Assessing Climate Change Impacts on Streamflow and Baseflow in the Karnali River Basin, Nepal: A CMIP6 Multi-Model Ensemble Approach Using SWAT and Web-Based Hydrograph Analysis Tool
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
Meteorological and Hydrological Data
2.3. CMIP6-Based GCMs Data
2.4. Digital Elevation Model (DEM), Land Use, and Soil Data
2.5. Methodology
2.5.1. Robust Selection Criteria for GCMs
2.5.2. Bias Correction
2.5.3. Formation of Multi-Model Ensemble (MME)
2.5.4. Soil and Water Assessment Tool (SWAT)
2.5.5. Application of SWAT
2.5.6. Multi-Site Calibration and Validation Procedure
2.5.7. Model Performance Evaluation
2.6. Future Precipitation, Maximum Temperature, Minimum Temperature, and Streamflow Projection
2.7. Baseflow Separation
3. Results and Discussion
3.1. GCM Selection
3.2. Bias Correction Method Selection
3.3. Formation of MME and Projected Trend of Climatic Variables
3.4. Seasonal Changes in Precipitation, Maximum Temperature, and Minimum Temperature
3.4.1. Seasonal Changes in Precipitation across the KRB
3.4.2. Seasonal Changes in Maximum Temperature across the KRB
3.4.3. Seasonal Changes in Minimum Temperature across the KRB
3.4.4. Overall Impacts from Seasonal Changes in Temperature and Precipitation Patterns
3.5. Hydrological Model Evaluation
3.5.1. Sensitivity Analysis
3.5.2. Multi-Site Model Calibration and Validation
3.6. Impact of Climate Change on Streamflow
3.7. Baseflow Separation
3.7.1. Observed
Pre-Monsoon | Monsoon | Post-Monsoon | Winter | ||
---|---|---|---|---|---|
Historical | 0.69–0.81 | 0.62–0.91 | 0.93–0.97 | 0.82–0.94 | |
SSP245 | Near | 0.54–0.84 | 0.63–0.95 | 0.87–0.99 | 0.81–0.97 |
Mid | 0.60–0.82 | 0.65–0.94 | 0.87–0.99 | 0.82–0.96 | |
Far | 0.62–0.81 | 0.66–0.97 | 0.87–0.99 | 0.80–0.97 | |
SSP585 | Near | 0.57–0.83 | 0.63–0.95 | 0.88–0.99 | 0.81–0.97 |
Mid | 0.61–0.83 | 0.62–0.95 | 0.88–0.99 | 0.82–0.96 | |
Far | 0.62–0.80 | 0.64–0.96 | 0.88–0.99 | 0.82–0.97 |
3.7.2. SSP245
3.7.3. SSP585
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Pachauri, R.K.; Reisinger, A. IPCC, 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Shrestha, A.B.; Wake, C.P.; Mayewski, P.A.; Dibb, J.E. Maximum temperature trends in the Himalaya and its vicinity: An analysis based on temperature records from Nepal for the period 1971–94. J. Clim. 1999, 12, 2775–2786. [Google Scholar] [CrossRef]
- Ren, Y.-Y.; Ren, G.-Y.; Sun, X.-B.; Shrestha, A.B.; You, Q.-L.; Zhan, Y.-J.; Rajbhandari, R.; Zhang, P.-F.; Wen, K.-M. Observed changes in surface air temperature and precipitation in the Hindu Kush Himalayan region over the last 100-plus years. Adv. Clim. Chang. Res. 2017, 8, 148–156. [Google Scholar] [CrossRef]
- Giorgi, F.; Coppola, E.; Raffaele, F. Threatening levels of cumulative stress due to hydroclimatic extremes in the 21st century. npj Clim. Atmos. Sci. 2018, 1, 18. [Google Scholar] [CrossRef]
- Raikes, J.; Smith, T.F.; Jacobson, C.; Baldwin, C. Pre-disaster planning and preparedness for floods and droughts: A systematic review. Int. J. Disaster Risk Reduct. 2019, 38, 101207. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Droogers, P.; de Jong, S.; Bierkens, M. Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens. Environ. 2009, 113, 40–49. [Google Scholar] [CrossRef]
- Xu, J.; Grumbine, R.E.; Shrestha, A.; Eriksson, M.; Yang, X.; Wang, Y.; Wilkes, A. The melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods. Conserv. Biol. 2009, 23, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.; Ahmad, N.; Booij, M.J. The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya region under different glacier coverage scenarios. J. Hydrol. 2008, 355, 148–163. [Google Scholar] [CrossRef]
- Carey, M.; Molden, O.C.; Rasmussen, M.B.; Jackson, M.; Nolin, A.W.; Mark, B.G. Impacts of glacier recession and declining meltwater on mountain societies. Ann. Am. Assoc. Geogr. 2017, 107, 350–359. [Google Scholar] [CrossRef]
- Miller, J.D.; Immerzeel, W.W.; Rees, G. Climate change impacts on glacier hydrology and river discharge in the Hindu Kush–Himalayas. Mt. Res. Dev. 2012, 32, 461–467. [Google Scholar] [CrossRef]
- Molden, D.J.; Shrestha, A.B.; Nepal, S.; Immerzeel, W.W. Downstream Implications of Climate Change in the Himalayas. In Water Security, Climate Change and Sustainable Development; Springer: Berlin/Heidelberg, Germany, 2016; pp. 65–82. [Google Scholar]
- Dahal, P.; Shrestha, M.L.; Panthi, J.; Pradhananga, D. Modeling the future impacts of climate change on water availability in the Karnali River Basin of Nepal Himalaya. Environ. Res. 2020, 185, 109430. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V.P.; Dhaubanjar, S.; Bharati, L.; Thapa, B.R. Spatio-temporal distribution of water availability in Karnali-Mohana Basin, Western Nepal: Climate change impact assessment (Part-B). J. Hydrol. Reg. Stud. 2020, 29, 100691. [Google Scholar] [CrossRef]
- Gouda, K.; Nahak, S.; Goswami, P. Evaluation of a GCM in seasonal forecasting of extreme rainfall events over continental India. Weather. Clim. Extrem. 2018, 21, 10–16. [Google Scholar] [CrossRef]
- Gusain, A.; Ghosh, S.; Karmakar, S. Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Atmos. Res. 2020, 232, 104680. [Google Scholar] [CrossRef]
- Mehan, S.; Aggarwal, R.; Gitau, M.W.; Flanagan, D.C.; Wallace, C.W.; Frankenberger, J.R. Assessment of hydrology and nutrient losses in a changing climate in a subsurface-drained watershed. Sci. Total Environ. 2019, 688, 1236–1251. [Google Scholar] [CrossRef] [PubMed]
- Priestley, M.D.; Ackerley, D.; Catto, J.L.; Hodges, K.I.; McDonald, R.E.; Lee, R.W. An overview of the extratropical storm tracks in CMIP6 historical simulations. J. Clim. 2020, 33, 6315–6343. [Google Scholar] [CrossRef]
- Eyring, V.; Cox, P.M.; Flato, G.M.; Gleckler, P.J.; Abramowitz, G.; Caldwell, P.; Collins, W.D.; Gier, B.K.; Hall, A.D.; Hoffman, F.M.; et al. Taking climate model evaluation to the next level. Nat. Clim. Chang. 2019, 9, 102–110. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Shahid, S.; Islam, A.T.; Hwang, S.; Cho, J.; Zaman, A.U.; Ahmed, M.; Rahman, M.; Hossain, B. Comparison of CMIP6 and CMIP5 model performance in simulating historical precipitation and temperature in Bangladesh: A preliminary study. Theor. Appl. Climatol. 2021, 145, 1385–1406. [Google Scholar] [CrossRef]
- Zhu, X.; Lee, S.-Y.; Wen, X.; Ji, Z.; Lin, L.; Wei, Z.; Zheng, Z.; Xu, D.; Dong, W. Extreme climate changes over three major river basins in China as seen in CMIP5 and CMIP6. Clim. Dyn. 2021, 57, 1187–1205. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development 1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Dhami, B.; Himanshu, S.K.; Pandey, A.; Gautam, A.K. Evaluation of the SWAT model for water balance study of a mountainous snowfed river basin of Nepal. Environ. Earth Sci. 2018, 77, 21. [Google Scholar] [CrossRef]
- Lamichhane, M.; Mishra, Y. Assessment of Future Water Availability and Irrigation Water Demand under Climate Change in the Kankai River Basin, Nepal. J. Earth Sci. Clim. Chang. 2022, 13, 639. [Google Scholar]
- Hasan, M.A.; Pradhanang, S.M. Estimation of flow regime for a spatially varied Himalayan watershed using improved multi-site calibration of the Soil and Water Assessment Tool (SWAT) model. Environ. Earth Sci. 2017, 76, 787. [Google Scholar] [CrossRef]
- Barnes, B.S. The structure of discharge-recession curves. Eos Trans. Am. Geophys. Union 1939, 20, 721–725. [Google Scholar]
- Nathan, R.J.; McMahon, T.A. Evaluation of automated techniques for base flow and recession analyses. Water Resour. Res. 1990, 26, 1465–1473. [Google Scholar] [CrossRef]
- Tallaksen, L. A review of baseflow recession analysis. J. Hydrol. 1995, 165, 349–370. [Google Scholar] [CrossRef]
- Hewlett, J.D.; Hibbert, A.R. Factors affecting the response of small watersheds to precipitation in humid areas. For. Hydrol. 1967, 1, 275–290. [Google Scholar]
- MoLMAC; AEC. Potentiality of the Establishment of the Agricultural Processing Industries in Karnali Province: A Prefeasibility Assessment Report; Ministry of Land Management, Agriculture and Cooperatives (MoLMAC): Surkhet, Nepal; Agro Enterprise Centre (AEC): Kathmandu, Nepal, 2020.
- Bastola, S.; Seong, Y.; Lee, D.; Youn, I.; Oh, S.; Jung, Y.; Choi, G.; Jang, D. Contribution of baseflow to river streamflow: Study on Nepal’s Bagmati and Koshi basins. KSCE J. Civ. Eng. 2018, 22, 4710–4718. [Google Scholar] [CrossRef]
- Aryal, K.R.; Panthi, S.; Basukala, R.K.; Kharel, R.; Gautam, A.; Poudel, B.; Pariyar, S. Soil loss estimation of Karnali river basin, Nepal. J. Sediment. Environ. 2023, 8, 409–423. [Google Scholar] [CrossRef]
- Karki, R.; Talchabhadel, R.; Aalto, J.; Baidya, S.K. New climatic classification of Nepal. Theor. Appl. Climatol. 2016, 125, 799–808. [Google Scholar] [CrossRef]
- Khatiwada, K.R.; Panthi, J.; Shrestha, M.L.; Nepal, S. Hydro-climatic variability in the Karnali River basin of Nepal Himalaya. Climate 2016, 4, 17. [Google Scholar] [CrossRef]
- Dijkshoorn, J.; Huting, J. Soil and Terrain Database for Nepal (1.1 Million); ISRIC-World Soil Information: Wageningen, The Netherlands, 2009. [Google Scholar]
- Mishra, V.; Bhatia, U.; Tiwari, A.D. Bias-corrected climate projections for South Asia from coupled model intercomparison project-6. Sci. Data 2020, 7, 338. [Google Scholar] [CrossRef] [PubMed]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Luo, M.; Liu, T.; Meng, F.; Duan, Y.; Frankl, A.; Bao, A.; De Maeyer, P. Comparing bias correction methods used in downscaling precipitation and temperature from regional climate models: A case study from the Kaidu River Basin in Western China. Water 2018, 10, 1046. [Google Scholar] [CrossRef]
- Mehan, S.; Gitau, M.W.; Flanagan, D.C. Reliable future climatic projections for sustainable hydro-meteorological assessments in the Western Lake Erie Basin. Water 2019, 11, 581. [Google Scholar] [CrossRef]
- You, Q.; Jiang, Z.; Wang, D.; Pepin, N.; Kang, S. Simulation of temperature extremes in the Tibetan Plateau from CMIP5 models and comparison with gridded observations. Clim. Dyn. 2018, 51, 355–369. [Google Scholar] [CrossRef]
- Enayati, M.; Bozorg-Haddad, O.; Bazrafshan, J.; Hejabi, S.; Chu, X. Bias correction capabilities of quantile mapping methods for rainfall and temperature variables. J. Water Clim. Chang. 2021, 12, 401–419. [Google Scholar] [CrossRef]
- Kim, J.; Ivanov, V.Y.; Fatichi, S. Climate change and uncertainty assessment over a hydroclimatic transect of Michigan. Stoch. Environ. Res. Risk Assess. 2016, 30, 923–944. [Google Scholar] [CrossRef]
- Neitsch, S.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil & Water Assessment Tool Theoretical Documentation, Version 2009; Grassland, Soil and Water Research Laboratory-Agricultural Research Service; Blackland Research Center-Texas AgriLife Research; Texas A&M University System: College Station, TX, USA, 2011. [Google Scholar]
- Baymani-Nezhad, M.; Han, D. Hydrological modeling using effective rainfall routed by the Muskingum method (ERM). J. Hydroinform. 2013, 15, 1437–1455. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Johnson, C.; Van Genuchten, M.T. Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Kang, T.; Lee, S.; Lee, N.; Jin, Y. Baseflow separation using the digital filter method: Review and sensitivity analysis. Water 2022, 14, 485. [Google Scholar] [CrossRef]
- Arnold, J.G.; Allen, P.M. Automated methods for estimating baseflow and ground water recharge from streamflow records 1. JAWRA J. Am. Water Resour. Assoc. 1999, 35, 411–424. [Google Scholar] [CrossRef]
- Eckhardt, K. How to construct recursive digital filters for baseflow separation. Hydrol. Process. Int. J. 2005, 19, 507–515. [Google Scholar] [CrossRef]
- Aadhar, S.; Mishra, V. On the projected decline in droughts over South Asia in CMIP6 multimodel ensemble. J. Geophys. Res. Atmos. 2020, 125, e2020JD033587. [Google Scholar] [CrossRef]
- Shafeeque, M.; Luo, Y. A multi-perspective approach for selecting CMIP6 scenarios to project climate change impacts on glacio-hydrology with a case study in Upper Indus river basin. J. Hydrol. 2021, 599, 126466. [Google Scholar] [CrossRef]
- Lutz, A.; Immerzeel, W.W.; Shrestha, A.B.; Bierkens, M.F.P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Chang. 2014, 4, 587–592. [Google Scholar] [CrossRef]
- Maraun, D.; Wetterhall, F.; Ireson, A.M.; Chandler, R.E.; Kendon, E.J.; Widmann, M.; Thiele-Eich, I. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 2010, 48. [Google Scholar] [CrossRef]
- Yue, Y.; Yan, D.; Yue, Q.; Ji, G.; Wang, Z. Future changes in precipitation and temperature over the Yangtze River Basin in China based on CMIP6 GCMs. Atmos. Res. 2021, 264, 105828. [Google Scholar] [CrossRef]
- Raila, S.N.; Acharya, R.; Ghimire, S.; Adhikari, S.; Khanal, S.; Mishra, Y.; Lamichhane, M. Out-Performing Bias-Corrected GCM Models and CMIP6-Based Precipitation and Temperature Projections for the Bagmati Irrigation Area. J. Adv. Coll. Eng. Manag. 2022, 7, 165–172. [Google Scholar] [CrossRef]
- Aalbers, E.E.; Lenderink, G.; van Meijgaard, E.; van den Hurk, B.J. Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal variability? Clim. Dyn. 2018, 50, 4745–4766. [Google Scholar] [CrossRef]
- Tebaldi, C.; Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 2053–2075. [Google Scholar] [CrossRef] [PubMed]
- Samouly, A.A.; Luong, C.N.; Li, Z.; Smith, S.; Baetz, B.; Ghaith, M. Performance of multi-model ensembles for the simulation of temperature variability over Ontario, Canada. Environ. Earth Sci. 2018, 77, 524. [Google Scholar] [CrossRef]
- Iqbal, Z.; Shahid, S.; Ahmed, K.; Ismail, T.; Khan, N.; Virk, Z.T.; Johar, W. Evaluation of global climate models for precipitation projection in sub-Himalaya region of Pakistan. Atmos. Res. 2020, 245, 105061. [Google Scholar] [CrossRef]
- Ahmed, K.; Sachindra, D.A.; Shahid, S.; Demirel, M.C.; Chung, E.-S. Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics. Hydrol. Earth Syst. Sci. 2019, 23, 4803–4824. [Google Scholar] [CrossRef]
- Pandey, V.P.; Dhaubanjar, S.; Bharati, L.; Thapa, B.R. Spatio-temporal distribution of water availability in Karnali-Mohana Basin, Western Nepal: Hydrological model development using multi-site calibration approach (Part-A). J. Hydrol. Reg. Stud. 2020, 29, 100690. [Google Scholar] [CrossRef]
- Rajbhandari, R.; Shrestha, A.B.; Nepal, S.; Wahid, S.; Ren, G.Y. Extreme climate projections over the transboundary Koshi River Basin using a high resolution regional climate model. Adv. Clim. Chang. Res. 2017, 8, 199–211. [Google Scholar] [CrossRef]
- Sigdel, K.P.; Ghimire, N.P.; Pandeya, B.; Dawadi, B. Historical and Projected Variations of Precipitation and Temperature and Their Extremes in Relation to Climatic Indices over the Gandaki River Basin, Central Himalaya. Atmosphere 2022, 13, 1866. [Google Scholar] [CrossRef]
- Devkota, R.P.; Pandey, V.P.; Bhattarai, U.; Shrestha, H.; Adhikari, S.; Dulal, K.N. Climate change and adaptation strategies in Budhi Gandaki River Basin, Nepal: A perception-based analysis. Clim. Chang. 2017, 140, 195–208. [Google Scholar] [CrossRef]
- Agarwal, A.; Babel, M.S.; Maskey, S.; Shrestha, S.; Kawasaki, A.; Tripathi, N.K. Analysis of temperature projections in the Koshi River Basin, Nepal. Int. J. Climatol. 2016, 36, 266–279. [Google Scholar] [CrossRef]
- Shrestha, A.B.; Aryal, R. Climate change in Nepal and its impact on Himalayan glaciers. Reg. Environ. Chang. 2011, 11, 65–77. [Google Scholar] [CrossRef]
- Covey-Crump, E.; Attwood, R.; Atkin, O. Regulation of root respiration in two species of Plantago that differ in relative growth rate: The effect of short-and long-term changes in temperature. Plant Cell Environ. 2002, 25, 1501–1513. [Google Scholar] [CrossRef]
- You, L.; Rosegrant, M.W.; Wood, S.; Sun, D. Impact of growing season temperature on wheat productivity in China. Agric. For. Meteorol. 2009, 149, 1009–1014. [Google Scholar] [CrossRef]
- Servat, É.; Dezetter, A. Selection of calibration objective fonctions in the context of rainfall-ronoff modelling in a Sudanese savannah area. Hydrol. Sci. J. 1991, 36, 307–330. [Google Scholar] [CrossRef]
- Cibin, R.; Sudheer, K.; Chaubey, I. Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrol. Process. Int. J. 2010, 24, 1133–1148. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- Bosch, D.D.; Arnold, J.G.; Allen, P.G.; Lim, K.-J.; Park, Y.S. Temporal variations in baseflow for the Little River experimental watershed in South Georgia, USA. J. Hydrol. Reg. Stud. 2017, 10, 110–121. [Google Scholar] [CrossRef]
- Chapasa, S.N.; Whitaker, A.C. Assessing characteristics and long-term trends in runoff and baseflow index in eastern Japan. Hydrol. Res. Lett. 2023, 17, 1–8. [Google Scholar] [CrossRef]
SN | Station Name | Index No | District | Longitude (°) | Latitude (°) | Elevation (m) | Annual Precipitation (mm) | Annual Max. Temperature (°C) | Annual Min. Temperature (°C) |
---|---|---|---|---|---|---|---|---|---|
1 | Dadeldhura | 104 | Dadeldhura | 80.58 | 29.30 | 1879 | - | 33.2 | −5 |
2 | Pipalkot | 201 | Bajhang | 80.84 | 29.61 | 1455 | 2133.7 | - | - |
3 | Silgsdhi | 203 | Doti | 80.98 | 29.26 | 1309 | - | 39 | −0.5 |
4 | Martadi | 204 | Bajura | 81.48 | 29.45 | 1598 | 2220.6 | - | - |
5 | Kola Gauna | 214 | Doti | 80.70 | 29.12 | 1364 | 2316.6 | - | - |
6 | Mangalsen | 217 | Achham | 81.25 | 29.13 | 1310 | 1598.8 | - | - |
7 | Rara | 307 | Mugu | 82.08 | 29.54 | 2989 | 834.2 | - | - |
8 | Dipal Gaun | 310 | Jumla | 82.22 | 29.26 | 2422 | 919.2 | 34.9 | −14 |
9 | Simikot | 311 | Humla | 81.81 | 29.97 | 2993 | 828.6 | 29.5 | −17.5 |
10 | Dunai | 312 | Dolpa | 82.89 | 28.95 | 2098 | 375.9 | 36.3 | −7 |
11 | Pusma Camp | 401 | Surkhet | 81.23 | 28.87 | 953 | 1738.1 | 39 | 0 |
12 | Dailekh | 402 | Dailekh | 81.70 | 28.83 | 1394 | 1958.6 | 39.6 | 0 |
13 | Birendra Nagar | 406 | Surkhet | 81.63 | 28.58 | 720 | 1737.6 | 41.8 | 0.5 |
14 | Maina Gaun | 418 | Mugu | 82.26 | 28.96 | 1913 | 1908.4 | - | - |
15 | Rukumkot | 501 | Rukum | 82.62 | 28.61 | 1568 | 1754.3 | - | - |
16 | Chaurjhari Tar | 513 | Rukum | 82.21 | 28.65 | 863 | 1259.3 | 42 | 0.5 |
17 | Musikot | 514 | Rukum | 82.46 | 28.61 | 1412 | - | 41.9 | −0.5 |
SN | Model | Institution | Resolution |
---|---|---|---|
1 | ACCESS-CM2 | Commonwealth Scientific and Industrial Research Organisation (CSIRO) and ACCESS (Australian Research Council Centre of Excellence for Climate System Science. | 1.25° × 1.875° |
2 | ACCESS-ESMI | Commonwealth Scientific and Industrial Research Organisation (CSIRO) and ACCESS (Australian Research Council Centre of Excellence for Climate System Science | 1.25° × 1.875° |
3 | BCC-CSM2-MR | Beijing Climate Center, Beijing | 1.125° × 1.125° |
4 | EC-Earth3 | EC-Earth Consortium | 0.35° × 0.35° |
5 | FGOALS-f3-L | Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System model | 1° × 1° |
6 | INM-CM4-8 | Institute for Numerical Mathematics, Russia | 2° × 1.5° |
7 | IPSL-CM6A-LR | Institute Pierre Simon Laplace (IPSL), Paris | 2.5° × 1.27° |
8 | INM.INM-CM4-8 | Institute for Numerical Mathematics, Russia | 2° × 1.5° |
9 | INM-CM5-0 | Institute for Numerical Mathematics, Russia | 2° × 1.5° |
10 | MPI-ESM1-2-HR | Max Planck Institute for Meteorology (MPI-M), Germany | 0.94° × 0.94° |
11 | MRI-ESM2-0 | Meteorological Research Institute, Ibaraki, Japan | 1.125° × 1.125° |
12 | MPI-ESM1-2-LR | Max Planck Institute for Meteorology (MPI-M), Germany | 1.875° × 1.86° |
13 | MIROC6 | Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa | 1.4° × 1.4° |
14 | NorESM2-MM | Norwegian Climate Center, Norway | 2.5° × 1.89° |
Rating | NSR | RSR | PBIAS | R2 | Ratings |
---|---|---|---|---|---|
Very Good | 0.75–1.00 | 0.00–0.50 | <10 | 75–100 | 5 |
Good | 0.55–0.75 | 0.50–0.6 | 15-Oct | 65–75 | 4 |
Satisfactory | 0.40–0.55 | 0.60–0.70 | 15–25 | 50–65 | 3 |
Unsatisfactory | 0.25–0.40 | 0.70–0.80 | 25–35 | 40–50 | 2 |
Poor | ≤0.25 | >0.80 | ≥35 | <40 | 1 |
Watershed | Sub-Watershed | Area (km2) | No. of Sub-Basin | No. of HRUs | Warm-Up Period (yrs) | Calibration Period | Validation Period |
---|---|---|---|---|---|---|---|
KRB | Rimna | 2712.70 | 1 | 7 | 2 | 2001–2006 | 2007–2010 |
Samaijighat | 12,615.75 | 11 | 66 | 2 | 2001–2006 | 2007–2010 | |
Benighat | 19,467.94 | 21 | 120 | 2 | 2001–2006 | 2007–2010 | |
Asaraghat | 17,668.20 | 18 | 108 | 2 | 2001–2006 | 2007–2010 | |
Chisapani | 42,086.67 | 45 | 248 | 2 | 1995–2003 | 2004–2008 |
Precipitation | Rating | Max Temperature | Rating | Min Temperature | Rating |
---|---|---|---|---|---|
INM-CM5-0 | 2.464 | MPI-ESM1-2-HR | 3.050 | MPI-ESM1-2-HR | 3.575 |
INM-CM4-8 | 2.446 | ACCESS-CM2 | 2.700 | NorESM2-MM | 3.475 |
MPI-ESMI-2-LR | 2.339 | NorESM2-MM | 2.650 | ACCESS-CM2 | 3.300 |
ACCESS-ESM1-5 | 2.321 | FGOALS-g3 | 2.550 | MRI-ESM2-0 | 3.300 |
BCC-CSM2-MR | 2.196 | INM-CM4-8 | 2.475 | FGOALS-f3-L | 3.025 |
MIROC6 | 2.125 | INM-CM5-0 | 2.350 | MPI-ESM1-2-LR | 2.750 |
NorESM2-MM | 1.875 | BCC-CSM2-MR | 2.350 | INM-CM4-8 | 2.550 |
ACCESS-CM2 | 1.214 | IPSL-CM6A-LR | 2.125 | INM-CM5-0 | 2.500 |
MRI-ESM2-0 | 1.214 | MRI-ESM2-0 | 2.125 | EC-Earth3 | 2.325 |
EC-Earth3 | 1.000 | IPSL-CM6A-LR | 2.250 |
Bias Correction Methods | Rating | ||
---|---|---|---|
Precipitation | Maximum Temperature | Minimum Temperature | |
Bernoulli Exponential | 1.90 | ||
Bernoulli Gamma | 2.43 | ||
Bernoulli Weibull | 2.56 | ||
Bernoulli Log-normal | 2.01 | ||
Non-parametric quantile mapping using empirical quantiles—linear | 2.02 | 3.68 | 4.06 |
Non-parametric quantile mapping using empirical quantiles—tricub | 2.08 | 3.71 | 4.06 |
Parameter Transformation function—exponential asymptote | 1.72 | 4.33 | 4.01 |
Parameter Transformation function—linear | 2.24 | 4.37 | 4.07 |
Parameter Transformation function—power | 2.27 | 3.10 | 3.14 |
Parameter Transformation function—scale | 1.56 | 3.96 | 3.43 |
Non-parametric quantile mapping using robust empirical quantiles—linear | 2.05 | 3.68 | 4.06 |
Non-parametric quantile mapping using robust empirical quantiles—tricub | 2.10 | 3.75 | 4.09 |
Quantile mapping using a smoothing spline | 2.24 | 4.168 | 4.20 |
SSP245 | Precipitation (%) | Maximum Temperature (°C/yr) | Minimum Temperature (°C/yr) | ||||||
---|---|---|---|---|---|---|---|---|---|
Stations | NF | MF | FF | NF | MF | FF | NF | MF | FF |
310 | +4.73 | +11.21 | +13.72 | +0.0003 | +0.032 | +0.054 | +0.086 | +0.117 | +0.134 |
311 | +1.67 | +10.61 | +14.47 | +0.042 | +0.073 | +0.091 | +0.107 | +0.128 | +0.14 |
406 | −2.19 | +5.05 | +7.58 | +0.0001 | +0.027 | +0.041 | +0.039 | +0.073 | +0.092 |
All | +7.79 | +11.65 | +16.25 | +0.018 | +0.048 | +0.064 | +0.049 | +0.08 | +0.097 |
SSP585 | Precipitation (%) | Maximum Temperature (°C/yr) | Minimum Temperature (°C/yr) | ||||||
Stations | NF | MF | FF | NF | MF | FF | NF | MF | FF |
310 | +6.48 | +13.49 | +24.17 | +0.003 | +0.041 | +0.097 | +0.09 | +0.153 | +0.25 |
311 | +6.12 | +15.94 | +28.78 | +0.044 | +0.088 | +0.144 | +0.112 | +0.152 | +0.201 |
406 | +0.69 | +8.41 | +20.75 | +0.024 | +0.062 | +0.109 | +0.044 | +0.103 | +0.178 |
All | +9.43 | +16.51 | +27.47 | +0.022 | +0.066 | +0.119 | +0.057 | +0.115 | +0.187 |
Parameter | Change Type | Suggested Ranges | Gauge Stations | ||||
---|---|---|---|---|---|---|---|
Asaraghat | Benighat | Rimna | Samaijighat | Chisapani | |||
CN2 | r | 35–98 | 60.2 | 58.9 | 50.7 | 53.9 | 53.3 |
ALPHA_BF | v | 0–1 | 0.12 | 0.31 | 0.28 | 0.19 | 0.23 |
GW_DELAY | v | 0–500 | 189.11 | 152.68 | 42.87 | 57.56 | 51.39 |
GWQMN | v | 0–5000 | 1.41 | 1.39 | 1.28 | 1.39 | 1.3 |
GW_REVAP | v | 0.02–0.2 | 0.03 | −0.02 | 0.04 | 0.13 | 0.04 |
ESCO | v | 0–1 | 0.87 | 0.84 | 0.86 | 0.88 | 0.84 |
CH_N2 | v | −0.01–0.3 | 0.29 | 0.29 | 0.32 | 0.32 | 0.32 |
CH_K2 | v | −0.01–500 | 86.52 | 94.98 | 75.19 | 75.51 | 65.71 |
ALPHA_BNK | v | 0–1 | 0.56 | 0.63 | 0.5 | 0.52 | 0.57 |
SOL_AWC | r | 0–1 | 0.5 | 0.51 | 0.52 | 0.58 | 0.51 |
SOL_K | r | 0–2000 | 0.19 | 0.28 | 0.09 | 0.11 | 0.29 |
SOL_BD | r | 0.9–2.5 | −1.56 | −1.17 | −1.48 | −1.12 | −1.01 |
HRU_SLP | r | 0–1 | 0.25 | 0.23 | 0.24 | 0.31 | 0.31 |
OV_N | r | 0.01–1 | 1.02 | 1.06 | 1 | 0.99 | 1.07 |
SLSUBBSN | r | 10–150 | 72.79 | 65.32 | 62.6 | 68.57 | 70.9 |
REVAPMN | v | 0–500 | 661.4 | 693.56 | 737.55 | 678.21 | 692.21 |
RCHRG_DP | a | 0–1 | −0.08 | −0.06 | −0.15 | −0.09 | −0.06 |
SHALLST | r | 0–50,000 | 30,916.34 | 28,810.26 | 25,901.14 | 18,576.11 | 33,973.12 |
CANMX | r | 0–100 | 86.71 | 90.27 | 80.96 | 81.07 | 94.55 |
EPCO | r | 0–1 | 0.76 | 0.76 | 0.7 | 0.71 | 0.71 |
LAT_TTIME | r | 0–180 | −1.13 | −0.5 | 25.81 | −78.45 | −21.28 |
CH_N1 | r | 0.01–30 | 4.28 | 10.62 | 5.19 | 1.84 | −2.92 |
SFTMP | v | −20–20 | 0.57 | 2.42 | - | 0.42 | 1.06 |
SMTMP | v | −20–20 | 2.93 | 1.83 | - | 3.39 | 2.06 |
SMFMX | v | 0–20 | 4.85 | 6.87 | - | 8.52 | 6.07 |
SMFMN | v | 0–20 | 3.5 | 0.75 | - | 0.52 | 0.86 |
TIMP | v | 0–1 | 0.08 | 0.02 | - | −0.32 | −0.3 |
PLAPS | v | −1000–1000 | 0.02 | 0.02 | 0.05 | 0.02 | 0.02 |
TLAPS | v | −10–10 | −6.77 | −6.42 | −7.14 | −7.86 | −8.09 |
SURLAG | v | 0.05–24 | - | - | - | 2.4 | 2.41 |
Station | Variable Period | NSE | R2 | PBIAS |
---|---|---|---|---|
Asaraghat | Calibration period (2001–2006) | 0.81 | 0.81 | −0.7 |
Validation period (2007–2010) | 0.66 | 0.71 | −12.5 | |
Benighat | Calibration period (2001–2006) | 0.84 | 0.84 | −0.1 |
Validation period (2007–2010) | 0.75 | 0.78 | −12.1 | |
Rimna | Calibration period (2001–2006) | 0.77 | 0.77 | −0.6 |
Validation period (2007–2010) | 0.51 | 0.54 | 16.1 | |
Samaijighat | Calibration period (2001–2006) | 0.75 | 0.82 | 28.1 |
Validation period (2007–2010) | 0.69 | 0.71 | −9.6 | |
Chisapani | Calibration period (1995–2003) | 0.89 | 0.89 | 1.9 |
Validation period (2004–2008) | 0.73 | 0.74 | −5.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamichhane, M.; Phuyal, S.; Mahato, R.; Shrestha, A.; Pudasaini, U.; Lama, S.D.; Chapagain, A.R.; Mehan, S.; Neupane, D. Assessing Climate Change Impacts on Streamflow and Baseflow in the Karnali River Basin, Nepal: A CMIP6 Multi-Model Ensemble Approach Using SWAT and Web-Based Hydrograph Analysis Tool. Sustainability 2024, 16, 3262. https://doi.org/10.3390/su16083262
Lamichhane M, Phuyal S, Mahato R, Shrestha A, Pudasaini U, Lama SD, Chapagain AR, Mehan S, Neupane D. Assessing Climate Change Impacts on Streamflow and Baseflow in the Karnali River Basin, Nepal: A CMIP6 Multi-Model Ensemble Approach Using SWAT and Web-Based Hydrograph Analysis Tool. Sustainability. 2024; 16(8):3262. https://doi.org/10.3390/su16083262
Chicago/Turabian StyleLamichhane, Manoj, Sajal Phuyal, Rajnish Mahato, Anuska Shrestha, Usam Pudasaini, Sudeshma Dikshen Lama, Abin Raj Chapagain, Sushant Mehan, and Dhurba Neupane. 2024. "Assessing Climate Change Impacts on Streamflow and Baseflow in the Karnali River Basin, Nepal: A CMIP6 Multi-Model Ensemble Approach Using SWAT and Web-Based Hydrograph Analysis Tool" Sustainability 16, no. 8: 3262. https://doi.org/10.3390/su16083262
APA StyleLamichhane, M., Phuyal, S., Mahato, R., Shrestha, A., Pudasaini, U., Lama, S. D., Chapagain, A. R., Mehan, S., & Neupane, D. (2024). Assessing Climate Change Impacts on Streamflow and Baseflow in the Karnali River Basin, Nepal: A CMIP6 Multi-Model Ensemble Approach Using SWAT and Web-Based Hydrograph Analysis Tool. Sustainability, 16(8), 3262. https://doi.org/10.3390/su16083262