Residential Rooftop Urban Agriculture: Architectural Design Recommendations
Abstract
:1. Introduction
1.1. Purpose of the Research
1.2. Research Questions
1.3. Research Limitations
2. Material and Methods
3. Literature Review: Rooftop Urban Agriculture
3.1. Open-Air Rooftop Food Production
3.1.1. Rooftop Container Garden
3.1.2. Rooftop Raised Beds
3.1.3. Green Roofs
3.1.4. Vertical Rooftop Garden
3.2. “Low-Tech” Rooftop Greenhouses
3.3. “High-Tech” Rooftop Greenhouses
3.3.1. Soilless Cultivation Methods in “High-Tech” Rooftop Greenhouses
3.3.2. “High-Tech” Rooftop Greenhouses: Benefits and Challenges
4. Developing Architectural Design Recommendations
5. Discussion
Response to Research Questions
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UN. World Urbanization Prospects: The 2014 Revision; United Nations: New York, NY, USA, 2014; Available online: https://population.un.org/wup/publications/files/wup2014-report.pdf (accessed on 20 July 2023).
- UN. World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2018; Available online: https://population.un.org/wup/publications/Files/WUP2018-Report.pdf (accessed on 21 August 2023).
- FAO. FAO Framework for the Urban Food Agenda: Leveraging Sub-National and Local Government Action to Ensure Sustainable Food Systems and Improved Nutrition; FAO: Rome, Italy, 2019; Available online: https://www.fao.org/publications/card/en/c/CA3151EN/ (accessed on 21 August 2023).
- Montgomery, M.R. The urban transformation of the developing world. Science 2008, 319, 761–764. Available online: https://www.science.org/doi/abs/10.1126/science.1153012 (accessed on 20 July 2023). [CrossRef] [PubMed]
- FAO. Food, Agriculture and Cities: Challenges of Food and Nutrition Security, Agriculture and Ecosystem Management in an Urbanizing World; FAO: Rome, Italy, 2011; Available online: https://www.fao.org/documents/card/en/c/53f1f8d7-9738-4924-8df7-75023dc6032b/ (accessed on 15 September 2023).
- Steenkamp, J.; Cilliers, E.J.; Cilliers, S.S.; Lategan, L. Food for thought: Addressing urban food security risks through urban agriculture. Sustainability 2021, 13, 1267. [Google Scholar] [CrossRef]
- Shamshiri, R.R.; Kalantari, F.; Ting, K.C.; Thorp, K.R.; Hameed, I.A.; Weltzien, C.; Ahmad, D.; Mojgan Shad, Z. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. Int. J. Agric. Biol. Eng. 2018, 11, 1–22. Available online: https://ijabe.org/index.php/ijabe/article/view/3210 (accessed on 18 September 2023). [CrossRef]
- Diehl, J.A.; Kaur, H. Introduction: New Forms of Urban Agriculture Embedded in Urban Resources—Where Is the Evidence? In New Forms of Urban Agriculture: An Urban Ecology Perspective; Diehl, J.A., Kaur, H., Eds.; Springer: Singapore, 2021; pp. 1–8. [Google Scholar]
- D’Ostuni, M.; Trombadore, A.; Orsini, F. Food in the City: Enabling Integrated Solutions for Urban Agriculture and Food Production in Buildings. In The Importance of Greenery in Sustainable Buildings; Sayigh, A., Trombadore, A., Eds.; Springer: Cham, Switzerland, 2022; pp. 231–254. [Google Scholar]
- Gomez-Zavaglia, A.; Mejuto, J.C.; Simal-Gandara, J. Mitigation of emerging implications of climate change on food production systems. Food Res. Int. 2020, 134, 109256. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, S.J.; Campbell, B.; Ingram, J.S. Climate change and food systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef]
- Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, A.V.; Chatterjee, S. Climate change has likely already affected global food production. PLoS ONE 2019, 14, e0217148. [Google Scholar] [CrossRef] [PubMed]
- Mbow, C.; Rosenzweig, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Ruane, A.C.; Liwenga, E.; Pradhan, P.; Rivera-Ferre, M.G.; et al. Food security. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., Van Diemen, R., et al., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 437–550. Available online: https://www.ipcc.ch/srccl/chapter/chapter-5/ (accessed on 21 June 2023).
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. Available online: https://www.science.org/doi/10.1126/science.1185383 (accessed on 20 June 2023). [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef]
- Corvalan, C.; Hales, S.; McMichael, A.J. Ecosystems and Human Well-Being: Health Synthesis; World Health Organization Press: Geneva, Switzerland, 2005; Available online: https://www.who.int/publications/i/item/9241563095 (accessed on 20 September 2023).
- FAO. “Climate-Smart” Agriculture: Policies, Practices and Financing for Food Security, Adaptation and Mitigation; FAO: Rome, Italy, 2010. Available online: https://www.fao.org/3/i1881e/i1881e00.htm (accessed on 20 June 2023).
- Steel, C. Sitopia: Harnessing the power of food. In Sustainable Food Planning: Evolving Theory and Practice; Viljoen, A., Wiskerke, J.S.C., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2012; pp. 37–46. [Google Scholar] [CrossRef]
- Thomaier, S.; Specht, K.; Henckel, D.; Dierich, A.; Siebert, R.; Freisinger, U.B.; Sawicka, M. Farming in and on urban buildings: Present practice and specific novelties of Zero-Acreage Farming (ZFarming). Renew. Agric. Food Syst. 2014, 30, 43–54. [Google Scholar] [CrossRef]
- Clinton, N.; Stuhlmacher, M.; Miles, A.; Uludere Aragon, N.; Wagner, M.; Georgescu, M.; Herwig, C.; Gong, P. A global geospatial ecosystem services estimate of urban agriculture. Earths Future 2018, 6, 40–60. [Google Scholar] [CrossRef]
- Walsh, L.E.; Mead, B.R.; Hardman, C.A.; Evans, D.; Liu, L.; Falagán, N.; Kourmpetli, S.; Davies, J. Potential of urban green spaces for supporting horticultural production: A national scale analysis. Environ. Res. Lett. 2022, 17, 1–15. [Google Scholar] [CrossRef]
- Payen, F.T.; Evans, D.L.; Falagán, N.; Hardman, C.A.; Kourmpetli, S.; Liu, L.; Marshall, R.; Mead, B.R.; Davies, J.A.C. How much food can we grow in urban areas? Food production and crop yields of urban agriculture: A meta-analysis. Earths Future 2022, 10, e2022EF002748. [Google Scholar] [CrossRef]
- Specht, K.; Siebert, R.; Hartmann, I.; Freisinger, U.B.; Sawicka, M.; Werner, A.; Thomaier, S.; Henckel, D.; Walk, H.; Dierich, A. Urban agriculture of the future: An overview of sustainability aspects of food production in and on buildings. Agric. Hum. Values 2014, 31, 33–51. [Google Scholar] [CrossRef]
- Ackerman, K. Urban agriculture: Opportunities and constraints. In Metropolitan Sustainability: Understanding and Improving the Urban Environment; Zeman, F., Ed.; Woodhead Publishing Limited: Sawston, UK, 2012; pp. 118–146. [Google Scholar]
- Astee, L.; Kishnani, N.T. Building integrated agriculture utilising rooftops for sustainable food crop cultivation in Singapore. J. Green Build. 2010, 5, 105–113. [Google Scholar] [CrossRef]
- Brock, A. Room to Grow: Participatory Landscapes and Urban Agriculture at NYU; New York University: New York, NY, USA, 2008; Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e20ede6633b9414539f60ed480102be945ad6251 (accessed on 20 October 2023).
- Goodman, W.; Minner, J. Will the urban agricultural revolution be vertical and soilless? A case study of controlled environment agriculture in New York City. Land Use Policy 2019, 83, 160–173. [Google Scholar] [CrossRef]
- D’Ostuni, M.; Zaffi, L.; Appolloni, E.; Orsini, F. Understating the complexities of building-integrated agriculture. Can food shape the future built environment? Futures 2022, 144, 103061. [Google Scholar] [CrossRef]
- Ackerman, K.; Conard, M.; Culligan, P.; Plunz, R.; Sutto, M.P.; Whittinghill, L. Sustainable Food Systems for Future Cities: The Potential of Urban Agriculture. Econ. Soc. Rev. 2014, 45, 189–206. Available online: https://www.esr.ie/article/view/136 (accessed on 15 October 2023).
- Grewal, S.S.; Grewal, P.S. Can cities become self-reliant in food? Cities 2012, 29, 1–11. [Google Scholar] [CrossRef]
- Benisa, K.; Turanb, I.; Reinhartb, C.; Ferrãoa, P. Putting rooftops to use—A Cost-Benefit Analysis of food production vs. energy generation under Mediterranean climates. Cities 2018, 78, 166–179. [Google Scholar] [CrossRef]
- Mok, H.F.; Williamson, V.; Grove, J.R.; Burry, K.; Barker, S.F.; Hamilton, A.J. Strawberry fields forever? urban agriculture in developed countries: A review. Agron. Sustain. Dev. 2013, 34, 21–43. [Google Scholar] [CrossRef]
- Gould, D.; Caplow, T. Building-integrated agriculture: A new approach to food production. In Metropolitan Sustainability: Understanding and Improving the Urban Environment; Zeman, F., Ed.; Woodhead Publishing Limited: Oxford, UK, 2012; pp. 147–170. [Google Scholar]
- Szopinska-Mularz, M. Adaptive Reuse for Urban Food Provision: Repurposing Inner-City Car Parking Structures for Controlled Environment Agriculture; Springer: Cham, Switzerland, 2022; pp. 1–44. [Google Scholar]
- Mougeot, L.J.A. Urban Agriculture: Definition, Presence, Potentials and Risks, Main Policy Challenges; Cities Feeding People Series Report 31; International Development Research Centre: Ottawa, ON, Canada, 2000; Available online: https://p2infohouse.org/ref/03/02555.htm (accessed on 15 October 2023).
- Enete, A.A.; Achike, A.I. Urban Agriculture and Urban Food Insecurity/Poverty in Nigeria: The Case of Ohafia, South-East Nigeria. Outlook Agric. 2008, 37, 131–134. [Google Scholar] [CrossRef]
- Lin, B.B.; Egerer, M.H. Urban agriculture: An opportunity for biodiversity and food production in urban landscapes. In Urban Biodiversity; Ossola, A., Niemelä, J., Eds.; Routledge: New York, NY, USA, 2018; pp. 71–86. [Google Scholar]
- McClintock, N. Urban agriculture, racial capitalism, and resistance in the Settler-Colonial City. Geogr. Compass 2018, 12, e12373. [Google Scholar] [CrossRef]
- Benis, K.; Ferrão, P. Potential mitigation of the environmental impacts of food systems through urban and peri-urban agriculture (UPA)—A life cycle assessment approach. J. Clean. Prod. 2017, 140, 784–795. [Google Scholar] [CrossRef]
- Pearson, L.J.; Pearson, L.; Pearson, C.J. Sustainable urban agriculture: Stocktake and opportunities. Int. J. Agric. Sustain. 2010, 8, 7–19. [Google Scholar] [CrossRef]
- Azunre, G.A.; Amponsah, O.; Peprah, C.; Takyi, S.A.; Braimah, I. A review of the role of urban agriculture in the sustainable city discourse. Cities 2019, 93, 104–119. [Google Scholar] [CrossRef]
- Ilieva, R.T.; Cohen, N.; Israel, M.; Specht, K.; Fox-Kämper, R.; Fargue-Lelièvre, A.; Poniży, L.; Schoen, V.; Caputo, S.; Kirby, C.K.; et al. The socio-cultural benefits of urban agriculture: A review of the literature. Land 2022, 11, 622. [Google Scholar] [CrossRef]
- Krikster, T.; Piorr, A.; Berges, R.; Opitz, I. Urban agriculture oriented towards self-supply, social and commercial purposes: A typology. Land 2016, 5, 28. [Google Scholar] [CrossRef]
- Moustier, P.; Renting, H. Urban agriculture and short supply chain food marketing in developing countries. In Cities and Agriculture: Developing Resilient Urban Food Systems; de Zeeuw, H., Drechsel, P., Eds.; Routledge: London, UK, 2015; pp. 121–138. [Google Scholar]
- Blay-Palmer, A.; Donald, B. Food fear: Making connections. In Food Fears: From Industrial to Sustainable Food Systems; Blay-Palmer, A., Ed.; Ashgate Publishing: Hampshire, UK, 2008; pp. 1–16. [Google Scholar]
- Peters, C.J.; Bills, N.L.; Lembo, A.J.; Wilkins, J.L.; Fick, G.W. Mapping potential foodsheds in New York State: A spatial model for evaluating the capacity to localize food production. Renew. Agric. Food Syst. 2009, 24, 72–84. [Google Scholar] [CrossRef]
- Nowysz, A.; Mazur, L.; Vaverková, M.D.; Koda, E.; Winkler, J. Urban Agriculture as an Alternative Source of Food and Water Security in Today’s Sustainable Cities. Int. J. Environ. Res. Public Health 2022, 19, 15597. [Google Scholar] [CrossRef] [PubMed]
- Despommier, D. The vertical farm: Controlled environment agriculture carried out in tall buildings would create greater food safety and security for large urban populations. J. Consum. Prot. Food Saf. 2011, 6, 233–236. [Google Scholar] [CrossRef]
- Carney, M. Compounding crises of economic recession and food insecurity: A comparative study of three low-income communities in Santa Barbara County. Agric. Hum. Values 2011, 29, 185–201. [Google Scholar] [CrossRef]
- Bannor, R.K.; Sharma, M.; Oppong-Kyeremeh, H. Extent of urban agriculture and food security: Evidence from Ghana and India. Int. J. Soc. Econ. 2021, 48, 437–455. [Google Scholar] [CrossRef]
- Martellozzo, F.; Landry, J.S.; Plouffe, D.; Seufert, V.; Rowhani, P.; Ramankutty, N. Urban agriculture: A global analysis of the space constraint to meet urban vegetable demand. Environ. Res. Lett. 2014, 9, 064025. [Google Scholar] [CrossRef]
- Smit, J.; Nasr, J. Urban agriculture for sustainable cities: Using wastes and idle land and water bodies as resources. Environ. Urban. 1992, 4, 141–152. [Google Scholar] [CrossRef]
- Firth, C.; Maye, D.; Pearson, D. Developing “community” in Community Gardens. Local Environ. 2011, 16, 555–568. [Google Scholar] [CrossRef]
- Christensen, S.; Dyg, P.M.; Allenberg, K. Urban community gardening, social capital, and “integration”—A mixed method exploration of urban “integration-Gardening” in Copenhagen, Denmark. Local Environ. 2019, 24, 231–248. [Google Scholar] [CrossRef]
- Milbourne, P. Everyday (in) justices and ordinary environmentalisms: Community gardening in disadvantaged urban neighbourhoods. Local Environ. 2012, 17, 943–957. [Google Scholar] [CrossRef]
- Chan, J.; Pennisi, L.; Francis, C.A. Social-ecological refuges: Reconnecting in community gardens in lincoln, nebraska. J. Ethnobiol. 2016, 36, 842–860. [Google Scholar] [CrossRef]
- Litt, J.S.; Schmiege, S.J.; Hale, J.W.; Buchenau, M.; Sancar, F. Exploring ecological, emotional and social levers of self-rated health for urban gardeners and non-gardeners: A path analysis. Soc. Sci. Med. 2015, 144, 1–8. [Google Scholar] [CrossRef]
- Tamiru, D.; Argaw, A.; Gerbaba, M.; Nigussie, A.; Ayana, G.; Belachew, T. Improving dietary diversity of school adolescents through school based nutrition education and home gardening in Jimma Zone: Quasi-experimental design. Eat. Behav. 2016, 23, 180–186. [Google Scholar] [CrossRef]
- McCormack, L.A.; Laska, M.N.; Larson, N.I. Review of the nutritional implication of farmers markets and community gardens: A call for evaluation and research efforts. J. Am. Diet. Assoc. 2010, 110, 399–408. [Google Scholar] [CrossRef]
- Korn, A.; Bolton, S.M.; Spencer, B.; Alarcon, J.A.; Andrews, L.; Voss, J.G. Physical and mental health impacts of household gardens in an urban slum in Lima, Peru. Int. J. Environ. Res. Public Health 2018, 15, 1751. [Google Scholar] [CrossRef]
- Brown, K.H.; Jameton, A.L. Public health implications of urban agriculture. J. Public Health Policy 2000, 21, 20–39. [Google Scholar] [CrossRef]
- Skinner, E.; Chi, U.; Group1, T.L.-G.E.A. Intrinsic Motivation and Engagement as “Active Ingredients” in Garden-Based Education: Examining Models and Measures Derived From Self-Determination Theory. J. Environ. Educ. 2012, 43, 16–36. [Google Scholar] [CrossRef]
- Nasr, J.; Komisar, J.; De Zeeuw, H. A panorama of rooftop agriculture types. In Rooftop Urban Agriculture; Orsini, F., Dubbeling, M., De Zeeuw, H., Gianquinto, G., Eds.; Springer: Cham, Switzerland, 2017; pp. 9–29. [Google Scholar]
- Susca, T.; Gaffin, S.R.; Dell’Osso, G.R. Positive effects of vegetation: Urban heat island and green roofs. Environ. Pollut. 2011, 159, 2119–2126. [Google Scholar] [CrossRef]
- Wiskerke, J.S.C. Urban food systems. In Cities and Agriculture: Developing Resilient Urban Food Systems; de Zeeuw, H., Drechsel, P., Eds.; Routledge: London, UK, 2015; pp. 1–25. [Google Scholar]
- Rowe, D.B. Green roofs as a means of pollution abatement. Environ. Pollut. 2011, 159, 2100–2110. [Google Scholar] [CrossRef] [PubMed]
- Getter, K.L.; Rowe, D.B.; Andresen, J.A. Quantifying the Effect of Slope on Extensive Green Roof Stormwater Retention. Ecol. Eng. 2007, 31, 225–231. [Google Scholar] [CrossRef]
- Turner, B. Embodied connections: Sustainability, food systems and community gardens. Local Environ. 2011, 16, 509–522. [Google Scholar] [CrossRef]
- Clucas, B.; Parker, I.D.; Feldpausch-Parker, A.M. A systematic review of the relationship between urban agriculture and biodiversity. Urban Ecosyst. 2018, 21, 635–643. Available online: https://link.springer.com/article/10.1007/s11252-018-0748-8 (accessed on 15 October 2023). [CrossRef]
- Goddard, M.A.; Dougill, A.J.; Benton, T.G. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 2010, 25, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Lovell, S.T. Multifunctional urban agriculture for sustainable land use planning in the United States. Sustainability 2010, 2, 2499–2522. [Google Scholar] [CrossRef]
- Nowak, M. Urban Agriculture on the Rooftop. Bachelor’s Thesis, Cornell University, New York, NY, USA, 2004. Available online: https://libarynth.com/_media/roofgarden_thesis.pdf (accessed on 15 October 2023).
- Gasperi, D.; Pennisi, G.; Rizzati, N.; Magrefi, F.; Bazzocchi, G.; Mezzacapo, U.; Centrone Stefani, M.; Sanye-Mengual, E.; Orsini, F.; Gianquinto, G. Towards regenerated and productive vacant areas through urban horticulture: Lessons from Bologna, Italy. Sustainability 2016, 8, 1347. [Google Scholar] [CrossRef]
- Appolloni, E.; Orsini, F.; Specht, K.; Thomaier, S.; Sanye-Mengual, E.; Pennisi, G.; Gianquinto, G. The global rise of urban rooftop agriculture: A review of worldwide cases. J. Clean. Prod. 2021, 296, 126556. [Google Scholar] [CrossRef]
- Walters, S.A.; Midden, K.S. Sustainability of urban agriculture: Vegetable production on green roofs. Agriculture 2018, 8, 168. [Google Scholar] [CrossRef]
- Orsini, F.; Gasperi, D.; Marchetti, L.; Piovene, C.; Draghetti, S.; Ramazzotti, S.; Bazzocchi, G.; Gianquinto, G. Exploring the production capacity of rooftop gardens (RTGs) in urban agriculture: The potential impact on food and nutrition security, biodiversity and other ecosystem services in the city of Bologna. Food Secur. 2014, 6, 781–792. Available online: https://link.springer.com/article/10.1007/s12571-014-0389-6 (accessed on 15 October 2023). [CrossRef]
- Ackerman, K.; Dahlgren, E.; Xu, X. Sustainable Urban Agriculture: Confirming Viable Scenarios for Production; Nyserda: New York, NY, USA, 2013; pp. 1–39. [Google Scholar]
- Goldstein, B.; Hauschild, M.; Fernández, J.; Birkved, M. Testing the environmental performance of urban agriculture as a food supply in northern climates. J. Clean. Prod. 2016, 135, 984–994. [Google Scholar] [CrossRef]
- Whittinghill, L.; Starry, O. Up on the roof: Considerations for food production on rooftops. In Sowing Seeds in the City: Ecosystem and Municipal Services; Browm, S., McIvor, K., Snyder, E.H., Eds.; Springer: London, UK, 2016; pp. 325–338. [Google Scholar]
- Harada, Y.; Whitlow, T.H. Urban Rooftop Agriculture: Challenges to Science and Practice. Front. Sustain. Food Syst. 2020, 4, 76. [Google Scholar] [CrossRef]
- Liu, T.; Yang, M.; Han, Z.; Ow, D.W. Rooftop production of leafy vegetables can be profitable and less contaminated than farm-grown vegetables. Agron. Sustain. Dev. 2016, 36, 41. [Google Scholar] [CrossRef]
- Dubbeling, M.; Orsini, F.; Gianquinto, G. Introduction. In Rooftop Urban Agriculture; Orsini, F., Dubbeling, M., De Zeeuw, H., Gianquinto, G., Eds.; Springer: Cham, Switzerland, 2017; pp. 3–8. [Google Scholar]
- Rodriguez-Delfin, A.; Gruda, N.; Eigenbrod, C.; Orsini, F.; Gianquinto, G. Soil based and simplified hydroponics rooftop gardens. In Rooftop Urban Agriculture; Orsini, F., Dubbeling, M., De Zeeuw, H., Gianquinto, G., Eds.; Springer: Cham, Switzerland, 2017; pp. 61–81. [Google Scholar]
- Nelli, L.C. Rooftop greenhouses: Smart and inclusive design. In The Importance of Greenery in Sustainable Buildings; Sayigh, A., Trombadore, A., Eds.; Springer: Cham, Switzerland, 2022; pp. 125–154. [Google Scholar]
- Kaushik, K.; Praanjal, P.; Kumar, M.; Singh, S.; Singh, A.K.; Kumar, D.; Wamiq, M.; Kumar, A.; Ahamad, S. Rooftop gardening: A modern approach of production in urban areas. Pharma Innov. J. 2023, 12, 4766–4770. Available online: https://www.thepharmajournal.com/archives/2023/vol12issue6/PartBC/12-6-628-665.pdf (accessed on 10 November 2023).
- Mandel, L. Eat Up: The Inside Scope of Rooftop Agriculture; New Society Publishers: Gabriola Island, BC, Canada, 2013; pp. 3–53. [Google Scholar]
- Dubbeling, M.; Massonneau, E. Rooftop Agriculture in a Climate Change Perspective. Urban Agric. Mag. 2014, 27, 28–32. Available online: https://icma.org/sites/default/files/306196_UAM%2027-Urban%20agriculture%20as%20a%20climate%20change%20and%20disaster%20risk%20reduction%20strategy.pdf#page=28 (accessed on 10 November 2023).
- Sanye-Mengual, E.; Anguelovski, I.; Oliver-Sola, J.; Montero, J.I.; Rieradevall, J. Resolving differing stakeholder perceptions of urban rooftop farming in Mediterranean cities: Promoting food production as a driver for innovative forms of urban agriculture. Agric. Food Hum. Values Soc. (AFHVS) 2016, 33, 101–120. [Google Scholar] [CrossRef]
- Yeang, K.; Guerra, M. Building integrated food production. Archit. Des. 2008, 78, 128–131. [Google Scholar] [CrossRef]
- Caputo, S.; Iglesias, P.; Rumble, H. Elements of rooftop agriculture design. In Rooftop Urban Agriculture; Orsini, F., Dubbeling, M., De Zeeuw, H., Gianquinto, G., Eds.; Springer: Cham, Switzerland, 2017; pp. 39–59. [Google Scholar]
- Ruppenthal, R.J. Fresh Food from Small Spaces: The Square Inch Gardener’s Guide to Year-Round Growing, Fermenting, and Sprouting; Chelsea Green Publishing Company: Chelsea, VT, USA, 2008; pp. 11–53. [Google Scholar]
- Mladenovic, E.; Lakicevic, M.; Pavlovic, L.; Hiel, K.; Padejcev, J. Opportunities and benefits of green balconies and terraces in urban conditions. Contemp. Agric. Serbian J. Agric. Sci. 2017, 66, 38–45. [Google Scholar] [CrossRef]
- Fisher, S. Growing up the Wall: How to Grow Food in Vertical Places, on Roofs and in Small Spaces; Green Books: Devon, UK, 2013; pp. 11–134. [Google Scholar]
- Doron, G. Urban agriculture: Small, medium, large. Archit. Des. 2005, 75, 52–59. [Google Scholar] [CrossRef]
- Grard, B.; Bel, N.; Marchal, N.; Madre, N.; Castell, J.-F.; Cambier, P.; Houot, S.; Manouchehri, N.; Besancon, S.; Michel, J.-C.; et al. Recycling urban waste as possible use for rooftop vegetable garden. Future Food J. Food Agric. Soc. 2015, 3, 21–34. [Google Scholar]
- Abbott, C. The Everything Small-Space Gardening Book; Karen Cooper: Clinton, MA, USA, 2012; pp. 10–123. [Google Scholar]
- Smith, M.R. The Vertical Veg Guide to Container Gardening: How to Grow Abundance of Herbs, Vegetables and Fruit in Small Spaces; Chelsea Green Publishing: London, UK, 2022; pp. 1–173. [Google Scholar]
- Bellamy, A. Small-Space Vegetable Gardens: Growing Great Edibles in Containers, Raised Beds, and Small Plots; Timber Press: London, UK, 2010; pp. 10–131. [Google Scholar]
- Mitchell, A. The Edible Balcony: Growing Fresh Produce in Small Spaces; Rodale Books: Emmaus, PA, USA, 2012; pp. 8–84. [Google Scholar]
- Kumar, A.; Yadav, S.K.; Kharga, S.; Jangid, R. Rooftop gardening: A new era of gardening. Agric. Food E-Newsl. 2022, 4, 599–602. [Google Scholar]
- Baudoin, W.; Desjardins, Y.; Dorais, M.; Charrondière, U.; Herzigova, L.; ElBehairy, U.; Metwaly, N.; Marulanda, C.; Ba, N. Rooftop gardening for improved food and nutrition security in the urban environment. In Rooftop Urban Agriculture; Orsini, F., Dubbeling, M., De Zeeuw, H., Gianquinto, G., Eds.; Springer: Cham, Switzerland, 2017; pp. 219–233. [Google Scholar]
- McCartney, L.; Lefsrud, M.G. Protected Agriculture in Extreme Environments: A Review of Controlled Environment Agriculture in Tropical, Arid, Polar, and Urban Locations. Appl. Eng. Agric. 2018, 34, 455–473. [Google Scholar] [CrossRef]
- Moss, W. Any Size, Anywhere Edible Gardening: The No Yard, No Time, No Problem Way to Grow Your Own Food; Cool Springs Press: Minneapolis, MN, USA, 2012; pp. 23–70. [Google Scholar]
- Walliser, J. Container Gardening Complete: Creative Projects for Growing Vegetables and Flowers in Small Spaces; Quarto Publishing: Minneapolis, MN, USA, 2017; pp. 9–163. [Google Scholar]
- Morrison, S.; Sweet, R. Garden up: Smart Vertical Gardening for Small and Large Spaces; Cool Springs Press: Brentwood, TN, USA, 2011; pp. 10–151. [Google Scholar]
- Pennington, A. Tiny Space Gardening: Growing Vegetables, Fruits, and Herbs in Small Outdoor Spaces; Sasquatch Books: Seattle, DC, USA, 2022; pp. 14–63. [Google Scholar]
- Tullock, J. Grow Food at Home: Simple Methods for Small Spaces; The Countryman Press: Woodstock, VT, USA, 2020; pp. 9–59. [Google Scholar]
- Richardson, F. Small-Space Container Gardens: Transform Your Balcony, Porch, or Patio with Fruits, Flowers, Foliage & Herbs; Timber Press: London, UK, 2012; pp. 17–163. [Google Scholar]
- Relf, D. Vegetable Gardening in Containers; Virginia Cooperative Extension, Virginia State University: Stafford, VA, USA, 2015; Available online: https://vtechworks.lib.vt.edu/handle/10919/75458 (accessed on 12 December 2023).
- Hentges, C.; Dunn, B.; Layman, K. Container Gardening; Oklahoma Cooperative Extension Service, Oklahoma State University: Stillwater, OK, USA, 2019; Available online: https://shareok.org/bitstream/handle/11244/331028/oksa_HLA-6458_2019-12.pdf?sequence=1 (accessed on 12 November 2023).
- Durham, R.; Saha, S.; Strang, J.; Williams, M.A.; Wright, S. Home Vegetable Gardening in Kentucky; Agriculture and Natural Resources Publications; University of Kentucky: Lexington, KY, USA, 2014; Available online: https://uknowledge.uky.edu/anr_reports/75 (accessed on 12 October 2023).
- James, T.; Lott, D. Container Vegetable Gardening; Institute of Agriculture and Natural Resources, University of Nebraska: Lincoln, NE, USA, 2015; Available online: https://digitalcommons.unl.edu/extfacpub/12/ (accessed on 15 October 2023).
- Hussien, A.; Jannat, N.; Mushtaha, E.; Al-Shammaa, A. A holistic plan of flat roof to green-roof conversion: Towards a sustainable built environment. Ecol. Eng. 2023, 190, 106925. [Google Scholar] [CrossRef]
- Wise, B. Container Gardening for All Seasons: Enjoy Year-Round Color with 101 Designs; Cool Springs Press: Minneapolis, MN, USA, 2012; pp. 9–19. [Google Scholar]
- FAO. The State of Food and Agriculture. Leveraging Food Systems for Inclusive Rural Transformation; FAO: Rome, Italy, 2017; Available online: http://www.fao.org/3/a-i7658e.pdf (accessed on 15 December 2023).
- Eigenbrod, C.; Gruda, N. Urban vegetable for food security in cities. A review. Agron. Sustain. Dev. 2015, 35, 483–498. [Google Scholar] [CrossRef]
- Orsini, F.; Dubbeling, M.; Gianquinto, G. Multifunctional rooftop horticulture: A promising strategy for intensifying horticulture production in cities. Chron. Horiculturae 2015, 55, 12–17. [Google Scholar]
- Masabni, J.; Cotner, S. Vegetable Gardening in Containers; Extension Publications: Wixon Valley, TX, USA, 2009. [Google Scholar]
- Barrett, P. Container Gardening; Storey Publishing: North Adams, MA, USA, 1996; pp. 6–33. [Google Scholar]
- Schneebeli-morrell, D. Grow Your Own Vegetables in Pots: 35 Ideas for Growing Vegetables, Fruits and Herbs in Containers; CICO Books: London, UK, 2009; pp. 17–20. [Google Scholar]
- Hart, R.M. Vertical Vegetables & Fruit: Creative Gardening Techniques for Growing up in Small Spaces; Storey Publishing: North Adams, MA, USA, 2011; pp. 10–84. [Google Scholar]
- Getter, K.L.; Rowe, D.B. The role of extensive green roofs in sustainable development. HortScience 2006, 41, 1276–1285. Available online: https://journals.ashs.org/hortsci/view/journals/hortsci/41/5/article-p1276.xml (accessed on 10 September 2023). [CrossRef]
- Williams, N.S.G.; Rayner, J.P.; Raynor, K.J. Green roofs for a wide brown land: Opportunities and barriers for rooftop greening in Australia. Urban For. Urban Green. 2010, 9, 245–251. [Google Scholar] [CrossRef]
- Sailor, D.J. A green roof model for building energy simulation programs. Energy Build. 2008, 40, 1466–1478. [Google Scholar] [CrossRef]
- Irfeey, A.M.M.; Chau, H.W.; Sumaiya, M.M.F.S.; Wai, C.Y.; Muttil, N.; Jamei, E. Sustainable mitigation strategies for urban heat island effects in urban areas. Sustainability 2023, 15, 10767. [Google Scholar] [CrossRef]
- Whittinghill, L.J.; Rowe, D.B. The role of green roof technology in urban agriculture. Renew. Agric. Food Syst. 2011, 27, 314–322. [Google Scholar] [CrossRef]
- Coulibaly, S.F.M.; Aubry, C.; Provent, F.; Rousset-Rouvière, S.; Joimel, S. The role of green roofs as urban habitats for biodiversity modulated by their design: A review. Environ. Res. Lett. 2023, 18, 073003. [Google Scholar] [CrossRef]
- Oberndorfer, E.; Lundholm, J.; Bass, B.; Coffman, R.R.; Doshi, H.; Dunnett, N.; Gaffin, S.; Kohler, M.; Liu, K.K.Y.; Rowe, B. Green roofs as urban ecosystems: Ecological structures, functions, and services. Bioscience 2007, 57, 823–833. [Google Scholar] [CrossRef]
- Kosareo, L.; Ries, R. Comparative environmental life cycle assessment of green roofs. Build. Environ. 2007, 42, 2606–2613. [Google Scholar] [CrossRef]
- Zheng, X.; Kong, F.; Yin, H.; Middel, A.; Yang, S.; Liu, H.; Huang, J. Green roof cooling and carbon mitigation benefits in a subtropical city. Urban For. Urban Green. 2023, 86, 128018. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Souliotis, M.; Papadaki, M.; Menounou, P.; Dimopoulos, P.; Kolokotsa, D.; Paravantisf, J.A.; Tsangrassoulis, A.; Panaras, G.; Giannakopoulosi, E.; et al. Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives. Renew. Sustain. Energy Rev. 2023, 180, 113306. [Google Scholar] [CrossRef]
- Jamei, E.; Chau, H.W.; Seyedmahmoudian, M.; Mekhilef, S.; Hafez, F.S. Green roof and energy—Role of climate and design elements in hot and temperate climates. Heliyon 2023, 9, e15917. [Google Scholar] [CrossRef]
- Fang, C.F. Evaluating the thermal reduction effect of plant layers on rooftops. Energy Build. 2008, 40, 1048–1052. [Google Scholar] [CrossRef]
- Alim, M.A.; Rahman, A.; Tao, Z.; Garner, B.; Griffith, R.; Liebman, M. Green roof as an effective tool for sustainable urban development: An Australian perspective in relation to stormwater and building energy management. J. Clean. Prod. 2022, 362, 132561. [Google Scholar] [CrossRef]
- Coma, J.; Perez, G.; Sole, C.; Castell, A.; Cabeza, L.F. Thermal assessment of extensive green roofs as passive tool for energy savings in buildings. Renew. Energy 2016, 85, 1106–1115. [Google Scholar] [CrossRef]
- Silva, C.M.; Gomes, G.M.; Silva, M. Green roofs energy performance in Mediterranean climate. Energy Build. 2016, 116, 318–325. [Google Scholar] [CrossRef]
- Mutani, G.; Todeschi, V. Roof-integrated green technologies, energy saving and outdoor thermal comfort: Insights from a case study in urban environment. Int. J. Sustain. Dev. Plan. 2021, 16, 13–23. [Google Scholar] [CrossRef]
- Brenneisen, S. Space for urban wildlife: Designing green roofs as habitats in Switzerland. Urban Habitats 2006, 4, 27–36. Available online: https://www.eaglehill.us/urban-habitats/Vol%204/wildlife_pdf.pdf (accessed on 10 October 2023).
- Williams, N.S.G.; Lundholm, J.; MacIvor, J.S. Forum: Do green roofs help urban biodiversity conservation? J. Appl. Ecol. 2014, 51, 1643–1649. [Google Scholar] [CrossRef]
- Gonsalves, S.; Starry, O.; Szallies, A.; Brenneisen, S. The effect of urban green roof design on beetle biodiversity. Urban Ecosyst. 2022, 25, 205–219. Available online: https://link.springer.com/article/10.1007/s11252-021-01145-z (accessed on 10 November 2023). [CrossRef]
- Wooster, E.I.F.; Fleck, R.; Torpy, F.; Ramp, D.; Irga, P.J. Urban green roofs promote metropolitan biodiversity: A comparative case study. Build. Environ. 2022, 207, 108458. [Google Scholar] [CrossRef]
- Cristiano, E.; Deidda, R.; Viola, F. The role of green roofs in urban Water-Energy-Food-Ecosystem nexus: A review. Sci. Total Environ. 2021, 756, 143876. [Google Scholar] [CrossRef]
- MacIvor, J.S.; Ksiazek, K. Invertebrates on green roofs. In Green Roof Ecosystems; Sutton, R.K., Ed.; Springer: London, UK, 2015; pp. 333–355. [Google Scholar]
- Dvorak, B.; Bousselot, J. Theoretical development of ecoregional Green roofs. In Ecoregional Green Roofs; Dvorak, B., Ed.; Springer: London, UK, 2021; pp. 41–79. [Google Scholar]
- Forman, R.T. Urban Ecology: Science of Cities; Cambridge University Press: New York, NY, USA, 2014; pp. 205–306. [Google Scholar]
- Jim, C.Y. Green-space preservation and allocation for sustainable greening of compact cities. Cities 2004, 21, 311–320. [Google Scholar] [CrossRef]
- Francis, R.A.; Lorimer, J. Urban reconciliation ecology: The potential of living roofs and walls. J. Environ. Manag. 2011, 92, 1429–1437. [Google Scholar] [CrossRef]
- Carter, T.; Jackson, C.R. Vegetated roofs for stormwater management at multiple spatial scales. Landsc. Urban Plan. 2007, 80, 84–94. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Q.; Weiping, C.; Wei, W. Assessing the runoff retention of extensive green roofs using runoff coefficients and curve numbers and the impacts of substrate moisture. Hydrol. Res. 2020, 51, 635–647. [Google Scholar] [CrossRef]
- Charalambous, K.; Bruggeman, A.; Eliades, M.; Camera, C.; Vassiliou, L. Stormwater retention and Reuse at the residential plot level—Green roof experiment and water Balance Computations for long-term use in Cyprus. Water 2019, 11, 1055. [Google Scholar] [CrossRef]
- Wong, N.H.; Yok, T.P.; Chen, Y. Study of thermal performance of extensive rooftop greenery systems in the tropical climate. Build. Environ. 2007, 42, 25–54. [Google Scholar] [CrossRef]
- Memon, R.A.; Leung, D.Y.C.; Chunho, L.I.U. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Muhammad, S.; Kim, R. Application of green blue roof to mitigate heat island phenomena and resilient to climate change in urban areas: A case study from Seoul, Korea. J. Water Land Dev. 2017, 33, 165–170. Available online: http://archive.sciendo.com/JWLD/jwld.2017.33.issue-1/jwld-2017-0032/jwld-2017-0032.pdf (accessed on 10 September 2023).
- Dwivedi, A.; Mohan, B.K. Impact of green roof on micro climate to reduce Urban Heat Island. Remote Sens. Appl. Soc. Environ. 2018, 10, 56–69. [Google Scholar] [CrossRef]
- Khare, V.R.; Vajpai, A.; Gupta, D. A big picture of urban heat island mitigation strategies and recommendation for India. Urban Clim. 2021, 37, 100845. [Google Scholar] [CrossRef]
- Zinzi, M.; Agnoli, S. Cool and green roofs. An energy and comfort comparison between passive cooling and mitigation urban heat island techniques for residential buildings in the Mediterranean region. Energy Build. 2012, 55, 66–76. [Google Scholar] [CrossRef]
- Shishegar, N. The impact of green areas on mitigating urban heat island effect: A review. Int. J. Environ. Sustain. 2014, 9, 119–130. [Google Scholar] [CrossRef]
- Kostadinovic, D.; Jovanovic, M.; Bakic, V.; Stepanic, N. Mitigation of urban particulate pollution using lightweight green roof system. Energy Build. 2023, 293, 113203. [Google Scholar] [CrossRef]
- Yang, J.; Qian, Y.; Gong, P. Quantifying air pollution removal by green roofs in Chicago. Atmos. Environ. 2008, 42, 7266–7273. [Google Scholar] [CrossRef]
- Francis, L.F.M.; Jensen, M.B. Benefits of green roofs: A systematic review of the evidence for three ecosystem services. Urban For. Urban Green. 2017, 28, 167–176. [Google Scholar] [CrossRef]
- Li, Y.; Babcock, R.W. Green roofs against pollution and climate change. A review. Agron. Sustain. Dev. 2014, 34, 695–705. Available online: https://link.springer.com/article/10.1007/s13593-014-0230-9 (accessed on 10 October 2023). [CrossRef]
- Park, M. More Food from Small Spaces: Growing Denser, Deeper, Higher, Longer Gardens; Great River Books: Salt Lake City, UT, USA, 2013; pp. 50–52. [Google Scholar]
- Croeser, T. Biological potential in cities: An estimate from Melbourne. Urban For. Urban Green. 2016, 16, 84–94. [Google Scholar] [CrossRef]
- Sanye-Mengual, E.; Ceron-Palma, I.; Oliver-Sola, J.; Montero, J.I.; Rieradevall, J. Integrating horticulture into cities: A guide for assessing the implementation potential of rooftop greenhouses (RTGs) in Industrial and Logistics Parks. J. Urban Technol. 2015, 22, 87–111. [Google Scholar] [CrossRef]
- Cerón-Palma, I.; Sanyé-Mengual, E.; Oliver-Solà, J.; Montero, J.I.; Rieradevall, J. Barriers and opportunities regarding the implementation of rooftop eco.greenhouses (RTEG) in Mediterranean Cities of Europe. J. Urban Technol. 2012, 19, 87–103. [Google Scholar] [CrossRef]
- Bray, R. Greenhouse Gardening: How to Build a Greenhouse and Grow Vegetables, Herbs and Fruit All Year-Round; Independently Published: New York, NY, USA, 2018; pp. 1–100. [Google Scholar]
- Montero, J.I.; Baeza, E.; Munoz, P.; Sanye-Mengual, E.; Stanghellini, C. Technology for rooftop greenhouses. In Rooftop Urban Agriculture; Orsini, F., Dubbeling, M., De Zeeuw, H., Gianquinto, G., Eds.; Springer: Cham, Switzerland, 2017; pp. 83–101. [Google Scholar]
- Castilla, N.; Baeza, E. Greenhouse site selection. In Good Agricultural Practices for Greenhouse Vegetable Crops: Principles for Mediterranean Climate Areas; FAO, Ed.; FAO: Rome, Italy, 2013; pp. 21–34. Available online: https://www.fao.org/3/i3284e/i3284e.pdf (accessed on 15 October 2023).
- Bosner, J. Greenhouse Gardening: A Step-by-Step Guide on How to Grow Foods and Plants for Beginners; One Elite Publishing: Houston, TX, USA, 2019; pp. 1–69. [Google Scholar]
- Palmstierna, I. Greenhouse Vegetable Gardening: Expert Advice on How to Grow Vegetables, Herbs, and Other Plants; Skyhorse Publishing: New York, NY, USA, 2007; pp. 9–113. [Google Scholar]
- Smith, S. Greenhouse Gardener’s Companion: Growing Food and Flowers in Your Greenhouse or Sunspace; Fulcrum Publishing: Wheat Ridge, CO, USA, 1992; pp. 1–121. [Google Scholar]
- Lawrence, J.; Simpson, L.; Piggott, A. Protected agriculture: A climate change adaptation for food and nutrition security. In Impacts of Climate Change on Food Security in Small Island Developing States; Ganpat, W.G., Isaac, W.A.P., Eds.; IGI Global: New York, NY, USA, 2016; pp. 196–220. [Google Scholar]
- Puri, V.; Caplow, T. How to grow food in the 100% renewable city: Building-integrated agriculture. In 100% Renewable Energy Autonomy in Action; Droege, P., Ed.; Earthscan: London, UK, 2009; pp. 229–241. [Google Scholar]
- Niu, G.; Masabni, J. Plant production in controlled environments. Horticulturae 2018, 4, 28. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, M.; Yadav, K.K.; Singh, P.K. Opportunities and constraints in hydroponic crop production systems: A review. Environ. Conserv. J. 2021, 22, 401–408. [Google Scholar] [CrossRef]
- Agrawal, R.K.; Tripathi, M.P.; Verma, A.; Sharma, G.L.; Khalkho, D. Hydroponic systems for cultivation of horticultural crops: A review. J. Pharmacogn. Phytochem. 2020, 9, 2083–2086. Available online: https://www.phytojournal.com/archives/2020/vol9issue6/PartAD/9-6-235-915.pdf (accessed on 10 November 2023).
- Sardare, M.D.; Admane, S.V. A review on plant without soil-hydroponics. IJRET Int. J. Res. Eng. Technol. 2013, 2, 299–304. Available online: https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=AE77624191DBB554E592793F9542CBA7?doi=10.1.1.677.1105&rep=rep1&type=pdf (accessed on 10 November 2023).
- Khan, S.; Purohit, A.; Vadsaria, N. Hydroponics: Current and future state of the art in farming. J. Plant Nutr. 2021, 44, 1515–1538. [Google Scholar] [CrossRef]
- Treftz, C.; Omaye, S.T. Hydroponics: Potential for augmenting sustainable food production in non-arable regions. Nutr. Food Sci. 2016, 46, 672–684. [Google Scholar] [CrossRef]
- Schnitzler, W.H. Urban hydroponics for green and clean cities and for food security. ISHS Acta Hortic. 1004 Int. Symp. Soil. Cultiv. 2012, 1004, 13–26. [Google Scholar] [CrossRef]
- Nabi, S.; Fayaz, N.; Ahmad Rather, S.; Ahmad Mir, A. Hydroponics: Environmentally sustainable practice in the agricultural system. Pharma Innov. J. 2022, 11, 207–212. Available online: https://www.thepharmajournal.com/archives/2022/vol11issue7S/PartC/S-11-5-19-926.pdf (accessed on 10 November 2023).
- Gaikwad, D.J.; Maitra, S. Hydroponics cultivation of crops. In Protected Cultivation and Smart Agriculture; Maitra, S., Gaikwad, D.J., Shankar, T., Eds.; New Delhi Publishers: New Delhi, India, 2020; pp. 279–287. [Google Scholar]
- Modu, F.; Adam, A.; Aliyu, F.; Mabu, A.; Musa, M. A survey of smart hydroponic systems. Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 233–248. [Google Scholar] [CrossRef]
- Majid, M.; Khan, J.N.; Shah, Q.M.A.; Masoodi, K.Z.; Afroza, B.; Parvaze, S. Evaluation of hydroponic systems for the cultivation of Lettuce (Lactuca sativa L., var. Longifolia) and comparison with protected soil-based cultivation. Agric. Water Manag. 2021, 245, 106572. [Google Scholar] [CrossRef]
- AlShrouf, A. Hydroponics, aeroponic and aquaponic as compared with conventional farming. Am. Sci. Res. J. Eng. Technol. Sci. 2017, 27, 247–255. Available online: https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/2543 (accessed on 10 September 2023).
- Geilfus, C.M. Controlled Environment Horticulture: Improving Quality of Vegetables and Medicinal Plants; Springer: Cham, Switzerland, 2019; pp. 1–40. [Google Scholar]
- Rouphael, Y.; Colla, G. Growth, yield, fruit quality and nutrient uptake of hydroponically cultivated zucchini squash as affected by irrigation systems and growing seasons. Sci. Hortic. 2005, 105, 177–195. [Google Scholar] [CrossRef]
- Barbosa, G.L.; Gadelha, F.D.A.; Kublik, N.; Proctor, A.; Reichelm, L.; Weissinger, E.; Wohlleb, G.M.; Halden, R.U. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods. Int. J. Environ. Res. Public Health 2015, 12, 6879–6891. [Google Scholar] [CrossRef] [PubMed]
- El-Kazzaz, K.A.; El-Kazzaz, A.A. Soilless agriculture a new and advanced method for agriculture development: An introduction. Agric. Res. Technol. Open Access J. 2017, 3, 63–72. Available online: https://juniperpublishers.com/artoaj/pdf/ARTOAJ.MS.ID.555610.pdf (accessed on 10 December 2023).
- Rogers, M.A. Organic vegetable crop production in controlled environments using soilless media. HortTechnology 2017, 27, 166–170. [Google Scholar] [CrossRef]
- Ragaveena, S.; Shirly Edward, A.; Surendran, U. Smart controlled environment agriculture methods: A holistic review. Rev. Environ. Sci. Biotechnol. 2021, 20, 887–913. [Google Scholar] [CrossRef]
- Tsitsimpelis, I.; Wolfenden, I.; Taylor, C.J. Development of a grow-cell test facility for research into sustainable controlled-environment agriculture. Biosyst. Eng. 2016, 150, 40–53. [Google Scholar] [CrossRef]
- Maureira, F.; Rajagopalan, K.; Stockle, C.O. Evaluating tomato production in open-field and high-tech greenhouse systems. J. Clean. Prod. 2022, 337, 130459. [Google Scholar] [CrossRef]
- Delshammar, T.; Brincker, S.; Skaarup, K.; Haaland, L.U.S. Rooftop farming policy. In Rooftop Urban Agriculture; Orsini, F., Dubbeling, M., De Zeeuw, H., Gianquinto, G., Eds.; Springer: Cham, Switzerland, 2017; pp. 31–36. [Google Scholar]
- Roth, M.; Frixen, M.; Tobisch, C.; Scholle, T. Finding spaces for urban food production—Matching spatial and stakeholder analysis with urban agriculture approaches in the urban renewal area of dortmund-Horde, Germany. Future Food J. Food Agric. Soc. 2019, 3, 79–88. Available online: http://www.thefutureoffoodjournal.com/index.php/FOFJ/article/view/123 (accessed on 10 December 2023).
- Ching, F.D.K. Building Construction Illustrated; Wiley: Hoboken, NJ, USA, 2014; pp. 195–200. [Google Scholar]
- Taylor, R.W.; Carandang, J.S.; Alexander, C.; Calleja, J.S. Making global cities sustainable: Urban rooftop hydroponics for diversified agriculture in emerging economics. OIDA Int. J. Sustain. Dev. 2012, 5, 11–28. [Google Scholar]
- Benis, K.; Ferrão, P. Commercial farming within the urban built environment—Taking stock of an evolving field in northern countries. Glob. Food Secur. 2018, 17, 30–37. [Google Scholar] [CrossRef]
- Jenkins, A. Building Integrated Technical Food Systems. Ph.D. Thesis, Queens University, Belfast, UK, 2018. Available online: https://pure.qub.ac.uk/en/studentTheses/building-integrated-technical-food-systems (accessed on 10 September 2023).
Preliminary Design Recommendations | |
---|---|
Climate | Temperate and tropical: consider open-air rooftop farming. Consider a “low-tech” greenhouse. |
Arid, cold, and polar zones: consider a “high-tech” greenhouse. | |
Sunlight | Minimum of six to eight hours of direct exposure to sunlight is essential. |
Wind | 1. Identify major wind directions. 2. Design wind barriers. |
Shade | Consider the neighboring building’s cast shade. |
Water source | Consider outdoor faucets and irrigation systems. |
Electricity | 1. Consider electric sockets on the rooftop. 2. Consider solar panels on the rooftop. |
Extra load | The roof structure should be able to sustain the load of the rooftop garden infrastructure and pedestrian traffic in line with rain and snow. |
Access to the rooftop | Facilitate internal and external staircases and elevators. |
Safety | Design parapets around the building’s edge. |
Limited rooftop space | Consider sufficient space for mechanical systems and other essential equipment on the rooftop. |
Building codes and legislation | Local building codes must be checked. |
Proper insulation | Rooftops should be properly insulated and waterproofed. |
Logistics | Transferring soil and other equipment might require a crane, which can be challenging. |
Installation and maintenance cost | Consider installation and regular maintenance costs. |
Social parameters | Sufficient space should be allocated for hosting a small to medium number of visitors. |
Finishing surface | Depending on the climatic condition, the rooftop surface should be covered with anti-slip and frost-resistant tiles or a wooden deck. |
Walking paths | Paths free of any barriers should be designed on the rooftop. |
Lightning protection system | A lightning protection system might need to be installed on the rooftop. |
Grouped mechanical systems | To clear the rooftop surface for farming, exhaust vents, mechanical systems, and equipment should be grouped together and installed in one corner of the roof. |
Managing rainwater runoff | In order to remove rainwater effectively, the issue of slope should be considered. |
Privacy | Future building residents should be willing to embark on farming activities which might interfere with their privacy. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daneshyar, E. Residential Rooftop Urban Agriculture: Architectural Design Recommendations. Sustainability 2024, 16, 1881. https://doi.org/10.3390/su16051881
Daneshyar E. Residential Rooftop Urban Agriculture: Architectural Design Recommendations. Sustainability. 2024; 16(5):1881. https://doi.org/10.3390/su16051881
Chicago/Turabian StyleDaneshyar, Ehsan. 2024. "Residential Rooftop Urban Agriculture: Architectural Design Recommendations" Sustainability 16, no. 5: 1881. https://doi.org/10.3390/su16051881
APA StyleDaneshyar, E. (2024). Residential Rooftop Urban Agriculture: Architectural Design Recommendations. Sustainability, 16(5), 1881. https://doi.org/10.3390/su16051881