Analysis of the Factors Influencing the Spatial Distribution of PM2.5 Concentrations (SDG 11.6.2) at the Provincial Scale in China
Abstract
:1. Introduction
2. Data and Methods
2.1. Data Selection and Preprocessing
2.2. Method
2.2.1. Spatial Moran Index
2.2.2. Spatial Econometric Models (SEMs)
2.3. Model Validity Test
2.3.1. Lagrange Multiplier Test
2.3.2. Hausman Test
2.3.3. Likelihood Ratio Test
3. Results and Analysis
3.1. PM2.5 Spatial Aggregation Characteristics
3.2. Determination of Spatial Econometric Model
3.3. Analysis of the Factors Influencing the Spatial Distribution of PM2.5
3.3.1. Analysis of the Results from the Perspectives of Relevant Indicators Involved
3.3.2. Analysis of the Results from the Provincial-Scale Regions
4. Conclusions and Discussion
5. Policy Recommendations
- Enhance inter-regional collaboration: Develop mechanisms for stronger cooperation among local governments, especially in East and North China, to address the high–high agglomerations of PM2.5. This could involve sharing technologies, strategies, and information on successful pollution control measures.
- Promote environmental conservation measures: Prioritize environmental indicators that have shown synergistic effects in lowering PM2.5 levels, such as vegetation protection, afforestation, water-use efficiency, and sulfur dioxide emission reduction. Implement national and local programs to expand green spaces and urban forests, enhance water conservation practices, and accelerate the shift to cleaner energy sources.
- Adjust economic and industrial policies: For regions with underdeveloped economies showing a trade-off between economic growth and air quality, policies should encourage industries to adopt cleaner and more sustainable practices. This includes investing in new energy vehicles in the northern provinces, improving the comprehensive utilization rate of industrial solid waste with better recycling and waste processing technologies, and supporting the transition towards sustainable and clean industries.
- Tailor policies to regional needs and characteristics: Recognize the diverse impact of socioeconomic and environmental indicators across provinces. Implement policies that are customized to the specific needs and challenges of each region, considering their economic, environmental, and social contexts. This may involve differential strategies for regions with heavy industrial bases versus those undergoing economic and industrial transformation.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Zhang, Z.; van Donkelaar, A.; Bai, L.; Martin, R.V.; Lavigne, E.; Kwong, J.C.; Burnett, R.T. Understanding the Joint Impacts of Fine Particulate Matter Concentration and Composition on the Incidence and Mortality of Cardiovascular Disease: A Component-Adjusted Approach. Environ. Sci. Technol. 2020, 54, 4388–4399. [Google Scholar] [CrossRef] [PubMed]
- Wilker, E.H.; Osman, M.; Weisskopf, M.G. Ambient air pollution and clinical dementia: Systematic review and meta-analysis. BMJ 2023, 381, e071620. [Google Scholar] [CrossRef] [PubMed]
- Requia, W.J.; Adams, M.D.; Arain, A.; Papatheodorou, S.; Koutrakis, P.; Mahmoud, M. Global Association of Air Pollution and Cardiorespiratory Diseases: A Systematic Review, Meta-Analysis, and Investigation of Modifier Variables. Am. J. Public Health 2018, 108, S123–S130. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhang, Y. Effects of particulate matter (PM2.5) and associated acidity on ecosystem functioning: Response of leaf litter breakdown. Environ. Sci. Pollut. Res. Int. 2018, 25, 30720–30727. [Google Scholar] [CrossRef] [PubMed]
- Andrei, J.V.; Cristea, D.S.; Nuta, F.M.; Petrea, S.-M.; Nuta, A.C.; Tudor, A.T.; Chivu, L. Exploring the causal relationship between PM 2.5 air pollution and urban areas economic welfare and social-wellbeing: Evidence form 15 European capitals. Sustain. Dev. 2024. early view. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; Department of Economic and Social Affairs Sustainable Development: New York, NY, USA, 2015. [Google Scholar]
- Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xie, X.; Cai, J.; Chen, D.; Gao, B.; He, B.; Cheng, N.; Xu, B. Understanding meteorological influences on PM2.5 concentrations across China: A temporal and spatial perspective. Atmos. Chem. Phys. 2018, 18, 5343–5358. [Google Scholar] [CrossRef]
- Huang, H.; Jiang, P.; Chen, Y. Analysis of the Social and Economic Factors Influencing PM2.5 Emissions at the City Level in China. Sustainability 2023, 15, 16335. [Google Scholar] [CrossRef]
- Ji, X.; Yao, Y.; Long, X. What causes PM2.5 pollution? Cross-economy empirical analysis from socioeconomic perspective. Energy Policy 2018, 119, 458–472. [Google Scholar] [CrossRef]
- Yang, D.; Wang, X.; Xu, J.; Xu, C.; Lu, D.; Ye, C.; Wang, Z.; Bai, L. Quantifying the influence of natural and socioeconomic factors and their interactive impact on PM2.5 pollution in China. Environ. Pollut. 2018, 241, 475–483. [Google Scholar] [CrossRef]
- Mi, K.; Zhuang, R.; Zhang, Z.; Gao, J.; Pei, Q. Spatiotemporal characteristics of PM2.5 and its associated gas pollutants, a case in China. Sustain. Cities Soc. 2019, 45, 287–295. [Google Scholar] [CrossRef]
- Du, Y.; Wan, Q.; Liu, H.; Liu, H.; Kapsar, K.; Peng, J. How does urbanization influence PM2.5 concentrations? Perspective of spillover effect of multi-dimensional urbanization impact. J. Clean. Prod. 2019, 220, 974–983. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, J. Changes in urban air quality during urbanization in China. J. Clean. Prod. 2018, 188, 312–321. [Google Scholar] [CrossRef]
- Hao, Y.; Liu, Y.-M. The influential factors of urban PM2.5 concentrations in China: A spatial econometric analysis. J. Clean. Prod. 2016, 112, 1443–1453. [Google Scholar] [CrossRef]
- Yi, M.; Lu, Y.; Wen, L.; Luo, Y.; Xu, S.; Zhang, T. Whether green technology innovation is conducive to haze emission reduction: Empirical evidence from China. Environ. Sci. Pollut. Res. Int. 2022, 29, 12115–12127. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Yang, X.; Li, Y.; Yao, S. The effect of forest on PM2.5 concentrations: A spatial panel approach. For. Policy Econ. 2020, 118, 102261. [Google Scholar] [CrossRef]
- Li, J.; Ding, T.; He, W. Socio-economic driving forces of PM2.5 emission in China: A global meta-frontier-production-theoretical decomposition analysis. Environ. Sci. Pollut. Res. 2022, 29, 77565–77579. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.-R.; Ji, Q.; Fan, Y. Spatial linkage analysis of the impact of regional economic activities on PM2.5 pollution in China. J. Clean. Prod. 2016, 139, 1157–1167. [Google Scholar] [CrossRef]
- Nuta, F.M.; Nuta, A.C.; Zamfir, C.G.; Petrea, S.-M.; Munteanu, D.; Cristea, D.S. National Carbon Accounting-Analyzing the Impact of Urbanization and Energy-Related Factors upon CO2 Emissions in Central-Eastern European Countries by Using Machine Learning Algorithms and Panel Data Analysis. Energies 2021, 14, 2775. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, M.; Qian, X.; Li, C.; Chen, S.; Wang, W. Using the geographical detector technique to explore the impact of socioeconomic factors on PM2.5 concentrations in China. J. Clean. Prod. 2019, 211, 1480–1490. [Google Scholar] [CrossRef]
- Yun, G.; He, Y.; Jiang, Y.; Dou, P.; Dai, S. PM2.5 Spatiotemporal Evolution and Drivers in the Yangtze River Delta between 2005 and 2015. Atmosphere 2019, 10, 55. [Google Scholar] [CrossRef]
- Dong, J.; Liu, P.; Song, H.; Yang, D.; Yang, J.; Song, G.; Miao, C.; Zhang, J.; Zhang, L. Effects of anthropogenic precursor emissions and meteorological conditions on PM2.5 concentrations over the “2+26” cities of northern China. Environ. Pollut. 2022, 315, 120392. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, X.; Wang, L. Spatial-Temporal Evolution of PM2.5 Concentration and its Socioeconomic Influence Factors in Chinese Cities in 2014–2017. Int. J. Environ. Res. Public Health 2019, 16, 985. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zhang, H.; Shi, H.; Wang, H.; Wei, Z.; Han, Y.; Cong, P. Assessing Spatial Heterogeneity of Factor Interactions on PM2.5 Concentrations in Chinese Cities. Remote Sens. 2021, 13, 5079. [Google Scholar] [CrossRef]
- Zhu, M.; Yan, J.; Cheng, X.; Li, F. Investigating the spatiotemporal PM2.5 dynamic and socioeconomic driving forces in beijing based on geographical weighted regression. J. Nonlinear Convex Anal. 2021, 22, 2331–2345. [Google Scholar]
- She, Y.; Chen, Q.; Ye, S.; Wang, P.; Wu, B.; Zhang, S. Spatial-temporal heterogeneity and driving factors of PM2.5 in China: A natural and socioeconomic perspective. Front. Public Health 2022, 10, 1051116. [Google Scholar] [CrossRef]
- Wei, G.; Sun, P.; Jiang, S.; Shen, Y.; Liu, B.; Zhang, Z.; Ouyang, X. The Driving Influence of Multi-Dimensional Urbanization on PM2.5 Concentrations in Africa: New Evidence from Multi-Source Remote Sensing Data, 2000–2018. Int. J. Environ. Res. Public Health 2021, 18, 9389. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Tian, G. Assessment of the spatio-temporal pattern of PM2.5 and its driving factors using a land use regression model in Beijing, China. Environ. Monit. Assess. 2020, 192, 95. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, R.; Hu, D.; Chen, J.; Xu, L. Modelling driving factors of PM2.5 concentrations in port cities of the Yangtze River Delta. Mar. Pollut. Bull. 2022, 184, 114131. [Google Scholar] [CrossRef]
- Yan, D.; Ren, X.; Zhang, W.; Li, Y.; Miao, Y. Exploring the real contribution of socioeconomic variation to urban PM(2.5) pollution: New evidence from spatial heteroscedasticity. Sci. Total Environ. 2022, 806, 150929. [Google Scholar] [CrossRef]
- Du, Y.; Sun, T.; Peng, J.; Fang, K.; Liu, Y.; Yang, Y.; Wang, Y. Direct and spillover effects of urbanization on PM2.5 concentrations in China’s top three urban agglomerations. J. Clean. Prod. 2018, 190, 72–83. [Google Scholar] [CrossRef]
- Nan, Y.; Fan, X.; Bian, Y.; Cai, H.; Li, Q. Impacts of the natural gas infrastructure and consumption on fine particulate matter concentration in China’s prefectural cities: A new perspective from spatial dynamic panel models. J. Clean. Prod. 2019, 239, 117987. [Google Scholar] [CrossRef]
- Ledyaeva, S. Spatial econometric analysis of foreign direct investment determinants in Russian regions. World Econ. 2009, 32, 643–666. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, L.; Zhao, D.; Chu, G. Study on the Spatial Spillover Effect of Economic Performance of Public Education Expenditure in China. Educ. Econ. 2021, 3, 20–30. [Google Scholar]
- Song, L.; Wan, J. Comparative Research on Interpolation Method of Missing Data. Stat. Decis. 2020, 36, 10–14. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, X.; WANG, L. Review of Data Normalization Methods. Comput. Eng. Appl. 2023, 59, 13–22. [Google Scholar] [CrossRef]
- Craney, T.A.; Surles, J.G. Model-Dependent Variance Inflation Factor Cutoff Values. Qual. Eng. 2002, 14, 391–403. [Google Scholar] [CrossRef]
- Zhang, N.; Yu, K.; Chen, Z. How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis. Energy Policy 2017, 107, 678–687. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Sokal, R.R.; Oden, N.L.; Thomson, B.A. Local Spatial Autocorrelation in a Biological Model. Geogr. Anal. 1998, 30, 331–354. [Google Scholar] [CrossRef]
- Elhorst, J.P. Dynamic spatial panels: Models, methods, and inferences. J. Geogr. Syst. 2012, 14, 5–28. [Google Scholar] [CrossRef]
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; CRC: Boca Raton, FL, USA, 2009. [Google Scholar]
- Elhorst, J.P. Applied Spatial Econometrics: Raising the Bar. Spat. Econ. Anal. 2010, 5, 9–28. [Google Scholar] [CrossRef]
- Elhorst, J.P. Matlab Software for Spatial Panels. Int. Reg. Sci. Rev. 2014, 37, 389–405. [Google Scholar] [CrossRef]
- Lian, Y.-J.; Wang, W.-D.; Ye, R.-C. The Efficiency of Hausman Test Statistics:A Monte-Carlo Investigation. J. Appl. Stat. Manag. 2014, 33, 830–841. [Google Scholar]
- Baltagi, B.H. Econometric Analysis of Panel Data; Wiley: Chichester, UK, 2005. [Google Scholar]
- Kang, Y.-Q.; Zhao, T.; Yang, Y.-Y. Environmental Kuznets curve for CO2 emissions in China: A spatial panel data approach. Ecol. Indic. 2016, 63, 231–239. [Google Scholar] [CrossRef]
- Chen, Q. Advanced Econometrics and Stata Applications; Higher Education Press: Beijing, China, 2010. [Google Scholar]
- Ma, L.; Zhang, X. The Spatial Effect of China’s Haze Pollution and the Impact from Economic Change and Energy Structure. China’s Ind. Econ. 2014, 4, 19–31. [Google Scholar]
- Su, C.-W.; Yuan, X.; Tao, R.; Umar, M. Can new energy vehicles help to achieve carbon neutrality targets? J. Environ. Manag. 2021, 297, 113348. [Google Scholar] [CrossRef]
- Mahato, D.K.; Sankar, T.K.; Ambade, B.; Mohammad, F.; Soleiman, A.A.; Gautam, S. Burning of Municipal Solid Waste: An Invitation for Aerosol Black Carbon and PM2.5 Over Mid-Sized City in India. Aerosol. Sci. Eng. 2023, 7, 341–354. [Google Scholar] [CrossRef]
- Nagar, P.K.; Singh, D.; Sharma, M.; Kumar, A.; Aneja, V.P.; George, M.P.; Agarwal, N.; Shukla, S.P. Characterization of PM2.5 in Delhi: Role and impact of secondary aerosol, burning of biomass, and municipal solid waste and crustal matter. Environ. Sci. Pollut. Res. 2017, 24, 25179–25189. [Google Scholar] [CrossRef]
- Wu, S.; Yao, J.; Wang, Y.; Zhao, W. Influencing factors of PM2.5 concentration in the typical urban agglomerations in China based on wavelet perspective. Environ. Res. 2023, 237, 116641. [Google Scholar] [CrossRef]
- Yang, X.; Wang, J.; Caona, J.; Renna, S.; Ran, Q.; Wu, H. The spatial spillover effect of urban sprawl and fiscal decentralization on air pollution: Evidence from 269 cities in China. Empir. Econ. 2022, 63, 847–875. [Google Scholar] [CrossRef]
- Chen, Y.; Bai, Y.; Liu, H.; Alatalo, J.M.; Jiang, B. Temporal variations in ambient air quality indicators in Shanghai municipality, China. Sci. Rep. 2020, 10, 11350. [Google Scholar] [CrossRef] [PubMed]
Variables | Indicator/ Target | Indicator/Target Short Name | Indicator Construction Method | Direction |
---|---|---|---|---|
Explained variable | SDG11.6.2 | Concentration of PM2.5 | Concentration of PM2.5 | Negative |
Explanatory variables | SDG6.3 | Water quality | Industrial water reuse rate | Positive |
SDG6.4.1 | Water-use efficiency | (total GDP/total water consumption + industrial GDP/industrial water consumption)/2 | Positive | |
SDG6.4.2 | Water stress | Total water consumption/total water resources | Negative | |
SDG6.6 | Water-related ecosystems | Nature reserve area | Positive | |
SDG6.a | Wastewater treatment, recycling and reuse | Investment in wastewater treatment project | Positive | |
SDG7.1.2 | Reliance on clean energy | Gas penetration rate | Positive | |
SDG7.3.1 | Energy intensity | Electricity consumption per 10,000 yuan of GDP | Negative | |
SDG8.1.1 | Real GDP per capita growth rate | Per capita GDP growth rate | Positive | |
SDG9.1.2 | Passenger and freight volume | Average freight volume and passenger volume | Positive | |
SDG9.2.1 | Manufacturing value added | Secondary industry value added/GDP | Positive | |
SDG9.4 | Sustainable and clean industries | Carbon dioxide emissions | Negative | |
SDG9.b.1 | Medium and high-tech industry value added | Tertiary industry value added/GDP | Positive | |
SDG11.2.1 | Convenient access to public transport | Number of buses per 10,000 people | Positive | |
SDG11.3.1 | Land consumption | Urban built-up area growth rate/population growth rate | Negative | |
SDG11.6.1 | Municipal solid waste | Per capita solid waste generation | Negative | |
SDG11.7.1 | Open space for public use | Per capita park green space area | Positive | |
SDG12.2.1 | Material footprint | Per capita sulfur dioxide emissions | Negative | |
SDG12.5.1 | National recycling rate | Comprehensive utilization rate of industrial solid waste | Positive | |
SDG15.1.1 | Forest area | Forest coverage rate | Positive | |
SDG15.2 | Sustainable forests management | Artificial afforestation area | Positive | |
SDG15.4 | Conservation of mountain ecosystems | Proportion of protected areas to jurisdiction area | Positive |
Variable | Sample Size | Mean | Std | VIF |
---|---|---|---|---|
SDG11.6.2 | 651 | 49.05 | 22.8 | / |
SDG6.3 | 651 | 71.31 | 29.5 | 2.25 |
SDG6.4.1 | 651 | 20.33 | 22.79 | 2.34 |
SDG6.4.2 | 651 | 88.2 | 20.13 | 2.49 |
SDG6.6 | 651 | 11.24 | 20.95 | 3.13 |
SDG6.a | 651 | 26.34 | 23.98 | 2.04 |
SDG7.1.2 | 651 | 72.71 | 27.86 | 3.19 |
SDG7.3.1 | 651 | 75.28 | 22.6 | 2.67 |
SDG8.1.1 | 651 | 45.94 | 23.93 | 1.49 |
SDG9.1.2 | 651 | 38.79 | 25.16 | 2.45 |
SDG9.2.1 | 651 | 64.4 | 24.55 | 5.19 |
SDG9.4 | 651 | 66.99 | 26.95 | 3.42 |
SDG9.b.1 | 651 | 29.62 | 21.7 | 5.76 |
SDG11.2.1 | 651 | 34.69 | 20.37 | 2.6 |
SDG11.3.1 | 651 | 36.59 | 15.87 | 1.08 |
SDG11.6.1 | 651 | 81.57 | 21.68 | 2.59 |
SDG11.7.1 | 651 | 25.51 | 22.32 | 2.94 |
SDG12.2.1 | 651 | 71.38 | 22.62 | 3.2 |
SDG12.5.1 | 651 | 61.02 | 24.39 | 1.31 |
SDG15.1.1 | 651 | 13.53 | 18.53 | 2.15 |
SDG15.2 | 651 | 27.93 | 25.56 | 1.64 |
SDG15.4 | 651 | 44.08 | 29.52 | 2.54 |
Test | LM Spatial Error | Robust LM Spatial Error | LM Spatial Lag | Robust LM Spatial Lag | Hausman | LR Test SDM SLM | LR Test SDM SEM | |
---|---|---|---|---|---|---|---|---|
Province | ||||||||
Anhui | 35.59 | 2.97 | 53.78 | 21.16 | −20.33 | 108.95 | 119.55 | |
(0) | (0.085) | (0) | (0) | (<0) | (0) | (0) | ||
Beijing | 130.1 | 5.19 | 129.1 | 4.153 | −38.99 | 179.32 | 185.72 | |
(0) | (0.023) | (0) | (0.042) | (<0) | (0) | (0) | ||
Fujian | 30.84 | 28.55 | 16.61 | 14.31 | −40.26 | 205.12 | 178.81 | |
(0) | (0) | (0) | (0) | (<0) | (0) | (0) | ||
Gansu | 8.67 | 0.002 | 11.49 | 2.82 | 47.79 | 259.18 | 275.79 | |
(0.003) | (0.964) | (0.001) | (0.093) | (0.0012) | (0) | (0) | ||
Guangdong | 17.58 | 13.39 | 41.21 | 37.01 | −23.14 | 169.32 | 152.95 | |
(0) | (0) | (0) | (0) | (<0) | (0) | (0) | ||
Guangxi | 26.7 | 5.556 | 44.99 | 23.85 | −21.91 | 172.3 | 156.6 | |
(0) | (0.018) | (0) | (0) | (<0) | (0) | (0) | ||
Guizhou | 30.56 | 0.434 | 32.59 | 2.466 | −21.89 | 141.77 | 143.17 | |
(0) | (0.51) | (0) | (0.116) | (<0) | (0) | (0) | ||
Hainan | 2.095 | 33.24 | 13.48 | 44.63 | 47.02 | 244.74 | 271.82 | |
(0.148) | (0) | (0) | (0) | (0.0015) | (0) | (0) | ||
Hebei | 61.67 | 4.896 | 94.07 | 37.3 | −12.15 | 75.54 | 73.04 | |
(0) | (0.027) | (0) | (0) | (<0) | (0) | (0) | ||
Henan | 77.66 | 33.66 | 51.33 | 7.327 | −31.44 | 152.49 | 153.59 | |
(0) | (0) | (0) | (0.007) | (<0) | (0) | (0) | ||
Heilong jiang | 0.858 | 20.93 | 0.512 | 20.58 | −10.06 | 348 | 347.89 | |
(0.354) | (0) | (0) | (0) | (<0) | (0) | (0) | ||
Hubei | 49.29 | 0.002 | 58.2 | 8.912 | −17.71 | 134.09 | 127.02 | |
(0) | (0.967) | (0) | (0.003) | (<0) | (0) | (0) | ||
Hunan | 25.78 | 7.512 | 49.39 | 31.12 | −23.9 | 147.37 | 137.21 | |
(0) | (0.006) | (0) | (0) | (<0) | (0) | (0) | ||
Jilin | 1.135 | 46.77 | 25.01 | 70.65 | −26.48 | 211.54 | 306.08 | |
(0.287) | (0) | (0) | (0) | (<0) | (0) | (0) | ||
Jiangsu | 38.12 | 10.23 | 66.81 | 38.91 | −18.8 | 134.71 | 158.67 | |
(0) | (0.001) | (0) | (0) | (<0) | (0) | (0) | ||
Jiangxi | 13.9 | 56.81 | 45.23 | 88.14 | −95.63 | 139.38 | 125.57 | |
(0) | (0) | (0) | (0) | (<0) | (0) | (0) | ||
Liaoning | 6.818 | 22.33 | 30.57 | 46.08 | −13.16 | 212.74 | 262.84 | |
(0.009) | (0) | (0) | (0) | (<0) | (0) | (0) | ||
Nei Mongol | 3.34 | 32.43 | 2.261 | 31.35 | −127 | 327.52 | 400.1 | |
(0.068) | (0) | (0) | (0) | (<0) | (0) | (0) | ||
Ningxia | 3.412 | 9.97 | 10.93 | 17.48 | 139.2 | 348.65 | 354.94 | |
(0.065) | (0.002) | (0.001) | (0) | (0) | (0) | (0) | ||
Qinghai | 0.253 | 5.656 | 1.233 | 6.635 | −115.8 | 399.63 | 297.6 | |
(0.615) | (0.017) | (0.267) | (0.01) | (<0) | (0) | (0) | ||
Shandong | 48.25 | 0.385 | 63.57 | 15.71 | −14.32 | 181.13 | 185.45 | |
(0) | (0.535) | (0) | (0) | (<0) | (0) | (0) | ||
Shanxi | 7.794 | 13.34 | 26.94 | 32.49 | −25.56 | 266.21 | 241.61 | |
(0.005) | (0) | (0) | (0) | (<0) | (0) | (0) | ||
Shaanxi | 3.262 | 6.538 | 13.11 | 16.38 | −19.79 | 260.29 | 298.36 | |
(0.071) | (0.011) | (0) | (0) | (<0) | (0) | (0) | ||
Shanghai | 61.19 | 2.269 | 59.81 | 0.889 | −3.69 | 281.47 | 274.72 | |
(0) | (0.132) | (0) | (0.346) | (<0) | (0) | (0) | ||
Sichuan | 3.166 | 5.585 | 11.24 | 13.66 | −23.54 | 220.31 | 236.99 | |
(0.075) | (0.018) | (0.001) | (0) | (<0) | (0) | (0) | ||
Tianjing | 22.55 | 5.728 | 47.96 | 31.14 | −6.8 | 119.37 | 129.15 | |
(0) | (0.017) | (0) | (0) | (<0) | (0) | (0) | ||
Xizang | 0.046 | 0.258 | 0.002 | 0.214 | −229.9 | 461.58 | 403.97 | |
(0.029) | (0.611) | (0.063) | (0.644) | (<0) | (0) | (0) | ||
Xinjiang | 2.289 | 23.06 | 0.891 | 21.66 | 41.68 | 357.28 | 337.12 | |
(0.13) | (0) | (0) | (0) | (0.00680) | (0) | (0) | ||
Yunnan | 27.66 | 31.57 | 9.418 | 13.33 | 2.93 | 275.63 | 286.55 | |
(0) | (0) | (0) | (0) | (1) | (0) | (0) | ||
Zhejiang | 47.91 | 0.194 | 49.53 | 1.812 | −45.64 | 130.13 | 125.76 | |
(0) | (0.66) | (0) | (0.178) | (<0) | (0) | (0) | ||
Chongqing | 28.18 | 9.984 | 53.19 | 34.99 | −21.85 | 172.61 | 147.2 | |
(0) | (0.002) | (0) | (0) | (<0) | (0) | (0) |
Province | Ind | Both |
---|---|---|
Anhui | 0.6679 | 0.0068 |
Beijing | 0.7036 | \ |
Fujian | 0.6849 | 0.0537 |
Gansu | 0.6958 | 0.0276 |
Guangdong | 0.6868 | 0.1608 |
Guangxi | 0.6925 | 0.0071 |
Guizhou | 0.6942 | 0.0508 |
Hainan | 0.6209 | 0.1727 |
Hebei | 0.6905 | 0.3943 |
Henan | 0.6695 | 0.0162 |
Heilong jiang | 0.6772 | 0.1642 |
Hubei | 0.6819 | 0.3182 |
Hunan | 0.6963 | 0.1046 |
Jilin | 0.5696 | 0.021 |
Jiangsu | 0.6918 | 0.0856 |
Jiangxi | 0.685 | 0.0357 |
Liaoning | 0.6835 | 0.3069 |
Nei Mongol | 0.6836 | 0.0225 |
Ningxia | 0.6991 | 0.1531 |
Qinghai | 0.6991 | 0.0012 |
Shandong | 0.6972 | 0.4073 |
Shanxi | 0.6857 | 0.2835 |
Shaanxi | 0.6974 | 0.1732 |
Shanghai | 0.694 | \ |
Sichuan | 0.6966 | 0.03 |
Tianjing | 0.6845 | 0.3102 |
Xizang | 0.7141 | \ |
Xinjiang | 0.6944 | 0.2579 |
Yunnan | 0.6987 | 0.0002 |
Zhejiang | 0.6866 | 0.15 |
Chongqing | 0.6944 | 0.0034 |
Indicator | Average of Direct Effect | Average of Indirect Effect | Average of Total Effect |
---|---|---|---|
SDG6.3 | −0.0731 | 1.0892 | 1.0800 |
SDG6.4.1 | \ | 0.9863 | 0.8947 |
SDG6.4.2 | \ | −0.6270 | −0.6630 |
SDG6.6 | 0.3213 | −5.3188 | −4.2059 |
SDG6.a | \ | 0.1396 | 0.1403 |
SDG7.1.2 | \ | 0.1607 | 0.0918 |
SDG7.3.1 | 0.0858 | −0.2974 | −0.1009 |
SDG8.1.1 | −0.0338 | 0.0463 | −0.0306 |
SDG9.1.2 | −0.0419 | 0.1926 | 0.1813 |
SDG9.2.1 | 0.1119 | −0.9859 | −0.8227 |
SDG9.4 | \ | 1.3328 | 1.4353 |
SDG9.b.1 | 0.1338 | −0.2971 | −0.1134 |
SDG11.2.1 | \ | −0.5387 | −0.5223 |
SDG11.3.1 | \ | 0.1655 | 0.1705 |
SDG11.6.1 | \ | 0.6828 | 0.8798 |
SDG11.7.1 | 0.0922 | −0.0290 | 0.2980 |
SDG12.2.1 | \ | 0.4358 | 0.7830 |
SDG12.5.1 | \ | −0.5060 | −0.5488 |
SDG15.1.1 | 0.2703 | 0.0870 | 0.6032 |
SDG15.2 | \ | −0.1080 | −0.0715 |
SDG15.4 | −0.2630 | 3.5340 | 3.3798 |
Province | Maximum | Minimum | Average | ||||||
---|---|---|---|---|---|---|---|---|---|
Indicator | Value | Effect Type | Indicator | Value | Effect Type | Direct Effect | Indirect Effect | Total Effect | |
Anhui | SDG15.1.1 | 0.29 | Direct | SDG6.3 | −0.0669 | Direct | 0.0707 | / | / |
Beijing | SDG12.2.1 | 1.328 | Total | SDG7.3.1 | −2.647 | Indirect | 0.0910 | −0.2538 | −0.1874 |
Fujian | SDG6.4.1 | 1.312 | Total | SDG9.2.1 | −1.03 | Indirect | 0.1304 | 0.5430 | 0.5670 |
Gansu | SDG6.4.1 | 0.71 | Indirect | SDG9.2.1 | −1.209 | Indirect | 0.0767 | −0.0989 | −0.0974 |
Guangdong | SDG15.1.1 | 0.264 | Direct | SDG11.6.1 | −1.623 | Indirect | 0.0727 | −1.0108 | −1.0018 |
Guangxi | SDG11.6.1 | 1.715 | Total | SDG6.4.2 | −3.292 | Indirect | 0.0937 | −0.4343 | −0.4075 |
Guizhou | SDG9.4 | 2.235 | Indirect | SDG9.2.1 | −0.769 | Indirect | 0.1061 | 0.3004 | 0.3190 |
Hainan | SDG9.4 | 2.365 | Total | SDG15.1.1 | −1.66 | Indirect | 0.0806 | 0.7784 | 0.9211 |
Hebei | SDG15.4 | 8.056 | Indirect | SDG6.6 | −10.63 | Indirect | 0.0714 | −0.6027 | −0.6017 |
Henan | SDG15.4 | 12.4 | Indirect | SDG6.6 | −15.29 | Indirect | 0.0912 | −0.2632 | −0.2365 |
Heilongjiang | SDG6.4.1 | 1.182 | Indirect | SDG7.3.1 | −1.866 | Indirect | 0.1111 | −0.4598 | −0.5265 |
Hubei | SDG11.6.1 | 2.146 | Total | SDG6.3 | −1.936 | Total | 0.0611 | −0.0138 | −0.0194 |
Hunan | SDG9.4 | 2.633 | Total | SDG15.1.1 | −1.115 | Indirect | 0.0784 | 0.2058 | 2.6330 |
Jilin | SDG6.6 | 8.23 | Total | SDG6.4.2 | −2.43 | Total | 0.1114 | 0.8340 | 0.9050 |
Jiangsu | SDG15.4 | 3.477 | Indirect | SDG12.5.1 | −0.573 | Indirect | 0.0757 | 0.5461 | 0.1183 |
Jiangxi | SDG6.6 | 0.351 | Direct | SDG15.4 | −3.551 | Total | 0.1140 | −1.6323 | −3.5510 |
Liaoning | SDG6.3 | 2.166 | Indirect | SDG11.2.1 | −0.85 | Indirect | 0.0836 | 0.6100 | 0.6020 |
Nei mongol | SDG15.1.1 | 2.932 | Total | SDG9.b.1 | −0.788 | Total | 0.0573 | 0.4350 | 0.5924 |
Ningxia | SDG7.3.1 | 0.654 | Total | SDG15.2 | −0.249 | Direct | 0.0646 | 0.2322 | 0.3098 |
Qinghai | SDG6.6 | 1.248 | Total | SDG15.1.1 | −2.026 | Indirect | 0.0799 | −0.6404 | −0.5391 |
Shandong | SDG6.3 | 5.409 | Indirect | SDG6.6 | −11.28 | Indirect | 0.1233 | −0.6105 | −0.5888 |
Shanxi | SDG9.4 | 1.903 | Total | SDG9.2.1 | −0.774 | Indirect | 0.1509 | 0.4583 | 0.7027 |
Shaanxi | SDG7.3.1 | 0.939 | Total | SDG15.1.1 | −1.198 | Indirect | 0.1302 | −0.0475 | 0.1953 |
Shanghai | SDG6.3 | 7.424 | Indirect | SDG11.2.1 | −0.174 | Indirect | 0.1457 | 1.5297 | 1.7957 |
Sichuan | SDG7.3.1 | 1.5 | Total | SDG9.2.1 | −1.227 | Indirect | 0.0838 | 0.1375 | 0.1884 |
Tianjing | SDG6.3 | 1.568 | Indirect | SDG6.4.1 | −0.304 | Total | 0.0714 | 0.3426 | 0.3526 |
Xizang | SDG15.4 | 4.412 | Indirect | SDG6.6 | −3.52 | Indirect | 0.0942 | 0.1934 | 0.2478 |
Xinjiang | SDG9.4 | 1.142 | Indirect | SDG9.b.1 | −0.471 | Indirect | 0.0651 | 0.0413 | 0.3476 |
Yunnan | SDG9.4 | 1.42 | Indirect | SDG11.2.1 | −0.942 | Indirect | 0.1043 | 0.5568 | 0.4674 |
Zhejiang | SDG6.4.1 | 0.873 | Indirect | SDG11.7.1 | −0.476 | Indirect | 0.1115 | 0.3098 | 0.5063 |
Chongqing | SDG6.4.1 | 0.913 | Indirect | SDG12.5.1 | −0.664 | Indirect | 0.0995 | −0.0980 | 0.1285 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Chen, Y.; Chen, F. Analysis of the Factors Influencing the Spatial Distribution of PM2.5 Concentrations (SDG 11.6.2) at the Provincial Scale in China. Sustainability 2024, 16, 3394. https://doi.org/10.3390/su16083394
Li J, Chen Y, Chen F. Analysis of the Factors Influencing the Spatial Distribution of PM2.5 Concentrations (SDG 11.6.2) at the Provincial Scale in China. Sustainability. 2024; 16(8):3394. https://doi.org/10.3390/su16083394
Chicago/Turabian StyleLi, Jun, Yu Chen, and Fang Chen. 2024. "Analysis of the Factors Influencing the Spatial Distribution of PM2.5 Concentrations (SDG 11.6.2) at the Provincial Scale in China" Sustainability 16, no. 8: 3394. https://doi.org/10.3390/su16083394
APA StyleLi, J., Chen, Y., & Chen, F. (2024). Analysis of the Factors Influencing the Spatial Distribution of PM2.5 Concentrations (SDG 11.6.2) at the Provincial Scale in China. Sustainability, 16(8), 3394. https://doi.org/10.3390/su16083394