Unlocking Heavy Metal Remediation Potential: A Review of Cellulose–Silica Composites
Abstract
:1. Introduction
1.1. Chemical Precipitation
1.2. Ion Exchange
1.3. Membrane Process
1.4. Flotation
1.5. Coagulation Process
1.6. Electrochemical Process
1.7. Adsorption Process
1.8. Cellulose–Silica Composites
1.9. Purpose of the Review
2. Materials and Methods
3. Literature Review
3.1. Natural Fiber
3.1.1. Natural Fiber and Heavy Metal Adsorption Capacity
3.1.2. Cellulose and Heavy Metal Adsorption Capacity
3.2. Silica and Heavy Metal Adsorption Capacity
3.3. Cellulose with Silica Nanoparticles and Heavy Metal Adsorption (Cd, Pb, Cr)
3.4. Cellulose–Silica and Amine–Silane Coupling Agents in Absorption of Heavy Metals
3.4.1. Silane Coupling Agents
3.4.2. Thiol Functionalization
3.4.3. Amino Acid Grafting
4. Results
5. Discussion
5.1. Potential Applications in Real-World Scenarios
5.2. Implications for Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ismanto, A.; Hadibarata, T.; Widada, S.; Indrayanti, E.; Ismunarti, D.H.; Safinatunnajah, N.; Kusumastuti, W.; Dwiningsih, Y.; Alkahtani, J. Groundwater contamination status in Malaysia: Level of heavy metal, source, health impact, and remediation technologies. Bioprocess Biosyst. Eng. 2023, 46, 467–482. [Google Scholar] [CrossRef]
- Vasileva-Tcankova, R.S. Global Ecological Problems of Modern Society. Acta Sci. Nat. 2022, 9, 63–86. [Google Scholar] [CrossRef]
- Hojjati-Najafabadi, A.; Mansoorianfar, M.; Liang, T.; Shahin, K.; Karimi-Maleh, H. A review on magnetic sensors for monitoring of hazardous pollutants in water resources. Sci. Total Environ. 2022, 824, 153844. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.K.; Agrawal, M. Biological effects of heavy metals: An overview. J. Environ. Biol. 2005, 26, 301–313. [Google Scholar] [PubMed]
- Wang, J.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef] [PubMed]
- Sörme, L.; Lagerkvist, R. Sources of heavy metals in urban wastewater in Stockholm. Sci. Total Environ. 2002, 298, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Malik, D.; Jain, C.; Yadav, A.K. Removal of heavy metals from emerging cellulosic low-cost adsorbents: A review. Appl. Water Sci. 2017, 7, 2113–2136. [Google Scholar] [CrossRef]
- Wang, L.K.; Vaccari, D.A.; Li, Y.; Shammas, N.K. Chemical precipitation. In Physicochemical Treatment Processes; Springer: Berlin/Heidelberg, Germany, 2005; pp. 141–197. [Google Scholar]
- Nasef, M.M.; Ujang, Z. Introduction to ion exchange processes. In Ion Exchange Technology I: Theory and Materials; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–39. [Google Scholar]
- Gao, W.; Liang, H.; Ma, J.; Han, M.; Chen, Z.-L.; Han, Z.-S.; Li, G.-B. Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination 2011, 272, 1–8. [Google Scholar] [CrossRef]
- Mohammad, A.W.; Teow, Y.; Ang, W.; Chung, Y.; Oatley-Radcliffe, D.; Hilal, N. Nanofiltration membranes review: Recent advances and future prospects. Desalination 2015, 356, 226–254. [Google Scholar] [CrossRef]
- Joo, S.H.; Tansel, B. Novel technologies for reverse osmosis concentrate treatment: A review. J. Environ. Manag. 2015, 150, 322–335. [Google Scholar] [CrossRef]
- Mei, Y.; Tang, C.Y. Recent developments and future perspectives of reverse electrodialysis technology: A review. Desalination 2018, 425, 156–174. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Vandecasteele, C.; Van Gestel, T.; Doyen, W.; Leysen, R. A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ. Prog. 2003, 22, 46–56. [Google Scholar] [CrossRef]
- Gharai, M.; Venugopal, R. Modeling of flotation process—An overview of different approaches. Miner. Process. Extr. Metall. Rev. 2016, 37, 120–133. [Google Scholar] [CrossRef]
- Jiang, J.-Q. The role of coagulation in water treatment. Curr. Opin. Chem. Eng. 2015, 8, 36–44. [Google Scholar] [CrossRef]
- Radjenovic, J.; Sedlak, D.L. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ. Sci. Technol. 2015, 49, 11292–11302. [Google Scholar] [CrossRef] [PubMed]
- Mubarak, M.F.; Ragab, A.H.; Hosny, R.; Ahmed, I.A.; Ahmed, H.A.; El-Bahy, S.M.; El Shahawy, A. Enhanced performance of chitosan via a novel quaternary magnetic nanocomposite chitosan/grafted halloysitenanotubes@ ZnγFe3O4 for uptake of Cr (III), Fe (III), and Mn (II) from wastewater. Polymers 2021, 13, 2714. [Google Scholar] [CrossRef] [PubMed]
- Solyman, S.M.; Ahmed, H.A. Treatment of industrial dye effluent by photo-catalytic process using modified Egyptian Bentonite. Egypt. J. Chem. 2022, 65, 333–340. [Google Scholar] [CrossRef]
- Worch, E. Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2021. [Google Scholar]
- Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpää, M. An overview of the modification methods of activated carbon for its water treatment applications. Chem. Eng. J. 2013, 219, 499–511. [Google Scholar] [CrossRef]
- Sharma, H.K.; Sofi, I.R.; Wani, K.A. Low cost absorbents, techniques, and heavy metal removal efficiency. In Biostimulation Remediation Technologies for Groundwater Contaminants; IGI Global: Hershey, PA, USA, 2018; pp. 50–79. [Google Scholar]
- Dong, X.; Ge, Q. Metal ion-bridged forward osmosis membranes for efficient pharmaceutical wastewater reclamation. ACS Appl. Mater. Interfaces 2019, 11, 37163–37171. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, C. Efficient removal of heavy metal ions based on the selective hydrophilic channels. Chem. Eng. J. 2019, 359, 1644–1651. [Google Scholar] [CrossRef]
- Rana, V.; Bandyopadhyay, S.; Maiti, S.K. Bioadsorbents for Industrial Wastewater Treatment. In Encyclopedia of Green Materials; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–11. [Google Scholar]
- Gupta, A.D.; Kirti, N.; Katiyar, P.; Singh, H. A critical review on three-dimensional cellulose-based aerogels: Synthesis, physico-chemical characterizations and applications as adsorbents for heavy metals removal from water. Cellulose 2023, 30, 3397–3427. [Google Scholar] [CrossRef]
- Carpenter, A.W.; de Lannoy, C.-F.; Wiesner, M.R. Cellulose nanomaterials in water treatment technologies. Environ. Sci. Technol. 2015, 49, 5277–5287. [Google Scholar] [CrossRef]
- Sachan, D.; Ramesh, A.; Das, G. Green synthesis of silica nanoparticles from leaf biomass and its application to remove heavy metals from synthetic wastewater: A comparative analysis. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100467. [Google Scholar] [CrossRef]
- Muharrem, I.; Ince, O.K. An overview of adsorption technique for heavy metal removal from water/wastewater: A critical review. Int. J. Pure Appl. Sci. 2017, 3, 10–19. [Google Scholar]
- Kalia, S.; Kaith, B.; Kaur, I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review. Polym. Eng. Sci. 2009, 49, 1253–1272. [Google Scholar] [CrossRef]
- Li, X.; Tabil, L.G.; Panigrahi, S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. J. Polym. Environ. 2007, 15, 25–33. [Google Scholar] [CrossRef]
- Sgriccia, N.; Hawley, M.; Misra, M. Characterization of natural fiber surfaces and natural fiber composites. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1632–1637. [Google Scholar] [CrossRef]
- Huzaisham, N.A.; Marsi, N.; Rus, A.Z.M.; Masrol, S.R.; Mahmood, S.; Main, N.M.; Fodzi, M.H.M.; Singam, R.A.; Thana, P. Application of Waste Banana Peels for Wastewater Treatment: A Review. J. Comput. Theor. Nanosci. 2020, 17, 596–602. [Google Scholar] [CrossRef]
- García Raurich, J.; Martínez Roldán, T.; Monagas Asensio, P. Obtaining a bioadsorbent from orange peel suitable for batch and continous treatment. Int. J. Environ. Agric. Res (IJOEAR) 2020, 6, 50–61. [Google Scholar]
- Šabanović, E.; Memić, M.; Sulejmanović, J.; Selović, A. Simultaneous adsorption of heavy metals from water by novel lemon-peel based biomaterial. Pol. J. Chem. Technol. 2020, 22, 46–53. [Google Scholar] [CrossRef]
- Ariharasudhan, S.; Chandrasekaran, P.; Dhinakaran, M.; Rameshbabu, V.; Sundaresan, S.; Natarajan, S.; Arunraj, A. Study of banana/cotton blended nonwoven fabric for lead and zinc adsorption. AIP Conf. Proc. 2022, 2446, 170008. [Google Scholar]
- Cheah, C.; Yue, C.S.; Ting, A.S.Y. Effects of heat and chemical pretreatments of banana peels for metal removal in single and multimetal systems. Water Air Soil Pollut. 2021, 232, 1–14. [Google Scholar] [CrossRef]
- Bhagat, S.; Gedam, V.V.; Pathak, P. Adsorption/desorption, kinetics and equilibrium studies for the uptake of cu (ii) and zn (ii) onto banana peel. Int. J. Chem. React. Eng. 2020, 18, 20190109. [Google Scholar] [CrossRef]
- Mautner, A.; Kwaw, Y.; Weiland, K.; Mvubu, M.; Botha, A.; John, M.J.; Mtibe, A.; Siqueira, G.; Bismarck, A. Natural fibre-nanocellulose composite filters for the removal of heavy metal ions from water. Ind. Crops Prod. 2019, 133, 325–332. [Google Scholar] [CrossRef]
- Barreto, A.; Costa, M.; Sombra, A.; Rosa, D.; Nascimento, R.; Mazzetto, S.; Fechine, P. Chemically modified banana fiber: Structure, dielectrical properties and biodegradability. J. Polym. Environ. 2010, 18, 523–531. [Google Scholar] [CrossRef]
- Sheng, Z.; Shen, Y.; Dai, H.; Pan, S.; Ai, B.; Zheng, L.; Zheng, X.; Xu, Z. Physicochemical characterization of raw and modified banana pseudostem fibers and their adsorption capacities for heavy metal Pb2+ and Cd2+ in water. Polym. Compos. 2018, 39, 1869–1877. [Google Scholar] [CrossRef]
- Selambakkannu, S.; Othman, N.A.F.; Bakar, K.A.; Shukor, S.A.; Karim, Z.A. A kinetic and mechanistic study of adsorptive removal of metal ions by imidazole-functionalized polymer graft banana fiber. Radiat. Phys. Chem. 2018, 153, 58–69. [Google Scholar] [CrossRef]
- Alaswad, S.O.; Lakshmi, K.B.; Sudha, P.; Gomathi, T.; Arunachalam, P. Toxic heavy metal cadmium removal using chitosan and polypropylene based fiber composite. Int. J. Biol. Macromol. 2020, 164, 1809–1824. [Google Scholar] [CrossRef]
- Abdelkhalek, A.; Ali, S.S.; Sheng, Z.; Zheng, L.; Hasanin, M. Lead removal from aqueous solution by green solid film based on cellulosic fiber extracted from banana tree doped in polyacrylamide. Fibers Polym. 2022, 23, 1171–1181. [Google Scholar] [CrossRef]
- Aldaz, B.; Figueroa, F.; Bravo, I. Cellulose for the effective decontamination of water pollution. Rev. Bionatura 2020, 5, 150–1155. [Google Scholar] [CrossRef]
- Wang, C.; Zhan, Y.; Wu, Y.; Shi, X.; Du, Y.; Luo, Y.; Deng, H. TiO2/rectorite-trapped cellulose composite nanofibrous mats for multiple heavy metal adsorption. Int. J. Biol. Macromol. 2021, 183, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Maksoud, M.A.; Elgarahy, A.M.; Farrell, C.; Ala’a, H.; Rooney, D.W.; Osman, A.I. Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord. Chem. Rev. 2020, 403, 213096. [Google Scholar] [CrossRef]
- Su, K.; Zhao, D.; Lu, A.; Zhong, C.; Shen, X.-C.; Ruan, C. One-pot green synthesis of poly (hexamethylenediamine-tannic acid)-bacterial cellulose composite for the reduction, immobilization, and recovery of Cr (VI). J. Environ. Chem. Eng. 2022, 10, 107026. [Google Scholar] [CrossRef]
- Karim, Z.; Hakalahti, M.; Tammelin, T.; Mathew, A.P. In situ TEMPO surface functionalization of nanocellulose membranes for enhanced adsorption of metal ions from aqueous medium. RSC Adv. 2017, 7, 5232–5241. [Google Scholar] [CrossRef]
- Mautner, A.; Kobkeatthawin, T.; Bismarck, A. Efficient continuous removal of nitrates from water with cationic cellulose nanopaper membranes. Resour.-Effic. Technol. 2017, 3, 22–28. [Google Scholar]
- Syeda, H.I.; Yap, P.-S. A review on three-dimensional cellulose-based aerogels for the removal of heavy metals from water. Sci. Total Environ. 2022, 807, 150606. [Google Scholar] [CrossRef]
- Mubarak, M.F.; Zayed, A.M.; Ahmed, H.A. Activated Carbon/Carborundum@ Microcrystalline Cellulose core shell nano-composite: Synthesis, characterization and application for heavy metals adsorption from aqueous solutions. Ind. Crops Prod. 2022, 182, 114896. [Google Scholar] [CrossRef]
- Jilal, I.; El Barkany, S.; Bahari, Z.; Sundman, O.; El Idrissi, A.; Abou-Salama, M.; Romane, A.; Zannagui, C.; Amhamdi, H. New quaternized cellulose based on hydroxyethyl cellulose (HEC) grafted EDTA: Synthesis, characterization and application for Pb (II) and Cu (II) removal. Carbohydr. Polym. 2018, 180, 156–167. [Google Scholar] [CrossRef] [PubMed]
- d’Halluin, M.; Rull-Barrull, J.; Bretel, G.; Labrugère, C.; Le Grognec, E.; Felpin, F.-X. Chemically modified cellulose filter paper for heavy metal remediation in water. ACS Sustain. Chem. Eng. 2017, 5, 1965–1973. [Google Scholar] [CrossRef]
- Hu, T.; Hu, X.; Tang, C.; Liu, D. Adsorbent grafted on cellulose by in situ synthesis of EDTA-like groups and its properties of metal ion adsorption from aqueous solution. Cellulose 2022, 29, 941–952. [Google Scholar] [CrossRef]
- Rovani, S.; Santos, J.J.; Corio, P.; Fungaro, D.A. Highly pure silica nanoparticles with high adsorption capacity obtained from sugarcane waste ash. ACS Omega 2018, 3, 2618–2627. [Google Scholar] [CrossRef]
- Rangaraj, S.; Venkatachalam, R. A lucrative chemical processing of bamboo leaf biomass to synthesize biocompatible amorphous silica nanoparticles of biomedical importance. Appl. Nanosci. 2017, 7, 145–153. [Google Scholar] [CrossRef]
- Di Natale, F.; Gargiulo, V.; Alfè, M. Adsorption of heavy metals on silica-supported hydrophilic carbonaceous nanoparticles (SHNPs). J. Hazard. Mater. 2020, 393, 122374. [Google Scholar] [CrossRef]
- Hao, S.; Verlotta, A.; Aprea, P.; Pepe, F.; Caputo, D.; Zhu, W. Optimal synthesis of amino-functionalized mesoporous silicas for the adsorption of heavy metal ions. Microporous Mesoporous Mater. 2016, 236, 250–259. [Google Scholar] [CrossRef]
- Wang, P.; Du, M.; Zhu, H.; Bao, S.; Yang, T.; Zou, M. Structure regulation of silica nanotubes and their adsorption behaviors for heavy metal ions: pH effect, kinetics, isotherms and mechanism. J. Hazard. Mater. 2015, 286, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahman, E.A.; Abou El-Reash, Y.; Youssef, H.M.; Kotp, Y.H.; Hegazey, R. Utilization of rice husk and waste aluminum cans for the synthesis of some nanosized zeolite, zeolite/zeolite, and geopolymer/zeolite products for the efficient removal of Co (II), Cu (II), and Zn (II) ions from aqueous media. J. Hazard. Mater. 2021, 401, 123813. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahman, E.A.; Alharbi, A.; Subaihi, A.; Hameed, A.M.; Almutairi, M.A.; Algethami, F.K.; Youssef, H.M. Facile fabrication of novel analcime/sodium aluminum silicate hydrate and zeolite Y/faujasite mesoporous nanocomposites for efficient removal of Cu (II) and Pb (II) ions from aqueous media. J. Mater. Res. Technol. 2020, 9, 7900–7914. [Google Scholar] [CrossRef]
- Youssef, H.M.; Shah, R.K.; Algethami, F.K.; Hegazey, R.; Naglah, A.M.; Al-Omar, M.A.; Alluhaybi, A.A.; Alherbish, H.A.; Mabrouk, E.; Abdelrahman, E.A. Facile hydrothermal procedure for the synthesis of sodium aluminum silicate hydrate/analcime and analcime for effective removal of manganese (II) ions from aqueous solutions. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1035–1046. [Google Scholar] [CrossRef]
- Al-Wasidi, A.S.; Naglah, A.M.; Saad, F.A.; Abdelrahman, E.A. Modification of silica nanoparticles with 1-hydroxy-2-acetonaphthone as a novel composite for the efficient removal of Ni (II), Cu (II), Zn (II), and Hg (II) ions from aqueous media. Arab. J. Chem. 2022, 15, 104010. [Google Scholar] [CrossRef]
- Li, S.; Li, S.; Wen, N.; Wei, D.; Zhang, Y. Highly effective removal of lead and cadmium ions from wastewater by bifunctional magnetic mesoporous silica. Sep. Purif. Technol. 2021, 265, 118341. [Google Scholar] [CrossRef]
- Parale, V.G.; Choi, H.; Kim, T.; Phadtare, V.D.; Dhavale, R.P.; Lee, K.-Y.; Panda, A.; Park, H.-H. One pot synthesis of hybrid silica aerogels with improved mechanical properties and heavy metal adsorption: Synergistic effect of in situ epoxy-thiol polymerization and sol-gel process. Sep. Purif. Technol. 2023, 308, 122934. [Google Scholar] [CrossRef]
- Amin, K.F.; Gulshan, F.; Asrafuzzaman, F.; Das, H.; Rashid, R.; Hoque, S.M. Synthesis of mesoporous silica and chitosan-coated magnetite nanoparticles for heavy metal adsorption from wastewater. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100801. [Google Scholar] [CrossRef]
- Abouzeid, R.E.; Khiari, R.; El-Wakil, N.; Dufresne, A. Current state and new trends in the use of cellulose nanomaterials for wastewater treatment. Biomacromolecules 2018, 20, 573–597. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Kishore, S.; Shah, M.P.; Kumar, S.A. A comprehensive review on nanobiotechnology for bioremediation of heavy metals from wastewater. J. Basic Microbiol. 2022, 62, 361–375. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, S.; Priya, A.; Kumar, P.S.; Hoang, T.K.; Sekar, K.; Chong, K.Y.; Khoo, K.S.; Ng, H.S.; Show, P.L. A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-A review. Chemosphere 2022, 303, 135146. [Google Scholar] [CrossRef] [PubMed]
- Khulbe, K.; Matsuura, T. Removal of heavy metals and pollutants by membrane adsorption techniques. Appl. Water Sci. 2018, 8, 19. [Google Scholar] [CrossRef]
- Fouda-Mbanga, B.; Prabakaran, E.; Pillay, K. Carbohydrate biopolymers, lignin based adsorbents for removal of heavy metals (Cd2+, Pb2+, Zn2+) from wastewater, regeneration and reuse for spent adsorbents including latent fingerprint detection: A review. Biotechnol. Rep. 2021, 30, e00609. [Google Scholar] [CrossRef] [PubMed]
- Yarkulov, A.; Umarov, B.; Rakhmatkarieva, F.; Kattaev, N.; Akbarov, K.; Berdimurodov, E. Diacetate cellulose-silicon bionanocomposite adsorbent for recovery of heavy metal ions and benzene vapours: An experimental and theoretical investigation. Biointerface Res. Appl. Chem. 2022, 12, 2862–2880. [Google Scholar]
- Royanudin, M.; Utomo, Y.; Wonorahardjo, S. The application of silica-cellulose material as heavy metal adsorbent on laboratory wastewater. AIP Conf. Proc. 2021, 2353, 030123. [Google Scholar]
- Yang, S.; Chen, S.; Fan, J.; Shang, T.; Huang, D.; Li, G. Novel mesoporous organosilica nanoparticles with ferrocene group for efficient removal of contaminants from wastewater. J. Colloid Interface Sci. 2019, 554, 565–571. [Google Scholar] [CrossRef]
- Zito, P.; Shipley, H.J. Inorganic nano-adsorbents for the removal of heavy metals and arsenic: A review. RSC Adv. 2015, 5, 29885–29907. [Google Scholar] [CrossRef]
- Es-Haghi, H.; Mirabedini, S.; Imani, M.; Farnood, R. Preparation and characterization of pre-silane modified ethyl cellulose-based microcapsules containing linseed oil. Colloids Surf. A Physicochem. Eng. Asp. 2014, 447, 71–80. [Google Scholar] [CrossRef]
- Lucia, A.; Bacher, M.; van Herwijnen, H.W.; Rosenau, T. A direct silanization protocol for dialdehyde cellulose. Molecules 2020, 25, 2458. [Google Scholar] [CrossRef]
- Bisla, V.; Kawamura, I.; Yoshitake, H. Cross-linked cellulose acetate aminosilane (CAAS) for aqueous arsenic (V) adsorption. Carbohydr. Polym. Technol. Appl. 2022, 4, 100259. [Google Scholar] [CrossRef]
- Shaheen, T.I.; Radwan, E.K.; El-Wakeel, S.T. Unary and binary adsorption of anionic dye and toxic metal from wastewater using 3-aminopropyltriethoxysilane functionalized porous cellulose acetate microspheres. Microporous Mesoporous Mater. 2022, 338, 111996. [Google Scholar] [CrossRef]
- Dang-Bao, T.; Nguyen, T.-M.-C.; Hoang, G.-H.; Lam, H.-H.; Phan, H.-P.; Tran, T.-K.-A. Thiol-surface-engineered cellulose nanocrystals in favor of copper ion uptake. Polymers 2023, 15, 2562. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.Y.; Bae, J.H.; Hasegawa, Y.; An, S.; Kim, I.S.; Lee, H.; Kim, M. Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water. Carbohydr. Polym. 2020, 234, 115881. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Hao, D.; Ding, Y.; Fan, H. Chelating cellulose functionalized with four amino acids: A comparative study on the enhanced adsorptive removal of cadmium and lead ions. Colloids Surf. A Physicochem. Eng. Asp. 2022, 650, 129599. [Google Scholar] [CrossRef]
- Peng, L.; Zhang, M.; Dong, Z.; Qi, W.; Zhai, M.; Zhao, L. Efficient and selective adsorption of Pd (II) by amino acid-functionalized cellulose microspheres and their applications in palladium recovery from PCBs leaching solution. Sep. Purif. Technol. 2022, 301, 122037. [Google Scholar] [CrossRef]
- Shen, J.; Jiang, F.; Wang, N.; Ouyang, X.K.; Jin, M.-C. Diethylenetriaminepentaacetic acid (DPTA)-modified magnetic cellulose nanocrystals can efficiently remove Pb (II) from aqueous solution. J. Polym. Environ. 2022, 30, 1344–1354. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, L.; Liu, S.; Liu, X. Enhanced adsorption of copper ions from aqueous solution by two-step DTPA-modified magnetic cellulose hydrogel beads. Int. J. Biol. Macromol. 2022, 211, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Afolabi, F.O.; Musonge, P.; Bakare, B.F. Evaluation of Lead (II) Removal from Wastewater Using Banana Peels: Optimization Study. Pol. J. Environ. Stud. 2021, 30, 1487–1496. [Google Scholar] [CrossRef] [PubMed]
- Al-Wasidi, A.S.; Naglah, A.M.; Saad, F.A.; Abdelrahman, E.A. Modification of Silica Nanoparticles with 4,6-Diacetylresorcinol as a Novel Composite for the Efficient Removal of Pb (II), Cu (II), Co (II), and Ni (II) Ions from Aqueous Media. J. Inorg. Organomet. Polym. Mater. 2022, 32, 2332–2344. [Google Scholar] [CrossRef]
Adsorbent Types | Heavy Metal Ions | Capacity Removal (mg/g) and/or Percentage Removal | Reference |
---|---|---|---|
Natural fiber and heavy metal adsorption capacity | |||
Banana fibre needle-felted fabric | Pb2+ and Zn2+ | 95.5% and 98% | Ariharasudhan, Chandrasekaran, Dhinakaran, Rameshbabu, Sundaresan, Natarajan and Arunraj [36] |
Banana peel | Cd2+ | 98.146% | Afolabi, et al. [87] |
TCNF | Cu2+ | >60 mg/g | Mautner, Kwaw, Weiland, Mvubu, Botha, John, Mtibe, Siqueira and Bismarck [39] |
SEBF-CX | Pb2+ and Cd2+ | 99.0099 mg/g and 67.3401 mg/g | Sheng, Shen, Dai, Pan, Ai, Zheng, Zheng and Xu [41] |
IMI-GMA | Cu2+, Pb2+ and Zn2+ | 71.6 mg/g, 84.2 mg/g and 60.1 mg/g. | Selambakkannu, Othman, Bakar, Shukor and Karim [42] |
PP/SF/BF fibre and CS/SF/BF fibre | Cd2+ | 304 mg/g and 419 mg/g | Alaswad, Lakshmi, Sudha, Gomathi and Arunachalam [43] |
GCFP | Cd2+ | 98% (approximately 128 mg/g) | Abdelkhalek, Ali, Sheng, Zheng and Hasanin [44] |
AC/CB/MCC | Cu2+ and As2+ | 423.55 and 422.9 mg/g | Mubarak, Zayed and Ahmed [52] |
HTA-BC | Cr(VI) | 534.8 mg/g | Su, Zhao, Lu, Zhong, Shen and Ruan [48] |
Modified cellulose with amino acetic acid group | Cu2+ and Pb2+ | 80.3 mg/g and 266.7 mg/g | Hu, Hu, Tang and Liu [55] |
Silica and heavy metal adsorption capacity | |||
SHNPs | Cd2+, Ni2+ and Pb2+ | 0.54, 13.48 and 8.87 mg/g | Di Natale, Gargiulo and Alfè [58] |
SRL SNPs; SOL SNPs; and OSL SNPs | Pb2+ and Cu2+ | (140.06 and 149.25 mg/g); (338.55 and 179.45 mg/g); and (334.7 and 274.02 mg/g) | Sachan, Ramesh and Das [28] |
Silica nanoparticles with 1-hydroxy-2-acetonaphthone | Cu2+, Hg2+, Zn2+, and Ni2+ | 68.630, 50.942, 45.126, and 40.420 mg/g | Al-Wasidi, Naglah, Saad and Abdelrahman [64] |
NZVI-SH-HMS | Pb2+ and Cd2+ | 487.8 and 330.0 mg/g | Li, Li, Wen, Wei and Zhang [65] |
Silica aerogel | Pd2+ | 689.65 mg/g | Parale, Choi, Kim, Phadtare, Dhavale, Lee, Panda and Park [66] |
Mesoporous silica and chitosan-coated magnetite nanoparticles | Pb2+ and Cd2+ | 150.33 and 126.26 mg/g | Amin, Gulshan, Asrafuzzaman, Das, Rashid and Hoque [67] |
Silica with 4,6-diacetylresorcinol | Pb2+, Cu2+, Co2+ and Ni2+ | 107.066, 89.767, 80.580, and 70.972 mg/g | [87] |
Cellulose, silica nanoparticles, and heavy metal adsorption (Cd, Pb, Cr) | |||
DACSBNC | Cd2+, Hg2+, and Pb2+ | 12.23, 13.87, and 31.40 mg/g | Yarkulov, et al. [73] |
Silica-cellulose | cadmium metal, chromium metal, nickel metal, and zinc metal | 95.09, 58.77, 94.56, and 97.50% | Royanudin, Utomo and Wonorahardjo [74] |
cellulose-TiO2/REC nanofibrous | multiple adsorptions of Pb2+, Cu2+ and Cd2+ | total adsorption capacity of 69.81 mg/g | Wang, Zhan, Wu, Shi, Du, Luo and Deng [46] |
Cellulose and silica coupling agents in absorption of heavy metals | |||
CAAS | As4+ | 455 mg/g | Bisla, Kawamura and Yoshitake [79] |
APTES-CA | Pb2+ | 180 mg/g | Shaheen, Radwan and El-Wakeel [80] |
Thiol-functionalized cellulose nanocrystals | Cu2+ | 4.244 mg/g | Dang-Bao, Nguyen, Hoang, Lam, Phan, and Tran [81] |
Thiol-functionalized cellulose nanofiber | Cu2+, Cd2+, and Pb2+ | 49.0, 45.9, and 22.0 mg/g | Choi, Bae, Hasegawa, An, Kim, Lee and Kim [82] |
Cys-CL | Cd2+ and Pb2+ | 130.7 and 180.9 mg/g | Chen, Wang, Hao, Ding and Fan [83] |
CysR | Pb2+ | 143.47 mg/g | Peng, Zhang, Dong, Qi, Zhai, and Zhao [84] |
MCNC-DPTA | Pb2+ | 440.0 mg/g | Shen, Jiang, Wang, Ouyang and Jin [85] |
DPMC | Cu2+ | 298.62 mg/g | Gao, Zhang, Liu and Liu [86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazibuko, M.T.; Onwubu, S.C.; Mokhothu, T.H.; Paul, V.; Mdluli, P.S. Unlocking Heavy Metal Remediation Potential: A Review of Cellulose–Silica Composites. Sustainability 2024, 16, 3265. https://doi.org/10.3390/su16083265
Mazibuko MT, Onwubu SC, Mokhothu TH, Paul V, Mdluli PS. Unlocking Heavy Metal Remediation Potential: A Review of Cellulose–Silica Composites. Sustainability. 2024; 16(8):3265. https://doi.org/10.3390/su16083265
Chicago/Turabian StyleMazibuko, Mayenzeke Trueman, Stanley Chibuzor Onwubu, Thabang Hendrica Mokhothu, Vimla Paul, and Phumlane Selby Mdluli. 2024. "Unlocking Heavy Metal Remediation Potential: A Review of Cellulose–Silica Composites" Sustainability 16, no. 8: 3265. https://doi.org/10.3390/su16083265
APA StyleMazibuko, M. T., Onwubu, S. C., Mokhothu, T. H., Paul, V., & Mdluli, P. S. (2024). Unlocking Heavy Metal Remediation Potential: A Review of Cellulose–Silica Composites. Sustainability, 16(8), 3265. https://doi.org/10.3390/su16083265