Exploring Urban Compactness and Greenhouse Gas Emissions in the Road Transport Sector: A Case Study of Big Cities in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location and Emissions Data
2.2. Determination of UCIs
3. Results
3.1. Relationship between UCI and GHG Emissions According to City Size
3.2. Examining the Relationship between the UCI and GHG Emissions within Cities of the Same Size
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group 1 to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; IPCC: Geneva, Switzerlan, 2021. [Google Scholar]
- UN Habitat. Envisaging the Future of Cities; UN Habitat: Nairobi, Kenya, 2022. [Google Scholar]
- Lee, J.; Jung, S. Towards Carbon-Neutral Cities: Urban Classification Based on Physical Environment and Carbon Emission Characteristics. Land 2023, 12, 968. [Google Scholar] [CrossRef]
- Linton, S.; Clarke, A.; Tozer, L. Technical pathways to deep decarbonization in cities: Eight best practice case studies of transformational climate mitigation. Energy Res. Soc. Sci. 2022, 86, 102442. [Google Scholar] [CrossRef]
- Lee, C.M.; Erickson, P. How does local economic development in cities affect global GHG emissions? Sustain. Cities Soc. 2017, 35, 626–636. [Google Scholar] [CrossRef]
- Huovila, A.; Siikavirta, H.; Rozado, C.A.; Rökman, J.; Tuominen, P.; Paiho, S.; Hedman, Å.; Ylén, P. Carbon-neutral cities: Critical review of theory and practice. J. Clean. Prod. 2022, 341, 130912. [Google Scholar] [CrossRef]
- Newman, P.; Kenworthy, J. Gasoline consumption and cities: A comparison of US cities with a global survey and its implications. J. Am. Plan. Assoc. 1989, 55, 24–37. [Google Scholar] [CrossRef]
- Ewing, R. Is LA Sprawl Desirable. J. Am. Plan. Assoc. 1997, 63, 107–126. [Google Scholar] [CrossRef]
- Holden, E.; Norland, I.T. Three Challenges for the Compact City as a Sustainable Urban Form: Household Consumption of Energy and Transport in Eight Residential Areas in the Greater Oslo region. Urban Stud. 2005, 42, 2145–2166. [Google Scholar] [CrossRef]
- Ala-Mantila, S.; Heinonen, J.; Junnila, S. Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis. Ecol. Econ. 2014, 104, 129–139. [Google Scholar] [CrossRef]
- Trubka, R.; Newman, P.; Bilsborough, D. The Costs of Urban Sprawl—Physical Activity Links to Healthcare Costs and Productivity. Environ. Des. Guide 2010, GEN 85, 1–13. [Google Scholar]
- Ha, J. The Effect of Compact Spatial Characteristics on Carbon Dioxide Emissions in the Age of Population Decline; Pusan National University: Busan, Republic of Korea, 2023. [Google Scholar]
- Aurora, R.M.; Furuya, K. Spatiotemporal Analysis of Urban Sprawl and Ecological Quality Study Case: Chiba Prefecture, Japan. Land 2023, 12, 2013. [Google Scholar] [CrossRef]
- Breheny, M. The compact city and transport energy consumption. Trans. Inst. Br. Geogr. 1995, 20, 81–101. [Google Scholar] [CrossRef]
- Hsu, D.; Andrews, C.J.; Han, A.T.; Loh, C.G.; Osland, A.C.; Zegras, C.P. Planning the Built Environment and Land Use Towards Deep Decarbonization of the United States. J. Plan. Lit. 2022, 38, 426–441. [Google Scholar] [CrossRef]
- Lee, S.; Lee, B. Comparing the Impacts of Local Land Use and Urban Spatial Structure on Household VMT and GHG Emissions. J. Transp. Geogr. 2020, 84, 102694. [Google Scholar] [CrossRef]
- Ewing, R.; Rong, F. The impact of urban form on U.S. Residential Energy Use. Hous. Policy Debate 2008, 19, 1–30. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, C.; Zhang, Y.; Wu, K.; Wu, Q.; Su, Y. Low-Carbon Transportation Oriented Urban Spatial Structure: Theory, Model and Case Study. Sustainability 2018, 10, 19. [Google Scholar] [CrossRef]
- Fan, T.; Chapman, A. Policy Driven Compact Cities: Toward Clarifying the Effect of Compact Cities on Carbon Emissions. Sustainability 2022, 14, 12643. [Google Scholar] [CrossRef]
- Gordon, P.; Kumar, A.; Richardson, H.W. Congestion, Changing Metropolitan Structure, and City Size in the United States. Int. Reg. Sci. Rev. 1989, 12, 45–56. [Google Scholar] [CrossRef]
- Gordon, P.; Richardson, H.W. Are Compact Cities a Desirable Planning Goal. J. Am. Plan. Assoc. 1997, 63, 95–106. [Google Scholar] [CrossRef]
- Veneri, P.; Burgalassi, D. Questioning Polycentric Development and its Effects. Issues of Definition and Measurement for the Italian NUTS-2 Regions. Eur. Plan. Stud. 2012, 20, 1017–1037. [Google Scholar] [CrossRef]
- Nielsen, T.A.S. Changes in transport behavior during the financial crisis. An analysis of urban form, location and transport behavior in the greater Copenhagen area 2006–2011. Res. Transp. Econ. 2015, 51, 10–19. [Google Scholar] [CrossRef]
- Silva, M.; Oliveira, V.; Leal, V. Urban Form and Energy Demand: A Review of Energy-relevant Urban Attributes. J. Plan. Lit. 2017, 32, 346–365. [Google Scholar] [CrossRef]
- Kang, S.-W. Resilient Urban Form for Responding to Climate Change; Pusan National University: Busan, Republic of Korea, 2023. [Google Scholar]
- Tsai, Y.-H. Quantifyihng Urban Form-Compactness versus Sprawl. Urban Stud. 2005, 42, 141–161. [Google Scholar] [CrossRef]
- Ewing, R.; Pendall, R.; Chen, D. Measuring Sprawl and Its Impact; Smart Growth America: Washington, DC, USA, 2002. [Google Scholar]
- Ewing, R.; Hamidi, S. Measuring Urban Sprawl and Validating Sprawl Measures; Metropolitan Research Center: Salt Lake City, UT, USA, 2014. [Google Scholar]
- Neuman, M. The Compact City Fallacy. J. Plan. Educ. Res. 2005, 25, 11–26. [Google Scholar] [CrossRef]
- Andrews, C.J. Energy Conversion Goes Local: Implications for Planners. J. Am. Plan. Assoc. 2008, 74, 231–254. [Google Scholar] [CrossRef]
- Yoo, S.-P.; Hwang, J.-W. Effects of Urban Characteristics on CO2 Emission by Region. J. Korean Plan. Assoc. 2015, 50, 197–210. [Google Scholar] [CrossRef]
- Kwon, S.-H.; Kim, S.-W.; Kang, J.-M. The Effects of Urban Characteristics on Climate Change—Focused on Emission of Carbon Dioxide in Seoul Metropolitan Area. J. Urban Des. Inst. Korea 2016, 17, 117–134. [Google Scholar]
- Kim, B.S.; Moon, T.H. A Study on the Effects of Land Use Characteristics of Compact City on CO2 Emission. J. Environ. Policy Adm. 2011, 19, 101–116. [Google Scholar]
- Leibowicz, B.D.; Lanham, C.M.; Brozynski, M.T.; Vázquez-Canteli, J.R.; Castejón, N.C.; Nagy, Z. Optimal decarbonization pathways for urban residential building energy services. Appl. Energy 2018, 230, 1311–1325. [Google Scholar] [CrossRef]
- Narimani Abar, S.; Schulwitz, M.; Faulstich, M. The Impact of Urban Form and Density on Residential Energy Use: A Systematic Review. Sustainability 2023, 15, 15685. [Google Scholar] [CrossRef]
- Lee, J.H.; Lim, S. The selection of compact city policy instruments and their effects on energy consumption and greenhouse gas emissions in the transportation sector: The case of South Korea. Sustain. Cities Soc. 2018, 37, 116–124. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Wu, Y.; Shuai, C.; Shen, L.; Ye, G. Peaks of transportation CO2 emissions of 119 countries for sustainable development: Results from carbon Kuznets curve. Sustain. Dev. 2019, 28, 550–571. [Google Scholar] [CrossRef]
- Jung, S.; Kim, D.; Kim, M.; Jeon, S.; Kim, M.; Kang, H.; Lee, J.; Lee, Y.; Son, J.S.; Jung, Y.; et al. Development of Spatial Carbon Map for Carbon-Neutral Smart City; Ministry of Land, Infrastructure and Transport: Sejong, Republic of Korea, 2023.
- Carbon Spatial Map. 2023. Available online: https://www.carbonmap.kr (accessed on 1 October 2023).
- Lan, T.; Shao, G.; Xu, Z.; Tang, L.; Sun, L. Measuring urban compactness based on functional characterization and human activity intensity by integrating multiple geospatial data sources. Ecol. Indic. 2021, 121, 107177. [Google Scholar] [CrossRef]
- Caparros-Midwood, D.; Dawson, R.; Barr, S. Low Carbon, Low Risk, Low Density: Resolving choices about sustainable development in cities. Cities 2019, 89, 252–267. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Wang, J.; Liu, Z. Exploring the effect of city size on carbon emissions: Evidence from 259 prefecture-level cities in China. Environ. Sci. Pollut. Res. Int. 2023, 30, 86165–86177. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Ren, J.; Liu, Z. How Does Urbanization Affect Carbon Emission Performance? Evidence from 282 Cities in China. Sustainability 2023, 15, 15498. [Google Scholar] [CrossRef]
- Tozer, L.; Klenk, N. Discourses of carbon neutrality and imaginaries of urban futures. Energy Res. Soc. Sci. 2018, 35, 174–181. [Google Scholar] [CrossRef]
- Seto, K.C.; Churkina, G.; Hsu, A.; Keller, M.; Newman, P.W.; Qin, B.; Ramaswami, A. From Low- to Net-Zero Carbon Cities: The Next Global Agenda. Annu. Rev. Environ. Resour. 2021, 46, 377–415. [Google Scholar] [CrossRef]
- Park, J.-Y. Carbon Neutral Growth Model for Sustainable Development of Each Regional Type; Pusan National University: Busan, Republic of Korea, 2023. [Google Scholar]
- Zhai, R.; Li, K. Land–Water–Energy Coupling System and Low-Carbon Policy Simulation: A Case Study of Nanjing, China. Land 2023, 12, 2000. [Google Scholar] [CrossRef]
Urban Compactness Index | Correlation Coefficient | p-Value |
---|---|---|
Entropy | 0.201 | 0.066 |
Moran’s I | −0.321 | 0.003 |
Gini coefficient | −0.055 | 0.619 |
Adjusted Urban Compactness Index | Correlation Coefficient | p-Value |
---|---|---|
Entropy City Size (normalized) | 0.217 | 0.048 |
Moran’s i City Size (normalized) | 0.254 | 0.020 |
Gini coefficient City Size (normalized) | 0.262 | 0.016 |
City Size | The Average Emissions Distance (Each Point–Cluster Center) | Average Values of Carbon Emissions per Capita |
---|---|---|
Group 1 | 0.332 | 1.394 |
Group 2 | 0.249 | 1.584 |
Group 3 | 0.597 | 2.205 |
Group 4 | 0.600 | 2.238 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Jung, S. Exploring Urban Compactness and Greenhouse Gas Emissions in the Road Transport Sector: A Case Study of Big Cities in South Korea. Sustainability 2024, 16, 1911. https://doi.org/10.3390/su16051911
Park J, Jung S. Exploring Urban Compactness and Greenhouse Gas Emissions in the Road Transport Sector: A Case Study of Big Cities in South Korea. Sustainability. 2024; 16(5):1911. https://doi.org/10.3390/su16051911
Chicago/Turabian StylePark, Jiyong, and Seunghyun Jung. 2024. "Exploring Urban Compactness and Greenhouse Gas Emissions in the Road Transport Sector: A Case Study of Big Cities in South Korea" Sustainability 16, no. 5: 1911. https://doi.org/10.3390/su16051911
APA StylePark, J., & Jung, S. (2024). Exploring Urban Compactness and Greenhouse Gas Emissions in the Road Transport Sector: A Case Study of Big Cities in South Korea. Sustainability, 16(5), 1911. https://doi.org/10.3390/su16051911