. Farm to Fork Strategy: For a Fair, Healthy and Environmentally-Friendly Food System; European-Commission: Brussels, Belgium, 2020. [Google Scholar]
- Kalembasa, S.; Szukała, J.; Faligowska, A.; Kalembasa, D.; Symanowicz, B.; Becher, M.; Gebus-Czupyt, B. Quantification of biologically fixed nitrogen by white lupin (Lupins albus L.) and its subsequent uptake by winter wheat using the 15N isotope dilution method. Agronomy 2020, 10, 1392. [Google Scholar] [CrossRef]
- Panasiewicz, K.; Faligowska, A.; Szymańska, G.; Ratajczak, K.; Sulewska, H. Optimizing the amount of nitrogen and seed inoculation to improve the quality and yield of soybean grown in the southeastern Baltic region. Agriculture 2023, 13, 798. [Google Scholar] [CrossRef]
- Kotecki, A.; Lewandowska, S.; Bednarczyk, M.; Helios, W.; Kozak, M.; Malarz, W.; Markowicz, M.; Serafin-Andrzejewska, M. Studies on the Cultivation of Common Soybean (Glycine max (L.) Merrill) in Southwestern Poland: Collective Work; Publishing House of the Wrocław University of Environmental and Life Sciences: Wrocław, Poland, 2020. (In Polish) [Google Scholar]
- Prusiński, J.; Baturo-Cieśniewska, A.; Borowska, M. Response of soybean (Glycine max (L.) Merrill) to mineral nitrogen fertilization and Bradyrhizobium japonicum seed inoculation. Agronomy 2020, 10, 1300. [Google Scholar] [CrossRef]
- Dave, K.; Kumar, A.; Dave, N.; Jain, M.; Dhanda, P.S.; Yadav, A.; Kaushik, P. Climate Change Impacts on Legume Physiology and Ecosystem Dynamics: A Multifaceted Perspective. Sustainability 2024, 16, 6026. [Google Scholar] [CrossRef]
- Jarecki, W.; Borza, I.M.; Rosan, C.A.; Vicas, S.I.; Domuța, C.G. Soybean Response to Seed Inoculation with Bradyrhizobium japonicum and/or Nitrogen Fertilization. Agriculture 2024, 14, 1025. [Google Scholar] [CrossRef]
- Liao, Z.; Zhang, K.; Fan, J.; Li, Z.; Zhang, F.; Wang, X.; Wang, H.; Cheng, M.; Zou, Y. Ridge-furrow plastic mulching and dense planting with reduced nitrogen improve soil hydrothermal conditions, rainfed soybean yield and economic return in a semi-humid drought-prone region of China. Soil Tillage Res. 2022, 217, 105291. [Google Scholar] [CrossRef]
- Mayer, J.; Buegger, F.; Jensen, E.S.; Schloter, M.; Heß, J. Residual nitrogen contribution from grain legumes to succeeding wheat and rape and related microbial process. Plant Soil 2003, 255, 541–554. [Google Scholar] [CrossRef]
- Mayer, J.; Buegger, F.; Jensen, E.S.; Schloter, M.; Heß, J. Estimating N rhizodeposition of grain legumes using a 15N in situ stem labelling method. Soil Biol. Biochem. 2003, 35, 21–28. [Google Scholar] [CrossRef]
- Carranca, C.; Torres, M.O.; Madeira, M. Underestimated role of legume roots for soil N fertility. Agron. Sustain. Dev. 2015, 35, 1095–1102. [Google Scholar] [CrossRef]
- Naeem, M.A.; Khalid, M.; Aon, M.; Abbas, G.; Tahir, M.; Amjad, M.; Murtaza, B.; Yang, A.; Akhtar, S.S. Effect of wheat and rice straw biochar produced at different temperatures on maize growth and nutrient dynamics of a calcareous soil. Arch. Agron. Soil Sci. 2017, 63, 2048–2061. [Google Scholar] [CrossRef]
- Kalembasa, S.; Kalembasa, D. Conversions and Pathways of Organic Carbon and Organic Nitrogen in Soils. In Bioactive Compounds in Agricultural Soils; Szajdak, L., Ed.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Pampana, S.; Masoni, A.; Mariotti, M.; Ercoli, L.; Arduini, I. Nitrogen fixation of grain legumes differs in response to nitrogen fertilisation. Exp. Agric. 2018, 54, 66–82. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Y.; Yu, L.; Shu, Y.; Tan, F.; Gou, Y.; Luo, S.; Yang, W.; Li, Z.; Wang, J. Sugarcane/soybean intercropping with reduced nitrogen input improves crop productivity and reduces carbon footprint in China. Sci. Total Environ. 2020, 719, 137517. [Google Scholar] [CrossRef]
- Schwember, A.R.; Schulze, J.; Del Pozo, A.; Cabeza, R.A. Regulation of symbiotic nitrogen fixation in legume root nodules. Plants 2019, 8, 333. [Google Scholar] [CrossRef]
- Cannell, M.G.R.; Thornley, J.H.M. Modelling the components of plant respiration: Some guiding principles. Ann. Bot. 2000, 85, 45–54. [Google Scholar] [CrossRef]
- Virk, A.L.; Lin, B.J.; Kan, Z.R.; Qi, J.Y.; Dang, Y.P.; Lal, R.; Zhao, X.; Zhang, H.L. Simultaneous effects of legume cultivation on carbon and nitrogen accumulation in soil. Adv. Agron. 2022, 171, 75–110. [Google Scholar]
- Kohn, M.J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate. Proc. Natl. Acad. Sci. USA 2010, 107, 19691–19695. [Google Scholar] [CrossRef] [PubMed]
- Kirkels, F.; de Boer, H.; Concha Hernández, P.; Martes, C.; van der Meer, M.; Basu, S.; Usman, M.O.; Peterse, F. Carbon isotopic ratios of modern C3 and C4 vegetation on the Indian Peninsula and changes along the plant–soil–river continuum; implications for (paleo-) vegetation reconstructions. Biogeosci. Discuss. 2022, 19, 4107–4127. [Google Scholar] [CrossRef]
- Leip, A.; Weiss, F.; Lesschen, J.P.; Westhoek, H. The nitrogen footprint of food products in the European Union. J. Agric. Sci. 2014, 152, 20–33. [Google Scholar] [CrossRef]
- Preissel, S.; Reckling, M.; Schläfke, N.; Zander, P. Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: A review. Field Crops Res. 2015, 175, 64–79. [Google Scholar] [CrossRef]
- Nemecek, T.; von Richthofen, J.S.; Dubois, G.; Casta, P.; Charles, R.; Pahl, H. Environmental impacts of introducing grain legumes into European crop rotations. Eur. J. Agron. 2008, 28, 380–393. [Google Scholar] [CrossRef]
- Gojon, A. Nitrogen nutrition in plants: Rapid progress and new challenges. J. Exp. Bot. 2017, 68, 2457–2462. [Google Scholar] [CrossRef]
- Xu, G.; Fan, X.; Miller, A.J. Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol. 2012, 63, 153–182. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Garg, A.K.; Manchanda, J.S.; Dercon, G.; Nguyen, M.L. Biological nitrogen fixation by soybean and fate of applied 15 N-fertilizer in succeeding wheat under conventional tillage and conservation agriculture practices. Nutr. Cycl. Agroecosystems 2017, 107, 79–89. [Google Scholar] [CrossRef]
Specification | Seeds | Crop Residues | Sum/Mean Weighted |
---|---|---|---|
Yield (t∙ha−1) | 2.48 | 8.73 | 11.21 |
CN (%) 1 | 4.36 | 0.47 | 1.33 |
ANb (kg∙ha−1) 2 | 108.1 | 41.0 | 149.1 |
Atomic enrich% (at% 15Nexc) 3 | 2.135 | 1.750 | 2.029 |
ANa (%) and (kg∙ha−1) 4 | 31.5 (34.0) | 27.8 (11.4) | 45.4 |
AN(15NH4)2SO4 in % and (kg∙ha−1) 5 | 10.8 (11.7) | 8.86 (3.63) | 15.3 |
ANs in % and (kg∙ha−1) 6 | 57.7 (62.4) | 63.3 (25.9) | 88.4 |
CCorg (%) 7 | 49.5 | 39.7 | |
C/N 8 | 11.3 | 84.5 | |
AOC (kg∙ha−1) 9 | 3456 | ||
δ 13C/12C (‰) | −28.6 | −26.8 |
Specification | Nitrogen Dose (kg∙ha−1) | Grain | Crop Residues | Sum/Mean Weighted |
---|---|---|---|---|
Yield (t∙ha−1) | 0 | 3.60 b | 5.23 b | 8.83 b |
100 | 5.20 a | 7.25 a | 12.45 a | |
Effect of 100 kg N∙ha−1 | +1.60 | +2.02 | +3.62 | |
Content of total nitrogen % | 0 | 1.35 b | 0.28 a | 0.70 b |
100 | 1.84 a | 0.26 a | 0.82 a | |
ANb (kg∙ha−1) 1 | 0 | 48.6 b | 14.6 b | 63.2 b |
100 | 95.6 a | 18.8 a | 114.4 a | |
CNU (%) 2 | 47.0 | 4.2 | 51.2 | |
(%) at % 15Nexc | 0 | 0.134 | 0.164 | 0.141 |
100 | 0.125 | 0.208 | 0.142 | |
N (%) (kg∙ha−1) 3 | 0 | 7.65 | 9.37 | 8.05 |
100 | 7.14 | 11.88 | 8.10 | |
N (kg∙ha−1) 4 | 0 | 3.71 | 1.36 | 5.07 |
100 | 6.82 | 2.23 | 9.05 |
Specification | Nitrogen Dose (kg∙ha−1) | Grain | Crop Residues | Sum/Mean Weighted |
---|---|---|---|---|
Yield (t∙ha−1) | 0 | 4.30 b | 7.37 b | 11.67 b |
100 | 5.20 a | 8.90 a | 14.10 a | |
Effect of 100 kg N∙ha−1 | +0.90 | +1.53 | +2.43 | |
Content of total nitrogen % | 0 | 1.53 b | 0.40 b | 0.81 b |
100 | 1.93 a | 0.81 a | 1.22 a | |
ANb (kg∙ha−1) 1 | 0 | 65.8 | 29.4 | 95.2 b |
100 | 100.3 | 72.0 | 172.3 a | |
CNU (%) 2 | 34.5 | 42.6 | 77.1 | |
(%) at % 15Nexc | 0 | 0.062 | 0.044 | 0.056 |
100 | 0.075 | 0.053 | 0.065 | |
N (%) (kg∙ha−1) 3 | 0 | 3.54 | 2.51 | 6.05/3.20 |
100 | 4.28 | 3.02 | 7.30/3.71 | |
N (kg∙ha−1) 4 | 0 | 2.32 b | 0.73 b | 3.05 b |
100 | 4.29 a | 2.17 a | 6.46 a | |
CNU soya by wheat (%) 5 | 0 | 5.65 b | 1.78 b | 7.43 b |
100 | 10.46 a | 5.29 a | 15.75 a | |
AN_BRN (kg∙ha−1) 6 | 0 | 0.40 | 0.28 | 0.68 |
100 | 0.48 | 0.34 | 0.82 | |
CNU_BRN (%) 7 | 0 | 3.50 | 2.45 | 5.95 |
100 | 4.21 | 2.98 | 7.19 |
Specification | Nitrogen Dose (kg∙ha−1) | Seeds/Grain | Crop Residues | Sum | % Share 1 |
---|---|---|---|---|---|
Isotope 15N_biomass (kg∙ha−1) 2 | 2.307 | 0.717 | 3.024 | 51.08 | |
Isotope 15N_wheat2017 (kg∙ha−1) 3 | 0 | 0.065 b | 0.023 | 0.088 b | 1.48 |
100 | 0.119 a | 0.039 | 0.158 a | 2.66 | |
Isotope 15N_wheat2018 (kg∙ha−1) 4 | 0 | 0.040 b | 0.012 b | 0.052 b | 0.87 |
100 | 0.075 a | 0.038 a | 0.163 a | 2.75 | |
Sum for the rotation (%) 5 | 0 | 52.63 | |||
100 | 56.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratajczak, K.; Becher, M.; Kalembasa, S.; Faligowska, A.; Kalembasa, D.; Symanowicz, B.; Panasiewicz, K.; Szymańska, G.; Sulewska, H. Quantitative Determination of Nitrogen Fixed by Soybean and Its Uptake by Winter Wheat as Aftercrops Within Sustainable Agricultural Systems. Sustainability 2024, 16, 10153. https://doi.org/10.3390/su162310153
Ratajczak K, Becher M, Kalembasa S, Faligowska A, Kalembasa D, Symanowicz B, Panasiewicz K, Szymańska G, Sulewska H. Quantitative Determination of Nitrogen Fixed by Soybean and Its Uptake by Winter Wheat as Aftercrops Within Sustainable Agricultural Systems. Sustainability. 2024; 16(23):10153. https://doi.org/10.3390/su162310153
Chicago/Turabian StyleRatajczak, Karolina, Marcin Becher, Stanisław Kalembasa, Agnieszka Faligowska, Dorota Kalembasa, Barbara Symanowicz, Katarzyna Panasiewicz, Grażyna Szymańska, and Hanna Sulewska. 2024. "Quantitative Determination of Nitrogen Fixed by Soybean and Its Uptake by Winter Wheat as Aftercrops Within Sustainable Agricultural Systems" Sustainability 16, no. 23: 10153. https://doi.org/10.3390/su162310153
APA StyleRatajczak, K., Becher, M., Kalembasa, S., Faligowska, A., Kalembasa, D., Symanowicz, B., Panasiewicz, K., Szymańska, G., & Sulewska, H. (2024). Quantitative Determination of Nitrogen Fixed by Soybean and Its Uptake by Winter Wheat as Aftercrops Within Sustainable Agricultural Systems. Sustainability, 16(23), 10153. https://doi.org/10.3390/su162310153