Development of a Traffic Congestion Prediction and Emergency Lane Development Strategy Based on Object Detection Algorithms
Abstract
:1. Introduction
2. Data
3. Methodology
3.1. YOLOv11
3.2. ByteTrack
- Object Detection: Perform object detection on the input frame to obtain all detection boxes and their confidences.
- Classification: Divide detection boxes into high-confidence and low-confidence categories based on the confidence threshold.
- First Matching: Use the Hungarian algorithm to perform the first matching between high-confidence detection boxes and existing trajectories.
- Second Matching: For unmatched trajectories and low-confidence detection boxes, perform matching again to further refine trajectory information.
- Update Trajectories: Update trajectory states and output tracking results.
3.3. Vehicle Line-Crossing Statistics
3.4. AdaBoost Regression
3.5. Interval Occupancy Rate Model
4. Results
4.1. Traffic Flow Data Extraction Results and Analysis
4.2. Traffic Flow Density Prediction
4.3. Analysis of Congestion Causes and Emergency Lane Activation Process
4.4. Quantitative Analysis of the Benefits of Emergency Lane Activation
5. Discussion
5.1. Adding Point E at the Downstream Location
5.2. Adding Point F Within the CD Interval
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Djahel, S.; Zhang, Z.; McManis, J. Next Road Rerouting: A Multiagent System for Mitigating Unexpected Urban Traffic Congestion. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2888–2899. [Google Scholar] [CrossRef]
- Jiang, P.; Liu, L.; Cui, L.; Li, H.; Shi, Y. Congestion Prediction of Urban Traffic Employing SRBDP. In Proceedings of the 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC), Guangzhou, China, 12–15 December 2017; pp. 1099–1106. [Google Scholar]
- Bista, R.B.; Paneru, S. Does Road Traffic Congestion Increase Fuel Consumption of Households in Kathmandu City? J. Econ. Impact 2021, 3, 67–79. [Google Scholar] [CrossRef]
- Rahman, M.M.; Najaf, P.; Fields, M.G.; Thill, J.-C. Traffic Congestion and Its Urban Scale Factors: Empirical Evidence from American Urban Areas. Int. J. Sustain. Transp. 2022, 16, 406–421. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Q.; Shi, Y. Study on Decision Model of Dynamic Hard Shoulder Running for Highways with Saturated Traffic Volume. Highw. Eng. 2022, 47, 172–176. [Google Scholar] [CrossRef]
- Khatri, A.; Senthilkumar, M. Lane Clearance Approach for Emergency Vehicles in Highways Network. PLoS ONE 2022, 17, e0276988. [Google Scholar] [CrossRef]
- Yang, F.; Wang, F.; Ding, F.; Tan, H.; Ran, B. Identify Optimal Traffic Condition and Speed Limit for Hard Shoulder Running Strategy. Sustainability 2021, 13, 1822. [Google Scholar] [CrossRef]
- Huang, Z.; Loo, B.P.Y. Urban Traffic Congestion in Twelve Large Metropolitan Cities: A Thematic Analysis of Local News Contents, 2009–2018. Int. J. Sustain. Transp. 2023, 17, 592–614. [Google Scholar] [CrossRef]
- Li, G.; Wang, Q.; Zuo, C. Emergency Lane Vehicle Detection and Classification Method Based on Logistic Regression and a Deep Convolutional Network. Neural Comput. Appl. 2022, 34, 12517–12526. [Google Scholar] [CrossRef]
- Bai, M.; Lin, Y.; Ma, M.; Wang, P. Travel-Time Prediction Methods: A Review. In Smart Computing and Communication; Qiu, M., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 67–77. [Google Scholar]
- Ben-Akiva, M.; Bierlaire, M.; Burton, D.; Koutsopoulos, H.N.; Mishalani, R. Network State Estimation and Prediction for Real-Time Traffic Management. Netw. Spat. Econ. 2001, 1, 293–318. [Google Scholar] [CrossRef]
- Skabardonis, A.; Geroliminis, N. Real-Time Estimation of Travel Times on Signalized Arterials. In Transportation and Traffic Theory: Flow, Dynamics and Human Interaction; Elsevier: Amsterdam, The Netherlands, 2005; pp. 387–406. [Google Scholar]
- Nanthawichit, C.; Nakatsuji, T.; Suzuki, H. Application of Probe-Vehicle Data for Real-Time Traffic-State Estimation and Short-Term Travel-Time Prediction on a Freeway. Transp. Res. Rec. 2003, 1855, 49–59. [Google Scholar] [CrossRef]
- Zhang, X.; Rice, J.A. Short-Term Travel Time Prediction. Transp. Res. Part C Emerg. Technol. 2003, 11, 187–210. [Google Scholar] [CrossRef]
- Onyeneke, C.; Eguzouwa, C.; Mutabazi, C. Modeling the Effects of Traffic Congestion on Economic Activities—Accidents, Fatalities and Casualties. Biomed. Stat. Inform. 2018, 3, 7–14. [Google Scholar] [CrossRef]
- Salamanis, A.; Kehagias, D.D.; Filelis-Papadopoulos, C.K.; Tzovaras, D.; Gravvanis, G.A. Managing Spatial Graph Dependencies in Large Volumes of Traffic Data for Travel-Time Prediction. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1678–1687. [Google Scholar] [CrossRef]
- Achar, A.; Bharathi, D.; Kumar, B.A.; Vanajakshi, L. Bus Arrival Time Prediction: A Spatial Kalman Filter Approach. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1298–1307. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, J.; Zhu, C. Theory Modeling and Application of an Adaptive Kalman Filter for Short-Term Traffic Flow Prediction. J. Inf. Comput. Sci. 2012, 9, 5101–5109. [Google Scholar]
- Fei, X.; Lu, C.-C.; Liu, K. A Bayesian Dynamic Linear Model Approach for Real-Time Short-Term Freeway Travel Time Prediction. Transp. Res. Part C Emerg. Technol. 2011, 19, 1306–1318. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, Y.; Sun, D. Discrimination and Prediction of Traffic Congestion States of Urban Road Network Based on Spatio-Temporal Correlation. IEEE Access 2020, 8, 3330–3342. [Google Scholar] [CrossRef]
- Maulida, N.R.; Mutijarsa, K. Traffic Density Classification Using Multilayer Perceptron and Random Forest Method. In Proceedings of the 2021 International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia, 21–22 July 2021; pp. 117–122. [Google Scholar]
- Jiang, Q.; Liao, X.; Gong, Y.; Ma, J. An Attention-Based Multi-Context Convolutional Encoder-Decoder Neural Network for Work Zone Traffic Impact Prediction. arXiv 2024, arXiv:2405.21045. [Google Scholar]
- Wang, L.; Che, L.; Lam, K.-Y.; Liu, W.; Li, F. Mobile Traffic Prediction with Attention-Based Hybrid Deep Learning. Phys. Commun. 2024, 66, 102420. [Google Scholar] [CrossRef]
- Zechin, D.; Cybis, H.B.B. Probabilistic Traffic Breakdown Forecasting through Bayesian Approximation Using Variational LSTMs. Transp. B Transp. Dyn. 2023, 11, 1026–1044. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, J.; Wang, T.; Pang, Y.; Wang, P.; Wang, W. A Deep Marked Graph Process Model for Citywide Traffic Congestion Forecasting. Comput.-Aided Civ. Infrastruct. Eng. 2024, 39, 1180–1196. [Google Scholar] [CrossRef]
- Gao, H.; Jia, H.; Yang, L. An Improved CEEMDAN-FE-TCN Model for Highway Traffic Flow Prediction. J. Adv. Transp. 2022, 2022, 2265000. [Google Scholar] [CrossRef]
- Li, W.; Liu, X.; Tao, W.; Zhang, L.; Zou, J.; Pan, Y.; Pan, Z. Location and Time Embedded Feature Representation for Spatiotemporal Traffic Prediction. Expert Syst. Appl. 2024, 239, 122449. [Google Scholar] [CrossRef]
- Jin, S.; Lee, H.; Park, C.; Chu, H.; Tae, Y.; Choo, J.; Ko, S. A Visual Analytics System for Improving Attention-Based Traffic Forecasting Models. IEEE Trans. Vis. Comput. Graph. 2023, 29, 1102–1112. [Google Scholar] [CrossRef] [PubMed]
- Ei Leen, M.W.; Jafry, N.H.A.; Salleh, N.M.; Hwang, H.; Jalil, N.A. Mitigating Traffic Congestion in Smart and Sustainable Cities Using Machine Learning: A Review. In Proceedings of the Computational Science and Its Applications—ICCSA 2023; Gervasi, O., Murgante, B., Taniar, D., Apduhan, B.O., Braga, A.C., Garau, C., Stratigea, A., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 321–331. [Google Scholar]
- Modi, Y.; Teli, R.; Mehta, A.; Shah, K.; Shah, M. A Comprehensive Review on Intelligent Traffic Management Using Machine Learning Algorithms. Innov. Infrastruct. Solut. 2021, 7, 128. [Google Scholar] [CrossRef]
- Behrooz, H.; Hayeri, Y.M. Machine Learning Applications in Surface Transportation Systems: A Literature Review. Appl. Sci. 2022, 12, 9156. [Google Scholar] [CrossRef]
- Szele, A.; Kisgyörgy, L. Traffic Management of the Congested Urban-Suburban Arterial Roads. Period. Polytech. Civ. Eng. 2019, 63, 1103–1111. [Google Scholar] [CrossRef]
- Guide, T.M. Traffic Monitoring Guide; Federal Highway Administration: Washington, DC, USA, 2001.
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast R-CNN. arXiv 2015, arXiv:1504.08083. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2015; Volume 28. [Google Scholar]
- Kim, B.; Natarajan, Y.; Preethaa, K.R.S.; Song, S.; An, J.; Mohan, S. Real-Time Assessment of Surface Cracks in Concrete Structures Using Integrated Deep Neural Networks with Autonomous Unmanned Aerial Vehicle. Eng. Appl. Artif. Intell. 2024, 129, 107537. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the Computer Vision—ECCV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 9905, pp. 21–37. [Google Scholar]
- Guo, S.; Li, S.; Han, Z.; Gao, M.; Wang, Z.; Li, H. Efficient Detection of Multiscale Defects on Metal Surfaces with Improved YOLOv5. Multimed. Tools Appl. 2024, 83, 85253–85275. [Google Scholar] [CrossRef]
- Ultralytics New Yolo11. Available online: https://docs.ultralytics.com/models/yolo11 (accessed on 3 October 2024).
- Li, Z.; He, Q.; Yang, W. E-FPN: An Enhanced Feature Pyramid Network for UAV Scenarios Detection. Vis. Comput. 2024, 1–19. [Google Scholar] [CrossRef]
- Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021; p. 2788. [Google Scholar]
- Zhang, Y.; Sun, P.; Jiang, Y.; Yu, D.; Weng, F.; Yuan, Z.; Luo, P.; Liu, W.; Wang, X. ByteTrack: Multi-Object Tracking by Associating Every Detection Box. In European Conference on Computer Vision; Springer Nature: Cham, Switzerland, 2022. [Google Scholar]
- Kuhn, H.W. The Hungarian Method for the Assignment Problem. Nav. Res. Logist. Q. 1955, 2, 83–97. [Google Scholar] [CrossRef]
- Zhi, N.; An, Y.; Zhao, Y.; Qiu, J. Intelligent Island Detection Method of DC Microgrid Based on Adaboost Algorithm. Energy Rep. 2023, 9, 970–982. [Google Scholar] [CrossRef]
- Miller, K. Boosting Algorithm in Python. Available online: https://python-course.eu/machine-learning/boosting-algorithm-in-python.php (accessed on 26 September 2024).
References | Time | Method | Results |
---|---|---|---|
Jiang et al. [22] | 2024 | AMCNN-ED (Attention-based multi-context convolutional encoder-decoder neural network) | Evaluated using four-year Maryland traffic data, achieving 5–34% reduction in speed prediction error, 11–29% in queue length, 6–17% in congestion timing, and 5–7% improvement in incident prediction accuracy compared to baselines. |
Wang et al. [23] | 2024 | Hybrid model combining ARIMA, CNN-LSTM, and XGBoost | Demonstrated superior predictive accuracy with R2 reaching 0.9874, significantly outperforming benchmark models. |
Zechin et al. [24] | 2023 | Variational LSTM | Effectively controlled traffic anomalies while handling multiple independent variables and integrating with traffic management strategies. |
Zhang et al. [25] | 2024 | Hybrid architecture combining Graph Neural Networks and Temporal Convolutional Networks | Achieved enhanced prediction accuracy compared to existing baselines, effectively forecasting different congestion levels (mild, moderate, severe) with computational efficiency suitable for large-scale road networks. |
Gao et al. [26] | 2022 | Improved CEEMDAN-FE-TCN model | Enhanced CEEMDAN algorithm successfully decomposed traffic flow time series of different frequencies, achieving significantly higher prediction accuracy after reconstruction. |
Li et al. [27] | 2024 | Spatio-Temporal Graph Convolution Network with embedded location and time features (STEGCN) | Demonstrated superior performance in handling large-scale, structurally complex data compared to traditional methods (VAR, ARIMA, SVR), achieving RMSE = 23.71 on the PEMS08 dataset. |
Observation Point | Start Time | End Time | Total Duration |
---|---|---|---|
A | 2024-05-01 11:41:03 | 2024-05-01 16:14:32 | 4 h 33 min 29 s |
B | 2024-05-01 11:52:27 | 2024-05-01 15:28:20 | 3 h 35 min 53 s |
C | 2024-05-01 11:35:43 | 2024-05-01 16:09:12 | 4 h 33 min 29 s |
D | 2024-05-01 12:56:47 | 2024-05-01 15:20:04 | 2 h 23 min 17 s |
Stage | Time | |||
---|---|---|---|---|
Early Stage | 2024-05-01 13:04:00 | 37.7 | 23.01 | 14.69 |
2024-05-01 13:05:00 | 37.2 | 23.27 | 13.93 | |
2024-05-01 13:06:00 | 36.3 | 22.49 | 13.81 | |
… | … | … | ||
Middle Stage | 2024-05-01 14:09:00 | 21.6 | 37.96 | −16.36 |
2024-05-01 14:10:00 | 21.7 | 39.26 | −17.56 | |
2024-05-01 14:11:00 | 21.8 | 40.69 | −18.89 | |
2024-05-01 14:12:00 | 22.3 | 40.04 | −17.74 | |
2024-05-01 14:13:00 | 22.2 | 38.35 | −16.15 | |
Later Stage | … | … | … | |
2024-05-01 15:10:00 | 29.4 | 6.63 | 22.77 | |
2024-05-01 15:11:00 | 27.9 | 5.59 | 22.31 | |
2024-05-01 15:12:00 | 27.9 | 5.33 | 22.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Cheng, H.; Wu, R.; Ren, B.; Zhu, Y.; Peng, N. Development of a Traffic Congestion Prediction and Emergency Lane Development Strategy Based on Object Detection Algorithms. Sustainability 2024, 16, 10232. https://doi.org/10.3390/su162310232
Zhang C, Cheng H, Wu R, Ren B, Zhu Y, Peng N. Development of a Traffic Congestion Prediction and Emergency Lane Development Strategy Based on Object Detection Algorithms. Sustainability. 2024; 16(23):10232. https://doi.org/10.3390/su162310232
Chicago/Turabian StyleZhang, Chaokai, Hao Cheng, Rui Wu, Biyun Ren, Ye Zhu, and Ningbo Peng. 2024. "Development of a Traffic Congestion Prediction and Emergency Lane Development Strategy Based on Object Detection Algorithms" Sustainability 16, no. 23: 10232. https://doi.org/10.3390/su162310232
APA StyleZhang, C., Cheng, H., Wu, R., Ren, B., Zhu, Y., & Peng, N. (2024). Development of a Traffic Congestion Prediction and Emergency Lane Development Strategy Based on Object Detection Algorithms. Sustainability, 16(23), 10232. https://doi.org/10.3390/su162310232