The Cobalt Supply Chain and Environmental Life Cycle Impacts of Lithium-Ion Battery Energy Storage Systems
Abstract
:1. Introduction
- Q1. What physical pathways and processes does cobalt undergo from extraction until use in an LIB?
- Q2. What are the environmental (greenhouse gases (GHG), air, land, and water) impacts of each process and life-cycle phase?
- Q3. How will changes in ore quality impact the environmental sustainability of extraction?
- Q4. How will changes in refinery location impact the environmental sustainability of the cobalt supply chain for LIBs?
- Q5. How do the impacts of nickel manganese cobalt (NMC) and nickel cobalt aluminum (NCA) compare?
2. Materials and Methods
2.1. Life Cycle Assessment (LCA)
2.1.1. Goal and Scope Definition
Battery | Cathode | Formula | Anode | Cycle Life (@80% DoD) | Life (Years) ‡ | Specific Energy (Wh/kg) [25] | Round Trip Efficiency (%) |
---|---|---|---|---|---|---|---|
NMC111 | Nickel manganese cobalt (in the ratio 1:1:1) | LiNi1/3Mn1/3Co1/3O2 | Graphite | 7000–7300 | 20 | 143 | 90 |
NMC532 | Nickel manganese cobalt (in the ratio 0.5:0.3:0.2) | LiNi0.5Mn0.3Co0.2O2 | 259.26 | ||||
NMC622 | Nickel manganese cobalt (in the ratio 0.6:0.2:0.2) | LiNi0.6Mn0.2Co0.2O2 | 269.17 | ||||
NMC811 | Nickel manganese cobalt (in the ratio 0.8:0.1:0.1) | LiNi0.8Mn0.1Co0.1O2 | 278.75 | ||||
NCA | Nickel cobalt aluminum | LiNi0.8Co0.15Al0.05O2 | 279.12 |
2.1.2. Life Cycle Inventory
2.1.3. Life Cycle Impact Assessment
2.1.4. Experimental Design and Data Analysis
3. Results
3.1. Base Case Scenario-Analysis of Impact Factors
3.2. Scenario Analysis
3.2.1. Impact of Ore Grade
3.2.2. Refining Location
3.2.3. Battery Chemistry
3.2.4. Use
3.2.5. Combined Scenario Analysis
3.3. Statistical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pellow, M.A.; Ambrose, H.; Mulvaney, D.; Betita, R.; Shaw, S. Research gaps in environmental life cycle assessments of lithium ion batteries for grid-scale stationary energy storage systems: End-of-life options and other issues. Sustain. Mater. Technol. 2020, 23, e00120. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Energy Storage Grand Challenge: Energy Storage Market Report; U.S Department of Energy: Washington, DC, USA, 2020. Available online: https://www.energy.gov/sites/prod/files/2020/12/f81/Energy%20Storage%20Market%20Report%202020_0.pdf (accessed on 25 May 2023).
- International Energy Agency (IEA). The Role of Critical Minerals in Clean Energy Transitions; IEA: Paris, France, 2021; Available online: https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions (accessed on 25 May 2023).
- The Organisation for Economic Co-operation and Development (OECD). Interconnected Supply Chains: A Comprehensive Look at due Diligence Challenges and Opportunities Sourcing Cobalt and Copper from the Democratic Republic of the Congo. Responsible Business Conduct. 2019. Available online: https://delvedatabase.org/resources/interconnected-supply-chains-a-comprehensive-look-at-due-diligence-challenges-and-opportunities-sourcing-cobalt-and-copper-from-the-democratic-republic-of-the-congo (accessed on 25 May 2023).
- U.S. Geological Survey (USGS). Mineral Commodity Summaries 2022—Cobalt; U.S. Geological Survey: Reston, VA, USA, 2022. Available online: https://pubs.usgs.gov/periodicals/mcs2022/mcs2022-cobalt.pdf (accessed on 25 May 2023).
- U.S. Geological Survey (USGS). Mineral Commodity Summaries 2023; U.S. Geological Survey: Reston, VA, USA, 2023; 210p. Available online: https://pubs.usgs.gov/periodicals/mcs2023/mcs2023.pdf (accessed on 25 May 2023).
- Cobalt Institute. State of Cobalt Market Report. 2021. Available online: https://www.cobaltinstitute.org/wp-content/uploads/2021/09/Cobalt-Institute-State-of-the-Cobalt-Market-Report_2020.pdf (accessed on 25 May 2023).
- The White House. FACT SHEET: Securing a Made in America Supply Chain for Critical Minerals. 2022. Available online: https://www.whitehouse.gov/briefing-room/statements-releases/2022/02/22/fact-sheet-securing-a-made-in-america-supply-chain-for-critical-minerals/ (accessed on 25 May 2023).
- Nriagu, J.O. Toxic metal pollution in Africa. Sci. Total. Environ. 1992, 121, 1–37. [Google Scholar] [CrossRef]
- Banza, C.L.N.; Nawrot, T.S.; Haufroid, V.; Decrée, S.; De Putter, T.; Smolders, E.; Kabyla, B.I.; Luboya, O.N.; Ilunga, A.N.; Mutombo, A.M.; et al. High human exposure to cobalt and other metals in Katanga, a mining area of the Democratic Republic of Congo. Environ. Res. 2009, 109, 745–752. [Google Scholar] [CrossRef] [PubMed]
- United Nations Environment Programme (UNEP). Water Issues in the Democratic Republic of Congo: Challenges and Opportunities—Technical Report. 2011. Available online: https://reliefweb.int/report/democratic-republic-congo/water-issues-democratic-republic-congo-challenges-and-opportunities (accessed on 25 May 2023).
- Slack, J.F.; Kimball, B.E.; Shedd, K.B. Cobalt. Report 1802F. Professional Paper; USGS Publications Warehouse: Reston, VA, USA, 2017. Available online: https://pubs.er.usgs.gov/publication/pp1802F (accessed on 25 May 2023).
- Shengo, M.; Kime, M.-B.; Mambwe, M.; Nyembo, T. A review of the beneficiation of copper-cobalt-bearing minerals in the Democratic Republic of Congo. J. Sustain. Min. 2019, 18, 226–246. [Google Scholar] [CrossRef]
- Muimba-Kankolongo, A.; Nkulu, C.B.L.; Mwitwa, J.; Kampemba, F.M.; Nabuyanda, M.M.; Haufroid, V.; Smolders, E.; Nemery, B. Contamination of water and food crops by trace elements in the African Copperbelt: A collaborative cross-border study in Zambia and the Democratic Republic of Congo. Environ. Adv. 2021, 6, 100103. [Google Scholar] [CrossRef]
- Schmidt, T.; Buchert, M.; Schebek, L. Investigation of the primary production routes of nickel and cobalt products used for Li-ion batteries. Resour. Conserv. Recycl. 2016, 112, 107–122. [Google Scholar] [CrossRef]
- Finnveden, G.; Hauschild, M.Z.; Ekvall, T.; Guinée, J.B.; Heijungs, R.; Hellweg, S.; Koehler, A.; Pennington, D.; Suh, S. Recent developments in Life Cycle Assessment. J. Environ. Manag. 2009, 91, 1–21. [Google Scholar] [CrossRef]
- Kim, B.; Azzaro-Pantel, C.; Pietrzak-David, M.; Maussion, P. Life cycle assessment for a solar energy system based on reuse components for developing countries. J. Clean. Prod. 2018, 208, 1459–1468. [Google Scholar] [CrossRef]
- Das, J. Comparative life cycle GHG emission analysis of conventional and electric vehicles in India. Environ. Dev. Sustain. 2022, 24, 13294–13333. [Google Scholar] [CrossRef]
- Xia, X.; Li, P. A review of the life cycle assessment of electric vehicles: Considering the influence of batteries. Sci. Total. Environ. 2021, 814, 152870. [Google Scholar] [CrossRef]
- Li, P.; Xia, X.; Guo, J. A review of the life cycle carbon footprint of electric vehicle batteries. Sep. Purif. Technol. 2022, 296, 121389. [Google Scholar] [CrossRef]
- Chen, Q.; Lai, X.; Gu, H.; Tang, X.; Gao, F.; Han, X.; Zheng, Y. Investigating carbon footprint and carbon reduction potential using a cradle-to-cradle LCA approach on lithium-ion batteries for electric vehicles in China. J. Clean. Prod. 2022, 369, 133342. [Google Scholar] [CrossRef]
- Hsu, D.D.; O’donoughue, P.; Fthenakis, V.; Heath, G.A.; Kim, H.C.; Sawyer, P.; Choi, J.; Turney, D.E. Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation. J. Ind. Ecol. 2012, 16, S122–S135. [Google Scholar] [CrossRef]
- Arshad, F.; Lin, J.; Manurkar, N.; Fan, E.; Ahmad, A.; Tariq, M.-U.; Wu, F.; Chen, R.; Li, L. Life Cycle Assessment of Lithium-ion Batteries: A Critical Review. Resour. Conserv. Recycl. 2022, 180, 106164. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, Z.; Wu, B.; Tang, Y.; Evans, S. Environmental life cycle assessment of recycling technologies for ternary lithium-ion batteries. J. Clean. Prod. 2023, 389, 136008. [Google Scholar] [CrossRef]
- Guven, D.; Kayalica, M.O. Life-cycle assessment and life-cycle cost assessment of lithium-ion batteries for passenger ferry. Transp. Res. Part D Transp. Environ. 2023, 115, 103586. [Google Scholar] [CrossRef]
- Jiang, S.; Hua, H.; Zhang, L.; Liu, X.; Wu, H.; Yuan, Z. Environmental impacts of hydrometallurgical recycling and reusing for manufacturing of lithium-ion traction batteries in China. Sci. Total. Environ. 2022, 811, 152224. [Google Scholar] [CrossRef]
- Yudhistira, R.; Khatiwada, D.; Sanchez, F. A comparative life cycle assessment of lithium-ion and lead-acid batteries for grid energy storage. J. Clean. Prod. 2022, 358, 131999. [Google Scholar] [CrossRef]
- Chordia, M.; Nordelöf, A.; Ellingsen, L.A.-W. Environmental life cycle implications of upscaling lithium-ion battery production. Int. J. Life Cycle Assess. 2021, 26, 2024–2039. [Google Scholar] [CrossRef]
- Le Varlet, T.; Schmidt, O.; Gambhir, A.; Few, S.; Staffell, I. Comparative life cycle assessment of lithium-ion battery chemistries for residential storage. J. Energy Storage 2020, 28, 101230. [Google Scholar] [CrossRef]
- Sun, X.; Luo, X.; Zhang, Z.; Meng, F.; Yang, J. Life cycle assessment of lithium nickel cobalt manganese oxide (NCM) batteries for electric passenger vehicles. J. Clean. Prod. 2020, 273, 123006. [Google Scholar] [CrossRef]
- Wang, F.; Deng, Y.; Yuan, C. Life cycle assessment of lithium oxygen battery for electric vehicles. J. Clean. Prod. 2020, 264, 121339. [Google Scholar] [CrossRef]
- Cusenza, M.A.; Bobba, S.; Ardente, F.; Cellura, M.; Di Persio, F. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles. J. Clean. Prod. 2019, 215, 634–649. [Google Scholar] [CrossRef]
- Vandepaer, L.; Cloutier, J.; Bauer, C.; Amor, B. Integrating Batteries in the Future Swiss Electricity Supply System: A Consequential Environmental Assessment. J. Ind. Ecol. 2019, 23, 709–725. [Google Scholar] [CrossRef]
- Delgado, M.A.S.; Usai, L.; Ellingsen, L.A.-W.; Pan, Q.; Strømman, A.H. Comparative Life Cycle Assessment of a Novel Al-Ion and a Li-Ion Battery for Stationary Applications. Materials 2019, 12, 3270. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Kelly, J.C.; Gaines, L.; Wang, M. Life Cycle Analysis of Lithium-Ion Batteries for Automotive Applications. Batteries 2019, 5, 48. [Google Scholar] [CrossRef]
- Ryan, N.A.; Lin, Y.; Mitchell-Ward, N.; Mathieu, J.L.; Johnson, J.X. Use-Phase Drives Lithium-Ion Battery Life Cycle Environmental Impacts When Used for Frequency Regulation. Environ. Sci. Technol. 2018, 52, 10163–10174. [Google Scholar] [CrossRef] [PubMed]
- Schenker, V.; Oberschelp, C.; Pfister, S. Regionalized life cycle assessment of present and future lithium production for Li-ion batteries. Resour. Conserv. Recycl. 2022, 187, 106611. [Google Scholar] [CrossRef]
- Farjana, S.H.; Huda, N.; Mahmud, M.P. Life cycle assessment of cobalt extraction process. J. Sustain. Min. 2019, 18, 150–161. [Google Scholar] [CrossRef]
- Mistry, M.; Gediga, J.; Boonzaier, S. Life cycle assessment of nickel products. Int. J. Life Cycle Assess. 2016, 21, 1559–1572. [Google Scholar] [CrossRef]
- Engels, P.; Cerdas, F.; Dettmer, T.; Frey, C.; Hentschel, J.; Herrmann, C.; Mirfabrikikar, T.; Schueler, M. Life cycle assessment of natural graphite production for lithium-ion battery anodes based on industrial primary data. J. Clean. Prod. 2022, 336, 130474. [Google Scholar] [CrossRef]
- Farjana, S.H.; Huda, N.; Mahmud, M.P. Impacts of aluminum production: A cradle to gate investigation using life-cycle assessment. Sci. Total. Environ. 2019, 663, 958–970. [Google Scholar] [CrossRef]
- Peters, J.F.; Baumann, M.; Zimmermann, B.; Braun, J.; Weil, M. The environmental impact of Li-Ion batteries and the role of key parameters—A review. Renew. Sustain. Energy Rev. 2017, 67, 491–506. [Google Scholar] [CrossRef]
- Majeau-Bettez, G.; Hawkins, T.R.; Strømman, A.H. Life Cycle Environmental Assessment of Lithium-Ion and Nickel Metal Hydride Batteries for Plug-In Hybrid and Battery Electric Vehicles. Environ. Sci. Technol. 2011, 45, 4548–4554. [Google Scholar] [CrossRef] [PubMed]
- Ellingsen, L.A.; Majeau-Bettez, G.; Singh, B.; Srivastava, A.K.; Valøen, L.O.; Strømman, A.H. Life Cycle Assessment of a Lithium-Ion Battery Vehicle Pack. J. Ind. Ecol. 2013, 18, 113–124. [Google Scholar] [CrossRef]
- Kallitsis, E.; Korre, A.; Kelsall, G.; Kupfersberger, M.; Nie, Z. Environmental life cycle assessment of the production in China of lithium-ion batteries with nickel-cobalt-manganese cathodes utilising novel electrode chemistries. J. Clean. Prod. 2020, 254, 120067. [Google Scholar] [CrossRef]
- Dai, Q.; Kelly, J.C.; Elgowainy, A. Cobalt Life Cycle Analysis Update for the GREET® Model. Argonne National Lab. 2018. Available online: https://greet.es.anl.gov/publication-update_cobalt (accessed on 12 November 2023).
- Kelly, J.C.; Dai, Q.; Wang, M. Globally regional life cycle analysis of automotive lithium-ion nickel manganese cobalt batteries. Mitig. Adapt. Strat. Glob. Chang. 2020, 25, 371–396. [Google Scholar] [CrossRef]
- Crenna, E.; Gauch, M.; Widmer, R.; Wäger, P.; Hischier, R. Towards more flexibility and transparency in life cycle inventories for Lithium-ion batteries. Resour. Conserv. Recycl. 2021, 170, 105619. [Google Scholar] [CrossRef]
- Farjana, S.H.; Huda, N.; Mahmud, M.A.P. Life-Cycle environmental impact assessment of mineral industries. IOP Conf. Ser. Mater. Sci. Eng. 2018, 351, 012016. [Google Scholar] [CrossRef]
- Rinne, M.; Elomaa, H.; Porvali, A.; Lundström, M. Simulation-based life cycle assessment for hydrometallurgical recycling of mixed LIB and NiMH waste. Resour. Conserv. Recycl. 2021, 170, 105586. [Google Scholar] [CrossRef]
- Zhang, T.; Bai, Y.; Shen, X.; Zhai, Y.; Ji, C.; Ma, X.; Hong, J. Cradle-to-gate life cycle assessment of cobalt sulfate production derived from a nickel–copper–cobalt mine in China. Int. J. Life Cycle Assess. 2021, 26, 1198–1210. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Nuss, P.; Eckelman, M.J. Life Cycle Assessment of Metals: A Scientific Synthesis. PLoS ONE 2014, 9, e101298. [Google Scholar] [CrossRef]
- Arvidsson, R.; Chordia, M.; Nordelöf, A. Comments on “Life cycle assessment of cobalt extraction process” by Farjana et al. (2019). J. Sustain. Min. 2020, 19, 3–21. [Google Scholar] [CrossRef]
- Arvidsson, R.; Chordia, M.; Nordelöf, A. Quantifying the life-cycle health impacts of a cobalt-containing lithium-ion battery. Int. J. Life Cycle Assess. 2022, 27, 1106–1118. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework, 2nd ed. International Organization of Standardization: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental management—Life Cycle Assessment—Requirements and Guidelines. International Organization of Standardization: Geneva, Switzerland, 2006.
- PE International. Harmonization of LCA Methodologies for Metals. PE International. 2014. Available online: http://www.euromines.org/files/publications/harmonization-lca-methodologies-metals.pdf (accessed on 25 May 2023).
- Da Silva Lima, L.; Quartier, M.; Buchmayr, A.; Sanjuan-Delmás, D.; Laget, H.; Corbisier, D.; Mertens, J.; Dewulf, J. Life cycle assessment of lithium-ion batteries and vanadium redox flow batteries-based renewable energy storage systems. Sustain. Energy Technol. Assess. 2021, 46, 101286. [Google Scholar] [CrossRef]
- Althaus, H.-J.; Classen, M. Life Cycle Inventories of Metals and Methodological Aspects of Inventorying Material Resources in ecoinvent (7 pp). Int. J. Life Cycle Assess. 2004, 10, 43–49. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration (EIA). Energy and the Environment Explained: Where Greenhouse Gases Come from. U.S. Energy Information Administration. 2021. Available online: https://www.eia.gov/energyexplained/energy-and-the-environment/where-greenhouse-gases-come-from.php (accessed on 10 April 2023).
- China Molybdenum. Annual Report. China Molybdenum Co., Ltd. 2018. Available online: https://www.miningnewsfeed.com/reports/annual/ChinaMolybdenumCoLtd_Annual_Report_2018.pdf (accessed on 25 May 2023).
- Golder Associates. Environmental Impact Assessment Tenke Fungurume Project. Golder Associates. 2007. Available online: https://www.afdb.org/fileadmin/uploads/afdb/Documents/Environmental-and-Social-Assessments/adb-bd-if-2007-158-en-drc-tenke-rap-and-executive-summary.pdf (accessed on 25 May 2023).
- Sanders, M. Lithium-Ion Battery Raw Material Supply and Demand 2016–2025; Avicenne Energy: Paris, France, 2017; Available online: http://www.avicenne.com/pdf/Lithium-Ion%20Battery%20Raw%20Material%20Supply%20and%20Demand%202016-2025%20C.%20Pillot%20-%20M.%20Sanders%20Presentation%20at%20AABC-US%20San%20Francisco%20June%202017.pdf (accessed on 25 May 2023).
- Farchy, J.; Warren, H. China Has a Secret Weapon in the Race to Dominate Electric Cars. Bloomberg. 2018. Available online: https://www.bloomberg.com/graphics/2018-china-cobalt/ (accessed on 25 May 2023).
- Li, Y.; Hou, X.; Zhang, W.; Xiong, W.; Wang, L.; Zhang, S.; Wang, P.; Wang, C. Integration of life cycle assessment and statistical analysis to understand the influence of rainfall on WWTPs with combined sewer systems. J. Clean. Prod. 2018, 172, 2521–2530. [Google Scholar] [CrossRef]
- Hussien, A.; Saleem, A.A.; Mushtaha, E.; Jannat, N.; Al-Shammaa, A.; Bin Ali, S.; Assi, S.; Al-Jumeily, D. A statistical analysis of life cycle assessment for buildings and buildings’ refurbishment research. Ain Shams Eng. J. 2023, 14, 102143. [Google Scholar] [CrossRef]
- Eckelman, M.J. Facility-level energy and greenhouse gas life-cycle assessment of the global nickel industry. Resour. Conserv. Recycl. 2010, 54, 256–266. [Google Scholar] [CrossRef]
- Norgate, T.; Haque, N. Energy and greenhouse gas impacts of mining and mineral processing operations. J. Clean. Prod. 2010, 18, 266–274. [Google Scholar] [CrossRef]
- Memary, R.; Giurco, D.; Mudd, G.; Mason, L. Life cycle assessment: A time-series analysis of copper. J. Clean. Prod. 2012, 33, 97–108. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). World Energy Statistics; IEA: Paris, France, 2021; Available online: https://www.iea.org/data-and-statistics/data-product/world-energy-statistics-and-balances (accessed on 11 March 2022).
- Sleeswijk, A.W.; van Oers, L.F.; Guinée, J.B.; Struijs, J.; Huijbregts, M.A. Normalisation in product life cycle assessment: An LCA of the global and European economic systems in the year 2000. Sci. Total Environ. 2008, 390, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Wang, H.; Jin, Q. Comparison of three typical lithium-ion batteries for pure electric vehicles from the perspective of life cycle assessment. Clean Technol. Environ. Policy 2023, 26, 331–350. [Google Scholar] [CrossRef]
- Gutsch, M.; Leker, J. Costs, carbon footprint, and environmental impacts of lithium-ion batteries—From cathode active material synthesis to cell manufacturing and recycling. Appl. Energy 2024, 353, 122132. [Google Scholar] [CrossRef]
- Tabrizi, M.K.; Bonalumi, D.; Lozza, G.G. Analyzing the global warming potential of the production and utilization of lithium-ion batteries with nickel-manganese-cobalt cathode chemistries in European Gigafactories. Energy 2024, 288, 129622. [Google Scholar] [CrossRef]
- Popien, J.-L.; Thies, C.; Barke, A.; Spengler, T.S. Comparative sustainability assessment of lithium-ion, lithium-sulfur, and all-solid-state traction batteries. Int. J. Life Cycle Assess. 2023, 28, 462–477. [Google Scholar] [CrossRef]
- Winjobi, O.; Kelly, J.C.; Dai, Q. Life-cycle analysis, by global region, of automotive lithium-ion nickel manganese cobalt batteries of varying nickel content. Sustain. Mater. Technol. 2022, 32, e00415. [Google Scholar] [CrossRef]
- Llamas-Orozco, J.A.; Meng, F.; Walker, G.S.; Abdul-Manan, A.F.N.; MacLean, H.L.; Posen, I.D.; McKechnie, J. Estimating the environmental impacts of global lithium-ion battery supply chain: A temporal, geographical, and technological perspective. PNAS Nexus 2023, 2, pgad361. [Google Scholar] [CrossRef]
- Gusman, I.; Triatmojo, P.; Rostiarti, P.; Arifiyanto, B. Energy Efficiency and Greenhouse Gas Emissions Reduction Through Electrification Program at TanjungEnim Mine Business Unit of PT Bukit Asam (Persero) Tbk. Indones. J. Environ. Manag. Sustain. 2018, 2, 7–10. [Google Scholar] [CrossRef]
- Earl, C.; Shah, I.H.; Cook, S.; Cheeseman, C.R. Environmental Sustainability and Supply Resilience of Cobalt. Sustainability 2022, 14, 4124. [Google Scholar] [CrossRef]
- Bamana, G.; Miller, J.D.; Young, S.L.; Dunn, J.B. Addressing the social life cycle inventory analysis data gap: Insights from a case study of cobalt mining in the Democratic Republic of the Congo. One Earth 2021, 4, 1704–1714. [Google Scholar] [CrossRef]
Reference | Metal under Study | Life Cycle Phases Included in System Boundary | Scope of the Analysis |
---|---|---|---|
Schenker et al., 2022 [37] | Battery-grade Li2CO3 | Cradle to gate, recycling | Life cycle environmental assessment |
Farjana et al., 2019 (a) [38] | Cobalt | Extraction | Life cycle environmental assessment |
Mistry et al., 2015 [39] | Nickel | Cradle to gate | Primary energy demand, Global warming potential |
Schmidt et al., 2016 [15] | Nickel and cobalt | Cradle to gate | Life cycle environmental assessment |
Engels et al., 2022 [40] | Natural graphite | Cradle to gate | Global warming potential |
Farjana et al., 2019 (b) [41] | Aluminum | Cradle to gate | Life cycle environmental assessment |
Year End | Battery Capacity (% of Rating) | Augmentation (% of Rating) | Battery Installed Capacity (% of Rating) | Useable Capacity (% of Rating) |
---|---|---|---|---|
0 | 100 | - | 120.5 | 100 |
3 | 88.7 | 10 | 118.0 | 100 |
7 | 82.0 | 10 | 119.3 | 100 |
14 | 74.5 | 15 | 123.3 | 100 |
21 | 64.9 | 112 (Battery replacement) | 122 | 100 |
Impact Category | Abbreviation | Unit | Damage Pathways |
---|---|---|---|
Fine particulate matter formation | PMFP | kg PM2.5eq | Increased respiratory illness |
Fossil resource scarcity | FFP | kg oileq | Scarcity in fossil resources on earth |
Freshwater ecotoxicity | FETP | kg 1,4-DCB | Loss of plant and aquatic life; increased risk of cancer |
Freshwater eutrophication potential | FEP | kg Peq | Loss of aquatic species |
Global warming potential | GWP | kg CO2eq | Increased flood risk, human disease, species decline |
Human carcinogenic toxicity | HTPc | kg 1,4-DCB | Increased toxicity and human disease |
Human non- carcinogenic toxicity | HTPnc | kg 1,4-DCB | Increased toxicity and human disease which are non-carcinogenic |
Ionizing radiation | IRP | kBq Co-60eq | Increased DNA damage |
Land use | LOP | m2a cropeq | Increased land footprint |
Marine ecotoxicity | METP | kg 1,4-DCB | Loss of plant and aquatic life; increased risk of cancer |
Marine eutrophication potential | MEP | kg Neq | Loss of aquatic species |
Mineral resource scarcity | SOP | kg Cueq | Scarcity of minerals on the earth |
Ozone formation, human health | OFHH | kg NOxeq | Increased threat to human health |
Ozone formation, terrestrial ecosystems | OFTE | kg NOxeq | Increased threat to terrestrial ecosystems |
Stratospheric ozone depletion | ODP | kg CFC-11eq | Increased risk of disease |
Terrestrial acidification potential | TAP | kg SO2eq | Loss of plant life |
Terrestrial ecotoxicity | TETP | kg 1,4-DCB | Loss of plant species |
Water depletion potential | WDP | m3 | Loss of aquatic species; malnutrition |
Scenarios | Ore Grade | Mining + Processing Location | Battery Chemistry | Refining Location |
---|---|---|---|---|
Base Case | 0.30% | DRC | NMC111 | China |
1–30 | 0.1–1% | DRC | NMC111 | China |
Canada (NA) | ||||
Finland (EU) | ||||
31–60 | NMC532 | China | ||
Canada (NA) | ||||
Finland (EU) | ||||
61–90 | NMC622 | China | ||
Canada (NA) | ||||
Finland (EU) | ||||
91–120 | NMC811 | China | ||
Canada (NA) | ||||
Finland (EU) | ||||
121–150 | NCA | China | ||
Canada (NA) | ||||
Finland (EU) |
Independent Variables | Dependent Variable | ||||
---|---|---|---|---|---|
Ore Grade | Fossil Fuel Generation at Refining Location (%) | Cobalt Content in the Battery Type (kg/MWh) | |||
0.1–1% | China Canada Finland | 75 18 29 | NMC111 | 394 | Global Warming Potential (GWP) |
NMC532 | 230 | ||||
NMC622 | 190 | ||||
NMC811 | 94 | ||||
NCA | 143 |
Constant | Ore Grade | Refining Location-Grid Mix | Cobalt Content in Battery | R2 | |
---|---|---|---|---|---|
Global Warming Potential (GWP) | 0.97 | ||||
= 4866.2 = −0.271 | |||||
4952.7 | 0.77 | ||||
= 1604.78 = 1 | |||||
1490 | 0.99 | ||||
= 51.1 = 1 | |||||
0.94 | |||||
= 4684.5 | = 1632.7; | ||||
= −0.271 | = 1 | ||||
−1122 | 0.95 | ||||
= 1682.9 | = 62.7 | ||||
= −0.8323 | = 1 | ||||
0.97 | |||||
= 4522.29 | = 72.4185 | ||||
= 1 | = 1 |
Ref | LCA Boundary/ Method | Fun. Unit | Battery | Impact Category | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GWP (kg CO2eq) | HTPeq (1,4 DCBeq) | FETP (kg 1,4-DCB) | METP (kg 1,4-DCB) | TETP (kg 1,4-DCB) | TAP (kg SO2eq) | FEP (kg Peq) | MEP (kg Neq) | WCP m3 | ||||
Gutsch et al., 2024 [75] | Cradle to grave/ ReCiPe 2016 Midpoint | 1 kWh | 811 | 64.5 | ||||||||
Tabrizi et al., 2024 [76] | Cradle to gate/ ReCiPe 2016 Midpoint | 1 kWh | 111 | 85 | ||||||||
622 | 76 | |||||||||||
811 | 74 | |||||||||||
Popien et al., 2023 [77] | Cradle to gate/The ReCiPe Midpoint (H) V1.13 | 1 kWh | NCA | 110.54 | 254.46 | |||||||
622 | 110.76 | 254.13 | ||||||||||
811 | 102.34 | 243.81 | ||||||||||
Jiang et al., 2023 [74] | Cradle to grave/CML-IA | 1 kWh | 622 | 132 | 13.5 | 70.3 | 1.77 × 105 | 0.199 | 2.76 | |||
811 | 121 | 14.4 | 68.8 | 1.76 × 105 | 0.189 | 2.65 | ||||||
Sun et al., 2020 [30] | Cradle to grave/ReCiPe Midpoint (H) V1.11/ | 1 kWh | 622 | 93.57 | 12.53 | 1.5 | 0.01 | 0.49 | 0.01 | 0.02 | ||
Winjobi et al. 2022 [78] | Cradle to gate/ GREET | 1 kWh | 111 | 59.5 | 0.44 | |||||||
532 | 59.3 | 0.42 | ||||||||||
622 | 56.4 | 0.39 | ||||||||||
811 | 55.1 | 0.39 | ||||||||||
Dai et al., 2019 [35] | Cradle to gate/ GREET | 1 kWh | 111 | 72.87 | 0.752 | |||||||
Orozco et al., 2023 [79] | Cradle to gate/ GREET | 1 kWh | 111 | 78.10 | ||||||||
532 | 81.13 | |||||||||||
622 | 77.43 | |||||||||||
811 | 77.37 | |||||||||||
NCA | 82.33 | |||||||||||
Peters et al., 2017 [42] | Review | 1 kWh | NMC | 40–250 | ||||||||
This study | Cradle to gate/The ReCiPe Midpoint (H) V1.13 | 1 kWh (Base Case) | 111 | 8.5 | 150.15 | 3.7 | 4.7 | 54.8 | 0.07 | 6 × 10−3 | 2 × 10−4 | 0.27 |
532 | 5.2 | 88.89 | 2.2 | 2.8 | 33.2 | 0.04 | 4 × 10−3 | 1 × 10−4 | 0.17 | |||
622 | 4.3 | 73.46 | 1.8 | 2.4 | 27.6 | 0.03 | 3 × 10−3 | 1 × 10−4 | 0.14 | |||
811 | 2.2 | 38.37 | 0.96 | 1.2 | 15.1 | 0.02 | 16 × 10−2 | 6 × 10−4 | 0.07 | |||
NCA | 3.2 | 54.99 | 1.4 | 1.8 | 21.3 | 0.03 | 3 × 10−3 | 8 × 10−4 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, J.; Kleiman, A.; Rehman, A.U.; Verma, R.; Young, M.H. The Cobalt Supply Chain and Environmental Life Cycle Impacts of Lithium-Ion Battery Energy Storage Systems. Sustainability 2024, 16, 1910. https://doi.org/10.3390/su16051910
Das J, Kleiman A, Rehman AU, Verma R, Young MH. The Cobalt Supply Chain and Environmental Life Cycle Impacts of Lithium-Ion Battery Energy Storage Systems. Sustainability. 2024; 16(5):1910. https://doi.org/10.3390/su16051910
Chicago/Turabian StyleDas, Jani, Andrew Kleiman, Atta Ur Rehman, Rahul Verma, and Michael H. Young. 2024. "The Cobalt Supply Chain and Environmental Life Cycle Impacts of Lithium-Ion Battery Energy Storage Systems" Sustainability 16, no. 5: 1910. https://doi.org/10.3390/su16051910
APA StyleDas, J., Kleiman, A., Rehman, A. U., Verma, R., & Young, M. H. (2024). The Cobalt Supply Chain and Environmental Life Cycle Impacts of Lithium-Ion Battery Energy Storage Systems. Sustainability, 16(5), 1910. https://doi.org/10.3390/su16051910