Perennial Forage Systems Enhance Ecosystem Quality Variables Compared with Annual Forage Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope Definition
2.2. Data Collection and Management
2.3. Functional Unit (FU) and Assumptions
- Mass-based FU: of dry matter of the product (grain, silage, hay, or forage) per year for animal feed production. This FU aims to evidence the production efficiency of different cropping systems [17];
- Area-based FU: of land occupied per year . Considering that environmental impacts are related to a specific amount of land, the concern of a land-based unit is considered complementary to the mass-based unit. However, both usually lead to different results [31];
2.4. Statistical Analysis of Data
2.4.1. Moderator Variables
2.4.2. Effect Size and Meta-Analysis
2.4.3. Variance
2.4.4. Test for Heterogeneity Using the Q Statistic
2.4.5. Publication Bias and Sensitivity Analysis
3. Results
3.1. Heterogeneity, Sensitivity, and Publication Bias
Moderator | n | Qvalue † | df | Phetero | I2 |
---|---|---|---|---|---|
Dry matter yield | 43 | 24.09 | 2 | <0.100 | 91.7 |
Net energy of lactation | 47 | 9.08 | 2 | 0.0110 | 77.9 |
Fossil energy consumption | 21 | 2.93 | 2 | 0.2300 | 31.8 |
Abiotic depletion potential | 34 | 1.95 | 2 | 0.3770 | −2.5 |
Global warming potential | 42 | 1.46 | 2 | 0.4810 | −36.6 |
Ozone layer depletion potential | 19 | 12.82 | 2 | 0.0020 | 84.4 |
Ecotoxicity potential | 33 | 33.51 | 2 | <0.100 | 94.0 |
Terrestrial acidification | 38 | 15.40 | 2 | <0.100 | 87.0 |
Eutrophication potential | 28 | 14.78 | 2 | 0.0010 | 86.5 |
3.2. Effect of Cropping System Levels on Dry Matter Yield and Energy Production
3.3. Effect of Cropping Systems on Environmental Impact Categories
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2006. Available online: http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (accessed on 26 September 2024).
- Yang, Y.; Tilman, D.; Jin, Z.; Smith, P.; Barrett, C.B.; Zhu, Y.-G.; Burney, J.; D’Odorico, P.; Fantke, P.; Fargione, J. Climate change exacerbates the environmental impacts of agriculture. Science 2024, 385, eadn3747. [Google Scholar] [CrossRef] [PubMed]
- Sainju, U.M. A Global Meta-analysis on the impact of management practices on net global warming potential and greenhouse gas intensity from cropland soils. PLoS ONE 2016, 11, e0148527. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Sánchez, P.; Navarro-Pineda, F.S.; Sacramento-Rivero, J.C.; Barahona-Pérez, L.F. Life-cycle assessment of bioethanol production from sweet sorghum stalks cultivated in the state of Yucatan, Mexico. Clean Technol. Environ. Policy 2018, 20, 1685–1696. [Google Scholar] [CrossRef]
- Stanley, P.L.; Rowntree, J.E.; Beede, D.K.; DeLonge, M.S.; Hamm, M.W. Impacts of soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems. Agric. Syst. 2018, 162, 249–258. [Google Scholar] [CrossRef]
- Guareschi, R.F.; dos Reis Martins, M.; Fernandes, L. An analysis of energy efficiency and greenhouse gas emissions from organic soybean cultivation in Brazil Uma análise da eficiência energética e da emissão de gases de efeito estufa no cultivo orgânico de soja no Brasil. Semin. Ciências Agrárias Londrina 2019, 40, 3461–3476. [Google Scholar] [CrossRef]
- Bernas, J.; Bernasová, T.; Nedbal, V.; Neugschwandtner, R.W. Agricultural lca for food oil of winter rapeseed, sunflower, and hemp, based on czech standard cultivation practices. Agronomy 2021, 11, 2301. [Google Scholar] [CrossRef]
- Liao, W.; Liu, C.; Zhang, X.; Wang, S.; Fan, Y.; Gao, Z. Evaluating gas emissions from different feed cropping systems in the North China Plain: A two-year field measurement. Atmosphere 2022, 13, 1153. [Google Scholar] [CrossRef]
- MacLaren, C.; Mead, A.; van Balen, D.; Claessens, L.; Etana, A.; de Haan, J.; Haagsma, W.; Jäck, O.; Keller, T.; Labuschagne, J. Long-term evidence for ecological intensification as a pathway to sustainable agriculture. Nat. Sustain. 2022, 5, 770–779. [Google Scholar] [CrossRef]
- Berti, M.T.; Cecchin, A.; Samarappuli, D.P.; Patel, S.; Lenssen, A.W.; Moore, K.J.; Wells, S.S.; Kazula, M.J. Alfalfa established successfully in intercropping with corn in the Midwest US. Agronomy 2021, 11, 1676. [Google Scholar] [CrossRef]
- Faust, D.R.; Kumar, S.; Archer, D.W.; Hendrickson, J.R.; Kronberg, S.L.; Liebig, M.A. Integrated crop-livestock systems and water quality in the northern Great Plains: Review of Current Practices and Future Research Needs. J. Environ. Qual. 2018, 47, 1–15. [Google Scholar] [CrossRef]
- Poeplau, C.; Aronsson, H.; Myrbeck, Å.; Kätterer, T. Effect of perennial ryegrass cover crop on soil organic carbon stocks in southern Sweden. Geoderma Reg. 2015, 4, 126–133. [Google Scholar] [CrossRef]
- Khanal, N. Integration of perennial forage seed crops for cropping systems resiliency in the Peace River region of western Canada. Can. J. Plant Sci. 2022, 103, 1–12. [Google Scholar] [CrossRef]
- Nilsson, J.; El Khosht, F.F.; Bergkvist, G.; Öborn, I.; Tidåker, P. Effect of short-term perennial leys on life cycle environmental performance of cropping systems: An assessment based on data from a long-term field experiment. Eur. J. Agron. 2023, 149, 126888. [Google Scholar] [CrossRef]
- Sanford, G.R.; Jackson, R.D.; Booth, E.G.; Hedtcke, J.L.; Picasso, V. Perenniality and diversity drive output stability and resilience in a 26-year cropping systems experiment. Field Crops Res. 2021, 263, 108071. [Google Scholar] [CrossRef]
- Picasso, V.D.; Berti, M.; Cassida, K.; Collier, S.; Fang, D.; Finan, A.; Krome, M.; Hannaway, D.; Lamp, W.; Stevens, A.W.; et al. Diverse perennial circular forage systems are needed to foster resilience, ecosystem services, and socioeconomic benefits in agricultural landscapes. Grassl. Res. 2022, 1, 123–130. [Google Scholar] [CrossRef]
- González-García, S.; Baucells, F.; Feijoo, G.; Moreira, M.T. Environmental performance of sorghum, barley and oat silage production for livestock feed using life cycle assessment. Resour. Conserv. Recycl. 2016, 111, 28–41. [Google Scholar] [CrossRef]
- Escobar, N.; Ramírez-Sanz, C.; Chueca, P.; Moltó, E.; Sanjuán, N. Multiyear life cycle assessment of switchgrass (Panicum virgatum L.) production in the Mediterranean region of Spain: A comparative case study. Biomass Bioenergy 2017, 107, 74–85. [Google Scholar] [CrossRef]
- Zucali, M.; Bacenetti, J.; Tamburini, A.; Nonini, L.; Sandrucci, A.; Bava, L. Environmental impact assessment of different cropping systems of home-grown feed for milk production. J. Clean. Prod. 2018, 172, 3734–3746. [Google Scholar] [CrossRef]
- Bernas, J.; Bernasová, T.; Gerstberger, P.; Moudrý, J.; Konvalina, P.; Moudrý, J. Cup plant, an alternative to conventional silage from a LCA perspective. Int. J. Life Cycle Assess. 2021, 26, 311–326. [Google Scholar] [CrossRef]
- Fathollahi, H.; Mousavi-Avval, S.H.; Akram, A.; Rafiee, S. Comparative energy, economic and environmental analyses of forage production systems for dairy farming. J. Clean. Prod. 2018, 182, 852–862. [Google Scholar] [CrossRef]
- Modernel, P.; Astigarraga, L.; Picasso, V. Global versus local environmental impacts of grazing and confined beef production systems. Environ. Res. Lett. 2013, 8, 035052. [Google Scholar] [CrossRef]
- Picasso, V.D.; Modernel, P.D.; Becoña, G.; Salvo, L.; Gutiérrez, L.; Astigarraga, L.J.M.s. Sustainability of meat production beyond carbon footprint: A synthesis of case studies from grazing systems in Uruguay. Meat Sci. 2014, 98, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Bacenetti, J.; Lovarelli, D.; Tedesco, D.; Pretolani, R.; Ferrante, V. Environmental impact assessment of alfalfa (Medicago sativa L.) hay production. Sci. Total Environ. 2018, 635, 551–558. [Google Scholar] [CrossRef]
- ISO 14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organisation for Standardisation (ISO): Geneve, Switzerland, 2006.
- Wolfswinkel, J.F.; Furtmueller, E.; Wilderom, C.P. Using grounded theory as a method for rigorously reviewing literature. Eur. J. Inf. Syst. 2013, 22, 45–55. [Google Scholar] [CrossRef]
- Beemsterboer, S.; Baumann, H.; Wallbaum, H. Ways to get work done: A review and systematisation of simplification practices in the LCA literature. Int. J. Life Cycle Assess. 2020, 25, 2154–2168. [Google Scholar] [CrossRef]
- Fedorov, S. GetData Graph Digitizer 2.26. 0.20. 2000. Available online: https://getdata-graph-digitizer.software.informer.com/ (accessed on 26 September 2024).
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Martínez-Blanco, J.; Muñoz, P.; Antón, A.; Rieradevall, J. Life cycle assessment of the use of compost from municipal organic waste for fertilization of tomato crops. Resour. Conserv. 2009, 53, 340–351. [Google Scholar] [CrossRef]
- Cerutti, A.K.; Bagliani, M.; Beccaro, G.L.; Bounous, G. Application of ecological footprint analysis on nectarine production: Methodological issues and results from a case study in Italy. J. Clean. Prod. 2010, 18, 771–776. [Google Scholar] [CrossRef]
- Linn, J. Energy in the 2001 Dairy NRC: Understanding the System. In Proceedings of the Minnesota Dairy Health Conference 2003, Green Bay, WI, USA, 11–12 November 2003. [Google Scholar]
- Preston, R. feed composition table BEEF Magazine. Nutrition 2016, 2016, 16–34. [Google Scholar]
- Rivera, J. Feeding Value of Cup Plant (Silphium perfoliatum sp.) silage. University of Guelph. 2021. Available online: https://hdl.handle.net/10214/26998 (accessed on 26 September 2024).
- Clark, C.; Hansen, S.; Loy, D. Utilization of Mature Switchgrass as Roughage in Feedlot Diets. 2016. Available online: https://cenusa.iastate.edu/files/cenusa_2019_022.pdf (accessed on 26 September 2024).
- Ashworth, A.J.; Toler, H.D.; Allen, F.L.; Auge, R.M. Global meta-analysis reveals agro-grassland productivity varies based on species diversity over time. PLoS ONE 2018, 13, e0200274. [Google Scholar] [CrossRef]
- Borenstein, M. Comprehensive Meta-Analysis software. In Systematic Revivws in health Research: Meta-Analysis in Context, 3rd ed.; Egger, M., Higgins, J.P.T., Smith, G.D., Eds.; Wiley: Hoboken, NJ, USA, 2023; Available online: http://www.meta-analysis.com/ (accessed on 26 September 2024).
- Tremblay, N.; Bouroubi, Y.M.; Bélec, C.; Mullen, R.W.; Kitchen, N.R.; Thomason, W.E.; Ebelhar, S.; Mengel, D.B.; Raun, W.R.; Francis, D.D. Corn response to nitrogen is influenced by soil texture and weather. Agron. J. 2012, 104, 1658–1671. [Google Scholar] [CrossRef]
- Pelzer, E.; Hombert, N.; Jeuffroy, M.-H.; Makowski, D. Meta-analysis of the effect of nitrogen fertilization on annual cereal–legume intercrop production. Agron. J. 2014, 106, 1775–1786. [Google Scholar] [CrossRef]
- Laurent, A.; Pelzer, E.; Loyce, C.; Makowski, D. Ranking yields of energy crops: A meta-analysis using direct and indirect comparisons. Renew. Sustain. Energy Rev. 2015, 46, 41–50. [Google Scholar] [CrossRef]
- Cumming, G. Understanding the New Statistics: Effect Sizes, Confidence Intervals, and Meta-Analysis; Routledge: London, UK, 2011. [Google Scholar]
- Toler, H.D.; Augé, R.M.; Benelli, V.; Allen, F.L.; Ashworth, A.J. Global Meta-Analysis of cotton yield and weed suppression from cover crops. Crop Sci. 2019, 59, 1248–1261. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.; Rothstein, H.R. Introduction to Meta-Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Sutton, A.J. Evidence concerning the consequences of publication and related biases. In Publication Bias in Meta-Analysis: Prevention, Assessment and Adjustments; Rohstein, H.R., Stton, A.J., Borenstein, M., Eds.; Wiley: Hoboken, NJ, USA, 2005; Chapter 10; pp. 175–192. [Google Scholar]
- Koricheva, J.; Gurevitch, J. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 2014, 102, 828–844. [Google Scholar] [CrossRef]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef]
- Rosenthal, R. The file drawer problem and tolerance for null results. Psychol. Bull. 1979, 86, 638–641. [Google Scholar] [CrossRef]
- Duval, S.; Tweedie, R. A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. J. Am. Stat. Assoc. 2000, 95, 89–98. [Google Scholar] [CrossRef]
- Peters, T.; Taube, F.; Kluß, C.; Reinsch, T.; Loges, R.; Fenger, F. How does nitrogen application rate affect plant functional traits and crop growth rate of perennial ryegrass-dominated permanent pastures? Agronomy 2021, 11, 2499. [Google Scholar] [CrossRef]
- Bryant, R.H.; Gregorini, P.; Edwards, G.R. Effects of N fertilisation, leaf appearance and time of day on N fractionation and chemical composition of Lolium perenne cultivars in spring. Anim. Feed Sci. Technol. 2012, 173, 210–219. [Google Scholar] [CrossRef]
- Enriquez-Hidalgo, D.; Gilliland, T.J.; Hennessy, D. Herbage and nitrogen yields, fixation and transfer by white clover to companion grasses in grazed swards under different rates of nitrogen fertilization. Grass Forage Sci. 2015, 71, 559–574. [Google Scholar] [CrossRef]
- Trott, H.; Wachendorf, M.; Ingwersen, B.; Taube, F. Performance and environmental effects of forage production on sandy soils. I. Impact of defoliation system and nitrogen input on performance and N balance of grassland. Grass Forage Sci. 2004, 59, 41–55. [Google Scholar] [CrossRef]
- Mercier, K.M.; Teutsch, C.D.; Smith, S.R.; Ritchey, E.L.; Burdine, K.H.; Vanzant, E.S. Nitrogen fertilizer rate effects on yield and botanical components of summer annual forage mixtures. Agron. J. 2021, 113, 2798–2811. [Google Scholar] [CrossRef]
- Picasso, V.D.; Brummer, E.C.; Liebman, M.; Dixon, P.M.; Wilsey, B.J. Crop species diversity affects productivity and weed suppression in perennial polycultures under two management strategies. Crop Sci. 2008, 48, 331–342. [Google Scholar] [CrossRef]
- Huston, M.; Aarssen, L.; Austin, M.; Cade, B.S.; Fridley, J.; Garnier, E.; Grime, J.; Hodgson, J.; Lauenroth, W.; Thompson, K. No consistent effect of plant diversity on productivity. Science 2000, 289, 1255. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Skinner, R.H.; Barker, D.J.; Edwards, G.R.; Tracy, B.F.; Wedin, D.A. Plant species diversity and management of temperate forage and grazing land ecosystems. Crop Sci. 2004, 44, 1132–1144. [Google Scholar] [CrossRef]
- Franco, J.G.; Berti, M.T.; Grabber, J.H.; Hendrickson, J.R.; Nieman, C.C.; Pinto, P.; Van Tassel, D.; Picasso, V.D. Ecological Intensification of food production by integrating forages. Agronomy 2021, 11, 2580. [Google Scholar] [CrossRef]
- Berti, M.; Johnson, B.; Ripplinger, D.; Gesch, R.; Aponte, A. Environmental impact assessment of double- and relay-cropping with winter camelina in the northern Great Plains, USA. Agric. Syst. 2017, 156, 1–12. [Google Scholar] [CrossRef]
- Nemecek, T.; Huguenin-Elie, O.; Dubois, D.; Gaillard, G.; Schaller, B.; Chervet, A. Life cycle assessment of Swiss farming systems: II. Extensive and intensive production. Agric. Syst. 2011, 104, 233–245. [Google Scholar] [CrossRef]
- Meyeraurich, A.; Weersink, A.; Janovicek, K.; Deen, B. Cost efficient rotation and tillage options to sequester carbon and mitigate GHG emissions from agriculture in Eastern Canada. Agric. Ecosyst. Environ. 2006, 117, 119–127. [Google Scholar] [CrossRef]
- Solinas, S.; Fazio, S.; Seddaiu, G.; Roggero, P.P.; Deligios, P.A.; Doro, L.; Ledda, L. Environmental consequences of the conversion from traditional to energy cropping systems in a Mediterranean area. Eur. J. Agron. 2015, 70, 124–135. [Google Scholar] [CrossRef]
- Soto-Gómez, D.; Pérez-Rodríguez, P. Sustainable agriculture through perennial grains: Wheat, rice, maize, and other species. A review. Agric. Ecosyst. Environ. 2022, 325, 107747. [Google Scholar] [CrossRef]
- Graf, D.R.H.; Saghaï, A.; Zhao, M.; Carlsson, G.; Jones, C.M.; Hallin, S. Lucerne (Medicago sativa) alters N2O-reducing communities associated with cocksfoot (Dactylis glomerata) roots and promotes N2O production in intercropping in a greenhouse experiment. Soil Biol. Biochem. 2019, 137, 107547. [Google Scholar] [CrossRef]
- Taylor, A.M.; Amiro, B.D.; Fraser, T.J. Net CO2 exchange and carbon budgets of a three-year crop rotation following conversion of perennial lands to annual cropping in Manitoba, Canada. Agric. For. Meteorol. 2013, 182–183, 67–75. [Google Scholar] [CrossRef]
- Tenuta, M.; Amiro, B.D.; Gao, X.; Wagner-Riddle, C.; Gervais, M. Agricultural management practices and environmental drivers of nitrous oxide emissions over a decade for an annual and an annual-perennial crop rotation. Agric. For. Meteorol. 2019, 276–277, 107636. [Google Scholar] [CrossRef]
- Tamburini, G.; Bommarco, R.; Wanger, T.C.; Kremen, C.; Van Der Heijden, M.G.; Liebman, M.; Hallin, S. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 2020, 6, eaba1715. [Google Scholar] [CrossRef]
- Herron, J.; Hennessy, D.; Curran, T.P.; Moloney, A.; O’Brien, D. The simulated environmental impact of incorporating white clover into pasture-based dairy production systems. J. Dairy Sci. 2021, 104, 7902–7918. [Google Scholar] [CrossRef]
- Li, S.; Wu, J.; Ma, L. Economic, energy and environmental consequences of shifting from maize-wheat to forage rotation in the North China Plain. J. Clean. Prod. 2021, 328, 129670. [Google Scholar] [CrossRef]
- Little, S.; Benchaar, C.; Janzen, H.; Kröbel, R.; McGeough, E.; Beauchemin, K. Demonstrating the effect of forage source on the carbon footprint of a Canadian dairy farm using whole-systems analysis and the Holos model: Alfalfa silage vs. corn silage. Climate 2017, 5, 87. [Google Scholar] [CrossRef]
- Noya, I.; González-García, S.; Bacenetti, J.; Arroja, L.; Moreira, M.T. Comparative life cycle assessment of three representative feed cereals production in the Po Valley (Italy). J. Clean. Prod. 2015, 99, 250–265. [Google Scholar] [CrossRef]
- Wang, X.; Ledgard, S.; Luo, J.; Chen, Y.; Tian, Y.; Wei, Z.; Liang, D.; Ma, L. Life cycle assessment of alfalfa production and potential environmental improvement measures in Northwest China. J. Clean. Prod. 2021, 304, 127025. [Google Scholar] [CrossRef]
- Abraha, M.; Hamilton, S.K.; Chen, J.; Robertson, G.P. Ecosystem carbon exchange on conversion of Conservation Reserve Program grasslands to annual and perennial cropping systems. Agric. For. Meteorol. 2018, 253–254, 151–160. [Google Scholar] [CrossRef]
Moderator | Definition |
---|---|
BAU—control | Cropping systems that are considered BAU—control include only annual monoculture forages (single crops used as a control in our study). |
BAU—improved | Cropping systems that are considered BAU—improved include all kinds of cropping systems except those used as a control (annual monoculture forages). This includes diversified monoculture systems without perennial crops in the system. |
Perennial | Crops that can regrow and continue to produce grains, seeds, and biomass (forage) after a single year. They can be harvested numerous times for many years. Includes diverse, perennial, circular systems (DPCSs) as defined by Picasso et al. [16] and the three dimensions of diversity (more crop species), perenniality (a perennial crop), and circularity (legume crop or integrated systems). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Igboke, O.; Bortolon, E.S.O.; Ashworth, A.J.; Tallaksen, J.; Picasso, V.D.; Berti, M.T. Perennial Forage Systems Enhance Ecosystem Quality Variables Compared with Annual Forage Systems. Sustainability 2024, 16, 10160. https://doi.org/10.3390/su162310160
Igboke O, Bortolon ESO, Ashworth AJ, Tallaksen J, Picasso VD, Berti MT. Perennial Forage Systems Enhance Ecosystem Quality Variables Compared with Annual Forage Systems. Sustainability. 2024; 16(23):10160. https://doi.org/10.3390/su162310160
Chicago/Turabian StyleIgboke, Ogechukwu, Elisandra S. O. Bortolon, Amanda J. Ashworth, Joel Tallaksen, Valentin D. Picasso, and Marisol T. Berti. 2024. "Perennial Forage Systems Enhance Ecosystem Quality Variables Compared with Annual Forage Systems" Sustainability 16, no. 23: 10160. https://doi.org/10.3390/su162310160
APA StyleIgboke, O., Bortolon, E. S. O., Ashworth, A. J., Tallaksen, J., Picasso, V. D., & Berti, M. T. (2024). Perennial Forage Systems Enhance Ecosystem Quality Variables Compared with Annual Forage Systems. Sustainability, 16(23), 10160. https://doi.org/10.3390/su162310160