Identifying Different Semantic Features of Public Engagement with Climate Change NGOs Using Semantic Network Analysis
Abstract
:1. Introduction
2. Literature Review
2.1. Climate Change Communication on Social Media
2.2. Engagement with Publics
2.3. Why Climate NGOs?
- RQ1: How did publics engage with climate NGOs’ social media accounts, in terms of public engagement metrics (i.e., popularity, commitment, virality)?
- RQ2: What are the relationships between (a) public engagement on social media and (b) the shared meaning between tweets from the climate NGOs and the corresponding public replies, as measured by semantic similarity (e.g., Euclidean Distance, Levenshtein Distance)?
- RQ3: Which climate NGOs achieved sentiment alignment between their organizational posts and the corresponding replies they received?
- RQ4-1: What are the primary themes and focal points observed in the social media communication conducted by (a) GPU and (b) its corresponding publics, which reflect the characteristics of popularity?
- RQ4-2: What are the primary themes and focal points observed in the social media communication conducted by (a) Climate Central and (b) its corresponding publics, which reflect the characteristics of commitment?
- RQ4-3: What are the primary themes and focal points observed in the social media communication conducted by (a) EDF and (b) its corresponding publics, which reflect the characteristics of virality?
3. Materials and Methods
3.1. Data Collection
3.2. Analytic Approach
4. Results
4.1. RQ1: Public Engagement Metrics
4.2. RQ2: Public Engagement on Social Media and Shared Meaning
4.3. RQ4: Central Themes and Focuses
4.3.1. Greenpeace USA (GPU): High Popularity
4.3.2. Climate Central: Low Popularity, High Commitment, Low Virality
4.3.3. Environmental Defend Fund (EDF): High Virality
5. Discussion
6. Conclusions
- Assessing public perceptions and understanding of climate topics, as exemplified by the challenges faced by Climate Central in making scientific discourses appealing to lay public audiences.
- Exploring the depth and variety of climate-related issues that captivate publics’ interest, demonstrated by the case of GPU, which focused on broader climate issues.
- Understanding how different publics associate different issues with climate change, such as the disparate linking of climate change with political and wildfire issues in the communications of EDF and its public audiences.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hautea, S.; Parks, P.; Takahashi, B.; Zeng, J. Showing They Care (Or Don’t): Affective Publics and Ambivalent Climate Activism on TikTok. Soc. Media + Soc. 2021, 7, 205630512110123. [Google Scholar] [CrossRef]
- Yu, C.; Margolin, D.B.; Fownes, J.R.; Eiseman, D.L.; Chatrchyan, A.M.; Allred, S.B. Tweeting About Climate: Which Politicians Speak Up and What Do They Speak Up About? Soc. Media + Soc. 2021, 7, 205630512110338. [Google Scholar] [CrossRef]
- Eddington, S.M. The Communicative Constitution of Hate Organizations Online: A Semantic Network Analysis of “Make America Great Again”. Soc. Media + Soc. 2018, 4, 205630511879076. [Google Scholar] [CrossRef]
- Guo, J.; Chen, H.-T. How Does Political Engagement on Social Media Impact Psychological Well-Being? Examining the Mediating Role of Social Capital and Perceived Social Support. Comput. Hum. Behav. 2022, 133, 107248. [Google Scholar] [CrossRef]
- Hara, N.; Abbazio, J.; Perkins, K. An Emerging Form of Public Engagement with Science: Ask Me Anything (AMA) Sessions on Reddit r/Science. PLoS ONE 2019, 14, e0216789. [Google Scholar] [CrossRef]
- Wang, L.; Yang, A.; Thorson, K. Serial Participants of Social Media Climate Discussion as a Community of Practice: A Longitudinal Network Analysis. Inf. Commun. Soc. 2021, 24, 941–959. [Google Scholar] [CrossRef]
- Dewey, J. Logic-The Theory of Inquiry; Read Books Ltd.: Redditch, UK, 2018; ISBN 1-4474-9672-8. [Google Scholar]
- Muldoon, K. On the Role of the Non-Expert in a Crisis. Available online: https://scicomm.plos.org/2020/06/25/on-the-role-of-the-non-expert-in-a-crisis/ (accessed on 1 December 2023).
- Plowman, K.D.; Wakefield, R.I.; Winchel, B. Digital Publics: Tracking and Reaching Them. Public Relat. Rev. 2015, 41, 272–277. [Google Scholar] [CrossRef]
- Wynne, B. May the Sheep Safely Graze? A Reflexive View of the Expert-Lay Knowledge Divide. Risk Environ. Mod. Towards A New Ecol. 1996, 40, 44. [Google Scholar]
- Boulianne, S.; Lalancette, M.; Ilkiw, D. “School Strike 4 Climate”: Social Media and the International Youth Protest on Climate Change. Media Commun. 2020, 8, 208–218. [Google Scholar] [CrossRef]
- Knupfer, H.; Neureiter, A.; Matthes, J. From Social Media Diet to Public Riot? Engagement with “Greenfluencers” and Young Social Media Users’ Environmental Activism. Comput. Hum. Behav. 2023, 139, 107527. [Google Scholar] [CrossRef]
- Tyson, A.; Kennedy, B.; Funk, C.; Gen, Z. Millennials Stand Out for Climate Change Activism, Social Media Engagement with Issue; Pew Research Center: Washington, DC, USA, 2021. [Google Scholar]
- Yang, A.; Taylor, M. From Organizational-Centric Engagement to Network-Centric Engagement: The Role of Autonomous Public Communities in a Mediated Public Policy Advocacy Network. Soc. Media + Soc. 2021, 7, 205630512110382. [Google Scholar] [CrossRef]
- United Nations Climate Change. Climate Plans Remain Insufficient: More Ambitious Action Needed Now. Available online: https://unfccc.int/news/climate-plans-remain-insufficient-more-ambitious-action-needed-now (accessed on 1 December 2023).
- Harvey, F. Major Climate Changes Inevitable and Irreversible—IPCC’s Starkest Warning Yet. Available online: https://www.theguardian.com/science/2021/aug/09/humans-have-caused-unprecedented-and-irreversible-change-to-climate-scientists-warn (accessed on 1 December 2023).
- Intergovernmental Panel on Climate Change. AR6 Climate Change 2021: The Physical Science Basis; The Intergovernmental Panel on Climate Change: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Pearce, W.; Niederer, S.; Özkula, S.M.; Sánchez Querubín, N. The Social Media Life of Climate Change: Platforms, Publics, and Future Imaginaries. Wiley Interdiscip. Rev. Clim. Chang. 2018, 10, e569. [Google Scholar] [CrossRef]
- Vu, H.T.; Blomberg, M.; Seo, H.; Liu, Y.; Shayesteh, F.; Do, H.V. Social Media and Environmental Activism: Framing Climate Change on Facebook by Global NGOs. Sci. Commun. 2020, 43, 107554702097164. [Google Scholar] [CrossRef]
- Vu, H.T.; Do, H.V.; Seo, H.; Liu, Y. Who Leads the Conversation on Climate Change?: A Study of a Global Network of NGOs on Twitter. Environ. Commun. 2019, 14, 450–464. [Google Scholar] [CrossRef]
- Nulman, E.; Özkula, S.M. Environmental Nongovernmental Organizations’ Digital Media Practices toward Environmental Sustainability and Implications for Informational Governance. Curr. Opin. Environ. Sustain. 2016, 18, 10–16. [Google Scholar] [CrossRef]
- Kent, M.L.; Taylor, M. Fostering Dialogic Engagement: Toward an Architecture of Social Media for Social Change. Soc. Media + Soc. 2021, 7, 205630512098446. [Google Scholar] [CrossRef]
- Haro-de-Rosario, A.; Sáez-Martín, A.; del Carmen Caba-Pérez, M. Using Social Media to Enhance Citizen Engagement with Local Government: Twitter or Facebook? New Media Soc. 2016, 20, 29–49. [Google Scholar] [CrossRef]
- Kim, C.; Yang, S.-U. Like, Comment, and Share on Facebook: How Each Behavior Differs from the Other. Public Relat. Rev. 2017, 43, 441–449. [Google Scholar] [CrossRef]
- Hopke, J.E.; Hestres, L.E. Visualizing the Paris Climate Talks on Twitter: Media and Climate Stakeholder Visual Social Media During COP21. Soc. Media + Soc. 2018, 4, 205630511878268. [Google Scholar] [CrossRef]
- Kovacheva, A.; Wiener, H.J.D.; Kareklas, I.; Muehling, D. Online Engagement with Memes and Comments about Climate Change. Sustainability 2022, 14, 8900. [Google Scholar] [CrossRef]
- Dhanesh, G.S. Putting Engagement in Its PRoper Place: State of the Field, Definition and Model of Engagement in Public Relations. Public Relat. Rev. 2017, 43, 925–933. [Google Scholar] [CrossRef]
- Lai, D.; Wang, D.; Calvano, J.; Raja, A.S.; He, S. Addressing Immediate Public Coronavirus (COVID-19) Concerns through Social Media: Utilizing Reddit’s AMA as a Framework for Public Engagement with Science. PLoS ONE 2020, 15, e0240326. [Google Scholar] [CrossRef]
- Namisango, F.; Kang, K. Organization-Public Relationships on Social Media: The Role of Relationship Strength, Cohesion and Symmetry. Comput. Hum. Behav. 2019, 101, 22–29. [Google Scholar] [CrossRef]
- Weingart, P.; Joubert, M.; Connoway, K. Public Engagement with Science—Origins, Motives and Impact in Academic Literature and Science Policy. PLoS ONE 2021, 16, e0254201. [Google Scholar] [CrossRef]
- Habibi, S.A.; Salim, L. Static vs. Dynamic Methods of Delivery for Science Communication: A Critical Analysis of User Engagement with Science on Social Media. PLoS ONE 2021, 16, e0248507. [Google Scholar] [CrossRef] [PubMed]
- Murphy-Gregory, H. Governance via Persuasion: Environmental NGOs and the Social Licence to Operate. Environ. Politics 2018, 27, 320–340. [Google Scholar] [CrossRef]
- Comfort, S.E.; Hester, J.B. Three Dimensions of Social Media Messaging Success by Environmental NGOs. Environ. Commun. 2019, 13, 281–286. [Google Scholar] [CrossRef]
- Li, Y.; Shin, J.; Sun, J.; Kim, H.M.; Qu, Y.; Yang, A. Organizational Sensemaking in Tough Times: The Ecology of NGOs’ COVID-19 Issue Discourse Communities on Social Media. Comput. Hum. Behav. 2021, 122, 106838. [Google Scholar] [CrossRef] [PubMed]
- Saffer, A.J.; Yang, A.; Morehouse, J.; Qu, Y. It Takes a Village: A Social Network Approach to NGOs’ International Public Engagement. Am. Behav. Sci. 2019, 63, 000276421983526. [Google Scholar] [CrossRef]
- Archer, D.; Rahmstorf, S. The Climate Crisis: An Introductory Guide to Climate Change; Cambridge University Press: Cambridge, UK, 2012; ISBN 978-0-521-40744-1. [Google Scholar]
- Marlon, J.; Neyens, L.; Jefferson, M.; Howe, P.; Mildenberger, M.; Leiserowitz, A. Yale Climate Opinion Maps 2019—Yale Program on Climate Change Communication. Available online: https://climatecommunication.yale.edu/visualizations-data/ycom-us/ (accessed on 23 December 2023).
- Asproudis, E.; Weyman-Jones, T. How the ENGOs Can Fight the Industrial/Business Lobby with Their Tools from Their Own Field? ENGOs Participation in Emissions Trading Market. Sustainability 2020, 12, 8553. [Google Scholar] [CrossRef]
- Taylor, M.; Kent, M.L. Dialogic Engagement: Clarifying Foundational Concepts. J. Public Relat. Res. 2014, 26, 384–398. [Google Scholar] [CrossRef]
- Cann, T.; Dennes, B.; Coan, T.; O’Neill, S.; Hywel, W. Using Semantic Similarity and Text Embedding to Measure the Social Media Echo of Strategic Communications. arXiv 2023. [Google Scholar] [CrossRef]
- Salathé, M.; Khandelwal, S. Assessing Vaccination Sentiments with Online Social Media: Implications for Infectious Disease Dynamics and Control. PLoS Comput. Biol. 2011, 7, e1002199. [Google Scholar] [CrossRef] [PubMed]
- Misiejuk, K.; Scianna, J.; Kaliisa, R.; Vachuska, K.; Shaffer, D.W. Incorporating Sentiment Analysis with Epistemic Network Analysis to Enhance Discourse Analysis of Twitter Data. In Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2021; pp. 375–389. [Google Scholar] [CrossRef]
- Bonsón, E.; Ratkai, M. A Set of Metrics to Assess Stakeholder Engagement and Social Legitimacy on a Corporate Facebook Page. Online Inf. Rev. 2013, 37, 787–803. [Google Scholar] [CrossRef]
- Liu, W.; Xu (Wayne), W.; Tsai (Jenny), J.-Y. Developing a Multi-Level Organization-Public Dialogic Communication Framework to Assess Social Media-Mediated Disaster Communication and Engagement Outcomes. Public Relat. Rev. 2020, 46, 101949. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gil, J. An Overview of Textual Semantic Similarity Measures Based on Web Intelligence. Artif. Intell. Rev. 2012, 42, 935–943. [Google Scholar] [CrossRef]
- San Segundo, E.; Tsanas, A.; Gómez-Vilda, P. Euclidean Distances as Measures of Speaker Similarity Including Identical Twin Pairs: A Forensic Investigation Using Source and Filter Voice Characteristics. Forensic Sci. Int. 2017, 270, 25–38. [Google Scholar] [CrossRef]
- Eminagaoglu, M. A New Similarity Measure for Vector Space Models in Text Classification and Information Retrieval. J. Inf. Sci. 2020, 48, 016555152096805. [Google Scholar] [CrossRef]
- Hao, J.; Shu, Z. Analyzing Process Data from Game/Scenario-Based Tasks: An Edit Distance Approach. J. Educ. Data Min. 2015, 7, 33–50. [Google Scholar] [CrossRef]
- Featherstone, J.D.; Ruiz, J.B.; Barnett, G.A.; Millam, B.J. Exploring Childhood Vaccination Themes and Public Opinions on Twitter: A Semantic Network Analysis. Telemat. Inform. 2020, 54, 101474. [Google Scholar] [CrossRef]
- Liu, W.; Lai, C.-H.; Xu (Wayne), W. Tweeting about Emergency: A Semantic Network Analysis of Government Organizations’ Social Media Messaging during Hurricane Harvey. Public Relat. Rev. 2018, 44, 807–819. [Google Scholar] [CrossRef]
- Xiong, Y.; Cho, M.; Boatwright, B. Hashtag Activism and Message Frames among Social Movement Organizations: Semantic Network Analysis and Thematic Analysis of Twitter during the #MeToo Movement. Public Relat. Rev. 2019, 45, 10–23. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.; Lee, C.; Kim, Y. Identifying ESG Trends of International Container Shipping Companies Using Semantic Network Analysis and Multiple Case Theory. Sustainability 2023, 15, 9441. [Google Scholar] [CrossRef]
- Himelboim, I.; Golan, G.J.; Moon, B.B.; Suto, R.J. A Social Networks Approach to Public Relations on Twitter: Social Mediators and Mediated Public Relations. J. Public Relat. Res. 2014, 26, 359–379. [Google Scholar] [CrossRef]
- Lee, N.M.; Abitbol, A.; VanDyke, M.S. Science Communication Meets Consumer Relations: An Analysis of Twitter Use by 23andMe. Sci. Commun. 2020, 42, 244–264. [Google Scholar] [CrossRef]
- Su, L.Y.-F.; Scheufele, D.A.; Bell, L.; Brossard, D.; Xenos, M.A. Information-Sharing and Community-Building: Exploring the Use of Twitter in Science Public Relations. Sci. Commun. 2017, 39, 569–597. [Google Scholar] [CrossRef]
- Newburger, E. Fires in the Arctic, Record Sea Levels: NOAA Report Details Effects of Climate Change in 2020. Available online: https://www.cnbc.com/2021/08/26/noaa-2020-climate-change-report-record-sea-levels-greenhouse-gases.html (accessed on 1 January 2021).
- ExportComments.com. Export Facebook, Instagram, Twitter, YouTube, TikTok, Vimeo Comments to CSV/Excel. Available online: https://exportcomments.com/ (accessed on 1 December 2023).
- Climate Store Non-Profit Organizations Working on Climate Change | ClimateStore. Available online: https://climatestore.com/take-action/get-involved/non-profit-organizations-working-on-climate-change (accessed on 1 November 2023).
- Honnibal, M.; Montani, I. spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing. Appear. 2017, 7, 411–420. [Google Scholar]
- Loria, S. textblob Documentation. Release 0.15 2018, 2, 269. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- What Is Sentiment Analysis and Opinion Mining in Azure Cognitive Service for Language?—Azure Cognitive Services. Available online: https://learn.microsoft.com/en-us/azure/cognitive-services/language-service/sentiment-opinion-mining/overview?tabs=version-3-1 (accessed on 1 January 2023).
- Kim, E.J.; Kim, J.Y. Exploring the Online News Trends of the Metaverse in South Korea: A Data-Mining-Driven Semantic Network Analysis. Sustainability 2023, 15, 16279. [Google Scholar] [CrossRef]
- Wang, B.; Park, S.D.; Lee, J.Y.; Campbell, J.W. Smart, Sustainable and Citizen Centered: A Network Analysis of Urban R&D Trends in Seoul, South Korea. Sustainability 2020, 12, 5933. [Google Scholar] [CrossRef]
- Segev, E. neTxt: Text and Network Analysis Tools. Available online: http://www.netxt.xyz (accessed on 1 January 2023).
- Segev, E. How to Conduct Semantic Network Analysis. In Semantic Network Analysis in Social Sciences; Routledge: London, UK, 2021; pp. 16–31. [Google Scholar]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. In Proceedings of the International AAAI Conference on Web and Social Media, San Jose, CA, USA, 17–20 May 2009; Volume 3, pp. 361–362. [Google Scholar]
- Luo, C.; Chen, A.; Cui, B.; Liao, W. Exploring public perceptions of the COVID-19 vaccine online from a cultural perspective: Semantic network analysis of two social media platforms in the United States and China. Telemat. Informatics 2021, 65, 101712. [Google Scholar] [CrossRef]
- Calabrese, C.; Anderton, B.N.; Barnett, G.A. Online Representations of “Genome Editing” Uncover Opportunities for Encouraging Engagement: A Semantic Network Analysis. Sci. Commun. 2019, 41, 222–242. [Google Scholar] [CrossRef]
- Thomas, E.F.; McGarty, C.; Mavor, K.I. Aligning Identities, Emotions, and Beliefs to Create Commitment to Sustainable Social and Political Action. Personal. Soc. Psychol. Rev. 2009, 13, 194–218. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Liu, B.F.; Austin, L.L. Examining the Role of Social Media in Effective Crisis Management. Commun. Res. 2011, 41, 74–94. [Google Scholar] [CrossRef]
- Irwin, A. Risk, Science and Public Communication: Third-Order Thinking about Scientific Culture. In Routledge Handbook of Public Communication of Science and Technology; Routledge: London, UK, 2021; pp. 147–162. [Google Scholar]
- Rittel, H.W.; Webber, M.M. Dilemmas in a General Theory of Planning. Policy Sci. 1973, 4, 155–169. [Google Scholar] [CrossRef]
- Segev, E. Textual Network Analysis: Detecting Prevailing Themes and Biases in International News and Social Media. Sociol. Compass 2020, 14, e12779. [Google Scholar] [CrossRef]
- Yun, E.; Park, Y. Extraction of Scientific Semantic Networks from Science Textbooks and Comparison with Science Teachers’ Spoken Language by Text Network Analysis. Int. J. Sci. Educ. 2018, 40, 2118–2136. [Google Scholar] [CrossRef]
- Le, T.; Akoglu, L. ContraVis: Contrastive and Visual Topic Modeling for Comparing Document Collections. In Proceedings of the WWW ’19: The World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 928–938. [Google Scholar]
- Haupt, M.R.; Chiu, M.; Chang, J.; Li, Z.; Cuomo, R.; Mackey, T.K. Detecting Nuance in Conspiracy Discourse: Advancing Methods in Infodemiology and Communication Science with Machine Learning and Qualitative Content Coding. PLoS ONE 2023, 18, e0295414. [Google Scholar] [CrossRef] [PubMed]
Name | Formula | Measures |
---|---|---|
Popularity | Number of posts with likes/ total posts | Percentage of the total posts that have been liked |
Commitment | Number of posts with comments/ total posts | Percentage of the total posts that have been commented on |
Virality | Number of posts with shares/ total posts | Percentage of the total posts that have been shared |
Avg. # of Likes (Favorates) | Avg. # of RTs | # of Followers * | # of Total Post ** | # of Total Replies *** | |
---|---|---|---|---|---|
1. CCL | 30.30 | 22.18 | 41,080 | 1507 | 1338 |
2. Earthjustice | 60.54 | 249.12 | 196,989 | 2556 | 3408 |
3. Greenpeace USA | 61.62 | 188.23 | 213,165 | 2733 | 5058 |
4. EDF | 15.68 | 325.57 | 207,210 | 2776 | 1757 |
5. Nature Conservancy | 58.61 | 24.48 | 990,550 | 2163 | 3285 |
6. RAN | 10.87 | 24.38 | 94,714 | 1816 | 633 |
7. Wilderness | 24.08 | 102.61 | 102,317 | 1973 | 878 |
8. Saving Oceans | 15.23 | 22.70 | 108,613 | 936 | 250 |
9. Skoll Foundation | 5.79 | 33.80 | 445,747 | 1802 | 336 |
10. Climate Central | 10.06 | 10.47 | 132,427 | 729 | 1519 |
Total | 2,532,812 | 18,991 | 18,462 |
Popularity | Commitment | Virality | Euclidean | Levenshtein | |
---|---|---|---|---|---|
1. CCL | 30.3 | 0.89 | 22.18 | 983.11 | 174,258 |
2. Earthjustice | 60.54 | 1.33 | 249.12 | 1583.78 | 357,155 |
3. Greenpeace USA | 61.62 | 1.85 | 188.23 | 1326.76 | 252,773 |
4. EDF | 15.68 | 0.63 | 325.57 | 1583.77 | 256,464 |
5. Nature Conservancy | 58.61 | 1.52 | 24.48 | 1436.28 | 331,862 |
6. RAN | 10.87 | 0.35 | 24.38 | 957.85 | 159,422 |
7. Wilderness | 24.08 | 0.45 | 102.61 | 959.66 | 182,587 |
8. Saving Oceans | 15.23 | 0.27 | 22.7 | 554.34 | 86,867 |
9. Skoll Foundation | 5.79 | 0.19 | 33.8 | 1054.25 | 188,157 |
10. Climate Central | 10.06 | 2.08 | 10.47 | 506.59 | 75,228 |
Popularity | Commitment | Virality | Euclidean Distance | Levenshtein Distance | ||
---|---|---|---|---|---|---|
Popularity | Pearson Correlation | 1 | 0.580 | 0.342 | 0.583 | 0.760 * |
Sig. (2-tailed) | 0.079 | 0.333 | 0.077 | 0.011 | ||
Commitment | Pearson Correlation | 1 | 0.103 | 0.462 | 0.530 | |
Sig. (2-tailed) | 0.778 | 0.179 | 0.115 | |||
Virality | Pearson Correlation | 1 | 0.729 * | 0.552 | ||
Sig. (2-tailed) | 0.017 | 0.098 | ||||
Euclidean Distance | Pearson Correlation | 1 | 0.931 ** | |||
Sig. (2-tailed) | <0.001 | |||||
Levenshtein Distance | Pearson Correlation | 1 | ||||
Sig. (2-tailed) |
Pearson | Sig. (2-Tailed) | |
---|---|---|
1: Citizens’ Climate Lobby | −0.212 | 0.132 |
2: Earthjustice | −0.029 | 0.836 |
3: GPU | 0.322 | 0.019 |
4: EDF | 0.320 | 0.019 |
5: The Nature Conservancy | −0.114 | 0.417 |
6: RAN | 0.003 | 0.984 |
7: The Wilderness Society | 0.243 | 0.080 |
8: Saving Oceans | 0.137 | 0.342 |
9: Skoll Foundation | −0.035 | 0.808 |
10: Climate Central | 0.389 | 0.004 |
Tweets from GPU | Replies Sent to GPU | |||||
---|---|---|---|---|---|---|
Word | Degree | Eigenvector | Rank | Word | Degree | Eigenvector |
nature | 1897 | 0.376 | 1 | climate | 658 | 0.337 |
new | 1202 | 0.248 | 2 | fossil | 585 | 0.412 |
climate | 995 | 0.225 | 3 | fuel | 475 | 0.378 |
world | 840 | 0.184 | 4 | people | 453 | 0.191 |
food | 781 | 0.164 | 5 | oil | 410 | 0.213 |
person | 767 | 0.178 | 6 | now | 343 | 0.171 |
tnc | 681 | 0.144 | 7 | change | 322 | 0.222 |
protect | 669 | 0.149 | 8 | need | 322 | 0.146 |
change | 656 | 0.161 | 9 | new | 289 | 0.171 |
planet | 605 | 0.126 | 10 | must | 282 | 0.165 |
conservation | 604 | 0.119 | 11 | stop | 267 | 0.151 |
future | 598 | 0.131 | 12 | health | 248 | 0.153 |
global | 581 | 0.129 | 13 | action | 240 | 0.149 |
way | 562 | 0.125 | 14 | public | 235 | 0.145 |
land | 557 | 0.128 | 15 | take | 226 | 0.135 |
one | 550 | 0.113 | 16 | no | 220 | 0.109 |
year | 543 | 0.130 | 17 | gas | 217 | 0.135 |
water | 523 | 0.117 | 18 | one | 217 | 0.094 |
help | 517 | 0.116 | 19 | industry | 210 | 0.171 |
time | 502 | 0.102 | 20 | biden | 209 | 0.133 |
Tweet from GPU | Tweets Sent from GPU | |||||
---|---|---|---|---|---|---|
Source | Target | Weight | Rank | Source | Target | Weight |
climate | change | 68 | 1 | fossil | fuel | 154 |
nature | person | 56 | 2 | climate | change | 113 |
nature | new | 52 | 3 | oil | gas | 56 |
nature | climate | 44 | 4 | public | health | 47 |
nature | year | 41 | 5 | take | action | 40 |
nature | world | 40 | 6 | fossil | industry | 36 |
food | system | 36 | 7 | fuel | industry | 35 |
new | report | 34 | 8 | tweet | @firedrillfriday | 34 |
nature | tnc | 32 | 9 | oil | new | 31 |
nature | way | 31 | 10 | climate | action | 30 |
nature | protect | 31 | 11 | new | green | 29 |
nature | future | 30 | 12 | oil | big | 24 |
new | show | 28 | 13 | need | get | 24 |
nature | learn | 27 | 14 | help | please | 24 |
nature | health | 27 | 15 | climate | must | 24 |
nature | change | 27 | 16 | climate | new | 24 |
nature | take | 26 | 17 | no | one | 23 |
nature | speak | 26 | 18 | need | now | 23 |
nature | conservancy | 25 | 19 | communities | health | 23 |
new | climate | 25 | 20 | climate | fossil | 23 |
nature | need | 25 | 21 | oil | industry | 22 |
energy | clean | 25 | 22 | people | power | 21 |
nature | global | 23 | 23 | now | must | 21 |
nature | forest | 23 | 24 | fossil | stop | 20 |
climate | water | 23 | 25 | fossil | must | 20 |
new | world | 23 | 26 | climate | people | 19 |
tnc | join | 23 | 27 | planet | earth | 19 |
nature | know | 23 | 28 | @janefonda | @firedrillfriday | 19 |
nature | help | 22 | 29 | fossil | health | 19 |
nature | @jenmorrisnature | 22 | 30 | people | act | 19 |
Tweets from Climate Central | Replies Sent to Climate Central | |||||
---|---|---|---|---|---|---|
Node | Degree | Eigenvector | Rank | Node | Degree | Eigenvector |
climate | 1112 | 0.380 | 1 | quote | 1192 | 0.380 |
temperature | 654 | 0.234 | 2 | climate | 1165 | 0.434 |
change | 646 | 0.265 | 3 | change | 719 | 0.340 |
year | 546 | 0.194 | 4 | temperature | 536 | 0.177 |
warming | 504 | 0.177 | 5 | year | 491 | 0.156 |
day | 489 | 0.177 | 6 | @climatecentral | 445 | 0.153 |
new | 404 | 0.157 | 7 | warming | 422 | 0.160 |
risk | 403 | 0.145 | 8 | level | 377 | 0.129 |
sea | 397 | 0.148 | 9 | sea | 347 | 0.126 |
today | 394 | 0.153 | 10 | day | 343 | 0.108 |
average | 388 | 0.145 | 11 | average | 339 | 0.116 |
level | 386 | 0.147 | 12 | coastal | 319 | 0.106 |
weather | 374 | 0.143 | 13 | heat | 314 | 0.104 |
season | 363 | 0.135 | 14 | rise | 301 | 0.109 |
coastal | 331 | 0.121 | 15 | flooding | 292 | 0.099 |
city | 312 | 0.119 | 16 | new | 277 | 0.106 |
number | 306 | 0.120 | 17 | impact | 276 | 0.120 |
heat | 300 | 0.104 | 18 | weather | 275 | 0.118 |
flooding | 280 | 0.100 | 19 | #climatecentral | 273 | 0.096 |
record | 264 | 0.100 | 20 | #climatematters | 273 | 0.092 |
Tweets from Climate Central | Replies Sent to Climate Central | |||||
---|---|---|---|---|---|---|
Source | Target | Weight | Rank | Source | Target | Weight |
climate | change | 61 | 1 | climate | change | 120 |
climate | temperature | 27 | 2 | climate | quote | 64 |
temperature | average | 27 | 3 | level | sea | 39 |
climate | warming | 24 | 4 | temperature | average | 35 |
sea | level | 24 | 5 | quote | change | 35 |
climate | today | 22 | 6 | level | rise | 34 |
climate | new | 22 | 7 | sea | rise | 34 |
climate | year | 21 | 8 | climate | central | 32 |
climate | weather | 21 | 9 | quote | temperature | 31 |
sea | rise | 21 | 10 | quote | year | 29 |
climate | day | 19 | 11 | @climatecentral | climate | 28 |
level | rise | 19 | 12 | @climatecentral | #climatecentral | 28 |
climate | central | 18 | 13 | climate | impact | 26 |
climate | season | 18 | 14 | quote | warming | 26 |
year | day | 18 | 15 | climate | warming | 26 |
housing | affordable | 18 | 16 | climate | weather | 25 |
climate | average | 15 | 17 | coastal | flooding | 24 |
temperature | change | 15 | 18 | quote | sea | 21 |
climate | risk | 15 | 19 | affordable | housing | 21 |
climate | impact | 15 | 20 | quote | season | 20 |
temperature | day | 14 | 21 | quote | level | 20 |
coastal | flooding | 14 | 22 | climate | today | 20 |
warming | trend | 14 | 23 | quote | coastal | 20 |
climate | number | 14 | 24 | climate | science | 20 |
climate | city | 13 | 25 | climate | changing | 19 |
climate | changing | 13 | 26 | change | impact | 19 |
climate | level | 13 | 27 | quote | weather | 19 |
temperature | year | 12 | 28 | @climatecentral | change | 19 |
day | today | 12 | 29 | quote | risk | 18 |
temperature | city | 12 | 30 | quote | average | 17 |
Tweets from EDF | Replies Sent to EDF | |||||
---|---|---|---|---|---|---|
Node | Degree | Eigenvector | Rank | Node | Degree | Eigenvector |
climate | 4546 | 0.492 | 1 | environmental | 840 | 0.243 |
rt | 2814 | 0.319 | 2 | health | 773 | 0.240 |
biden | 1723 | 0.236 | 3 | forest | 769 | 0.244 |
change | 1685 | 0.277 | 4 | @envdefensefund | 767 | 0.035 |
new | 1509 | 0.193 | 5 | burn | 723 | 0.241 |
action | 1225 | 0.191 | 6 | public | 718 | 0.238 |
administration | 1173 | 0.160 | 7 | area | 718 | 0.237 |
pollution | 1080 | 0.135 | 8 | damage | 716 | 0.237 |
@fredkrupp | 1009 | 0.142 | 9 | force | 699 | 0.235 |
need | 952 | 0.120 | 10 | hectare | 698 | 0.241 |
make | 919 | 0.126 | 11 | leave | 696 | 0.235 |
clean | 916 | 0.101 | 12 | deliberately | 687 | 0.239 |
trump | 886 | 0.115 | 13 | dangerous | 684 | 0.236 |
air | 790 | 0.094 | 14 | wreck | 679 | 0.235 |
president | 770 | 0.116 | 15 | consequence | 674 | 0.234 |
methane | 741 | 0.084 | 16 | armed | 673 | 0.234 |
energy | 731 | 0.088 | 17 | stability | 669 | 0.234 |
environmental | 727 | 0.088 | 18 | azerbaijani | 655 | 0.229 |
year | 723 | 0.098 | 19 | climate | 581 | 0.010 |
emission | 667 | 0.085 | 20 | @nrdc | 561 | 0.193 |
Tweets from EDF | Replies Sent to EDF | |||||
---|---|---|---|---|---|---|
Source | Target | Weight | Rank | Source | Target | Weight |
climate | change | 277 | 1 | climate | change | 83 |
climate | rt | 168 | 2 | forest | burn | 44 |
climate | action | 154 | 3 | environmental | health | 43 |
climate | biden | 149 | 4 | forest | hectare | 43 |
rt | @fredkrupp | 125 | 5 | health | public | 43 |
administration | trump | 111 | 6 | forest | area | 42 |
climate | new | 99 | 7 | forest | health | 41 |
biden | president | 83 | 8 | forest | damage | 41 |
rt | new | 81 | 9 | environmental | forest | 41 |
climate | pollution | 81 | 10 | environmental | damage | 41 |
pollution | air | 79 | 11 | environmental | public | 41 |
climate | need | 75 | 12 | forest | deliberately | 41 |
climate | administration | 75 | 13 | environmental | burn | 41 |
climate | bold | 73 | 14 | damage | hectare | 41 |
biden | joe | 71 | 15 | area | hectare | 41 |
biden | administration | 71 | 16 | burn | hectare | 41 |
climate | fight | 71 | 17 | burn | deliberately | 41 |
climate | make | 68 | 18 | hectare | deliberately | 41 |
clean | energy | 65 | 19 | forest | public | 40 |
climate | president | 64 | 20 | health | burn | 40 |
rt | change | 63 | 21 | health | consequence | 40 |
climate | year | 60 | 22 | health | deliberately | 40 |
biden | president-elect | 56 | 23 | damage | area | 40 |
climate | @fredkrupp | 54 | 24 | damage | force | 40 |
rt | biden | 52 | 25 | environmental | leave | 40 |
climate | crisis | 52 | 26 | area | burn | 40 |
climate | emission | 51 | 27 | forest | force | 40 |
biden | action | 47 | 28 | public | burn | 40 |
rt | action | 46 | 29 | public | hectare | 40 |
public | hectare | 29 | 30 | public | deliberately | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, E.; Hara, N. Identifying Different Semantic Features of Public Engagement with Climate Change NGOs Using Semantic Network Analysis. Sustainability 2024, 16, 1438. https://doi.org/10.3390/su16041438
Kim E, Hara N. Identifying Different Semantic Features of Public Engagement with Climate Change NGOs Using Semantic Network Analysis. Sustainability. 2024; 16(4):1438. https://doi.org/10.3390/su16041438
Chicago/Turabian StyleKim, Eugene, and Noriko Hara. 2024. "Identifying Different Semantic Features of Public Engagement with Climate Change NGOs Using Semantic Network Analysis" Sustainability 16, no. 4: 1438. https://doi.org/10.3390/su16041438
APA StyleKim, E., & Hara, N. (2024). Identifying Different Semantic Features of Public Engagement with Climate Change NGOs Using Semantic Network Analysis. Sustainability, 16(4), 1438. https://doi.org/10.3390/su16041438