A Proposed Circular Economy Model for Hospital Bio-Waste Management in Municipal Settings
Abstract
:1. Introduction
2. Literature Review
3. Material and Methods
3.1. Method Research Structure—Scientific Questions and Research Objectives
- PIS: This alternative maximizes benefits (offering higher scores for positive criteria like resource recovery) and minimizes costs (lower scores for negative criteria like environmental impact).
- NIS: This alternative minimizes benefits and maximizes costs, representing the least favorable outcome.
- For each criterion, we state the following:
- PIS = {max value for benefit criteria, min value for cost criteria}.
- NIS = {min value for benefit criteria, max value for cost criteria}.
3.2. Applying the Decision-Making Methodology to Hospital Bio-Waste Management in the City of Athens
- Composting: Relative closeness = 0.781.
- Sanitary landfill: Relative closeness = 0.529.
3.3. Evaluation Methodology Description
4. Strategic Implementation and Evaluation of the Bio-Waste Collection System for Hospitals in Athens: A Case Study
Optimizing Processes: The Methodological Framework for a Hospital Bio-Waste Collection System
5. Findings. How Is CE Implemented in Hospital Bio-Waste Management?
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sepetis, A.; Zaza, P.N.; Rizos, F.; Bagos, P.G. Identifying and Predicting Healthcare Waste Management Costs for an Optimal Sustainable Management System: Evidence from the Greek Public Sector. Int. J. Environ. Res. Public Health 2022, 19, 9821. [Google Scholar] [CrossRef] [PubMed]
- Ferronato, N.; Torretta, V. Waste Mismanagement in Developing Countries: A Review of Global Issues. Int. J. Environ. Res. Public Health 2019, 16, 1060. [Google Scholar] [CrossRef] [PubMed]
- MacNeill, A.J.; Hopf, H.; Khanuja, A.; Alizamir, S.; Bilec, M.; Eckelman, M.J.; Hernandez, L.; McGain, F.; Simonsen, K.; Thiel, C.; et al. Transforming the medical device industry: Road map to a circular economy: Study examines a medical device industry transformation. Health Aff. 2020, 12, 2088–2097. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, C.; Szopik-Depczyńska, K.; Tarczyńska-Łuniewska, M.; Silvestri, C.; Ioppolo, G. Exploring Circular Economy Practices in the Healthcare Sector: A Systematic Review and Bibliometric Analysis. Sustainability 2024, 16, 401. [Google Scholar] [CrossRef]
- Klemeš, J.J.; Fan, Y.V.; Tan, R.R.; Jiang, P. Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renew. Sustain. Energy Rev. 2020, 127, 109883. [Google Scholar] [CrossRef]
- Suárez, M.Á.; Gambuzzi, E.; Soriano Disla, J.M.; Castejón, G.; Poggiaroni, G.; Ling, J. ROOTS—Circular policies for changing the biowaste system. Open Res. Eur. 2023, 3, 78. [Google Scholar] [CrossRef] [PubMed]
- Bolton, A. From Health Sector Waste Minimisation Towards a Circular Economy. Available online: https://www.esr.cri.nz/media/jejnzskx/esr-environmental-health-report-dhb-waste-report.pdf (accessed on 10 November 2024).
- Mahjoob, A.; Alfadhli, Y.; Omachonu, V. Healthcare waste and sustainability: Implications for a circular economy. Sustainability 2023, 15, 7788. [Google Scholar] [CrossRef]
- MacNeill, A.J.; Lillywhite, R.; Brown, C.J. The impact of surgery on global climate: A carbon footprinting study of operating theatres in three health systems. Lancet Planet. Health 2017, 1, e381–e388. [Google Scholar] [CrossRef]
- Rangga, J.U.; Josfirin Syed Ismail, S.; Rasdi, I.; Karuppiah, K. Waste Management Costs Reduction and the Recycling Profit Estimation from the Segregation Programme in Malaysia. Pertanika J. Sci. Technol. 2022, 30, 1457–1478. [Google Scholar] [CrossRef]
- World Economic Forum. Circular Economy in Cities: Evolving the Model for a Sustainable Urban Future. White Paper. Available online: https://www.weforum.org/publications/circular-economy-in-cities-evolving-the-model-for-a-sustainable-urban-future/ (accessed on 10 November 2024).
- Rajeswari, B. Procedural Bio-Medical Waste Management-A Comparison with International Standards. Bonfring Int. J. Ind. Eng. Manag. Sci. 2012, 2, 174–180. [Google Scholar] [CrossRef]
- Sharma, H.B.; Vanapalli, K.R.; Samal, B.; Cheela, V.R.S.; Dubey, B.K.; Bhattacharya, J. Circular economy approach in solid waste management system to achieve UN-SDGs: Solutions for post-COVID recovery. Sci. Total Environ. 2021, 800, 149605. [Google Scholar] [CrossRef] [PubMed]
- Kenny, C.; Priyadarshini, A. Review of Current Healthcare Waste Management Methods and Their Effect on Global Health. Healthcare 2021, 9, 284. [Google Scholar] [CrossRef] [PubMed]
- Vego, G.; Kučar-Dragičević, S.; Koprivanac, N. Application of multi-criteria decision-making on strategic municipal solid waste management in Dalmatia, Croatia. Waste Manag. 2008, 28, 2192–2201. [Google Scholar] [CrossRef]
- Kharat, M.G.; Murthy, S.; Kamble, S.J.; Raut, R.D.; Kamble, S.S.; Kharat, M.G. Fuzzy multi-criteria decision analysis for environmentally conscious solid waste treatment and disposal technology selection. Technol. Soc. 2019, 57, 20–29. [Google Scholar] [CrossRef]
- Circular Economy Strategies for Healthcare Sustainability: Some Insights from Italy. In Grand Challenges: Companies and Universities Working for a Better Society—Referred Electronic Conference Proceedings, Proceedings of the Sinergie-SIMA 2020 Conference, Pisa, Italy, 7–8 September 2020; FONDAZIONE CUEIM: Verona, Italy, 2020; Part I; p. 91. Available online: https://iris.unica.it/retrieve/handle/11584/303938/431246/FP-CONFERENCE-PROCEEDINGS-2020-PARTE-I.pdf#page=105 (accessed on 10 November 2024).
- Sasmoko; Zaman, K.; Malik, M.; Awan, U.; Handayani, W.; Jabor, M.K.; Asif, M. Environmental Effects of Bio-Waste Recycling on Industrial Circular Economy and Eco-Sustainability. Recycling 2022, 7, 60. [Google Scholar] [CrossRef]
- Marasca, S.; Montanini, L.; D’Andrea, A.; Cerioni, E. The how and why of integrated reporting in a public health care organization: The stakeholders’ perspective. Bus. Strategy Environ. 2020, 29, 1714–1722. [Google Scholar] [CrossRef]
- Kaur, M. Biowaste: Introduction, Origin, and Management. In Sustainable Food Waste Management; Aslam, R., Mobin, M., Aslam, J., Eds.; Materials Horizons: From Nature to Nanomaterials; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- Domingo, J.L.; Nadal, M. Domestic waste composting facilities: A review of human health risks. Environ. Int. 2009, 35, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Jeong, Y.; Lee, K.; In, J. Environmental sustainability in health care: An empirical investigation of US hospitals. Bus. Strategy Environ. 2024, 33, 6045–6065. [Google Scholar] [CrossRef]
- Janik-Karpinska, E.; Brancaleoni, R.; Niemcewicz, M.; Wojtas, W.; Foco, M.; Podogrocki, M.; Bijak, M. Healthcare Waste—A Serious Problem for Global Health. Healthcare 2023, 11, 242. [Google Scholar] [CrossRef] [PubMed]
- Rolewicz-Kalińska, A.; Lelicińska-Serafin, K.; Manczarski, P. The Circular Economy and Organic Fraction of Municipal Solid Waste Recycling Strategies. Energies 2020, 13, 4366. [Google Scholar] [CrossRef]
- D’Adamo, I.; Marcello Falcone, P.; Huisingh, D.; Piergiuseppe, M. A circular economy model based on biomethane: What are the opportunities for the municipality of Rome and beyond? Renew. Energy 2021, 163, 1660–1672. [Google Scholar] [CrossRef]
- Ferreira, F.; Avelino, C.; Bentes, I.; Matos, C.; Teixeira, C.A. Assessment strategies for municipal selective waste collection schemes. Waste Manag. 2017, 59, 3–13. [Google Scholar] [CrossRef]
- Health Care Without Harm (Europe). Measuring and Reducing Plastics in the Healthcare Sector. Available online: https://europe.noharm.org/sites/default/files/documents-files/6608/2020-11_HCWH-Europe-position-paper-waste.pdf (accessed on 10 November 2024).
- Seruga, P. The Municipal Solid Waste Management System with Anaerobic Digestion. Energies 2021, 14, 2067. [Google Scholar] [CrossRef]
- Mir, M.A.; Ghazvinei, P.T.; Sulaiman, N.M.N.; Basri, N.E.A.; Saheri, S.; Mahmood, N.Z.; Jahan, A.; Begum, R.A.; Aghamohammadi, N. Application of TOPSIS and VIKOR improved versions in a multi criteria decision analysis to develop an optimized municipal solid waste management model. J. Environ. Manag. 2016, 166, 109–115. [Google Scholar] [CrossRef]
- World Economic Forum (2020). Circular Economy in Urban Waste Management. Available online: https://www.weforum.org/stories/circular-economy/ (accessed on 10 November 2024).
- Moya, D.; Aldás, C.; López, G.; Kaparaju, P. Municipal solid waste as a valuable renewable energy resource: A worldwide opportunity of energy recovery by using Waste-To-Energy Technologies. Energy Procedia 2017, 134, 286–295. [Google Scholar] [CrossRef]
- Sepetis, A.; Georgantas, K.; Nikolaou, I. Innovative Strategies for Bio-Waste Collection in Major Cities during the COVID-19 Pandemic: A Comprehensive Model for Sustainable Cities—The City of Athens Experience. Urban Sci. 2024, 8, 80. [Google Scholar] [CrossRef]
- Singh, N.; Ogunseitan, O.A.; Tang, Y. Medical waste: Current challenges and future opportunities for sustainable management. Crit. Rev. Environ. Sci. Technol. 2021, 52, 2000–2022. [Google Scholar] [CrossRef]
- Separate Collection of Municipal Waste. Available online: https://edsna.gr/ergostasio-mixanikis-anakiklosis/ (accessed on 10 November 2024).
- Schwarz-Herion, O.; Omran, A.; Rapp, H.P. A case study on successful municipal solid waste management in industrialized countries by the example of Karlsruhe city, Germany. J. Eng. Ann. Fac. Eng. Hunedoara 2008, 5, 266–273. [Google Scholar]
- Hansen, D.; Mikloweit, U.; Ross, B.; Popp, W. Healthcare waste management in Germany. Int. J. Infect. Control 2014, 10, 1–5. [Google Scholar] [CrossRef]
- España Circular 2030: The New Circular Economy Strategy for a #FuturoSostenible in Spain. Available online: https://circulareconomy.europa.eu/platform/en/strategies/espana-circular-2030-new-circular-economy-strategy-futurosostenible-spain (accessed on 10 November 2024).
- Gasum. Biogas Plants—Supply Chain. Available online: https://www.gasum.com/en/gasum/supply-chain/biogas-plants/ (accessed on 10 November 2024).
- Ncube, M.M.; Ngulube, P. Enhancing environmental decision-making: A systematic review of data analytics applications in monitoring and management. Discov. Sustain. 2024, 5, 290. [Google Scholar] [CrossRef]
- Anagnostopoulos, T.; Zaslavsky, A.; Kolomvatsos, K.; Medvedev, A.; Amirian, P.; Morley, J.; Hadjieftymiades, S. Challenges and Opportunities of Waste Management in IoT-Enabled Smart Cities: A Survey. IEEE Trans. Sustain. Comput. 2017, 2, 275–289. [Google Scholar] [CrossRef]
- Nižetić, S.; Djilali, N.; Papadopoulos, A.; Rodrigues, J.J.P.C. Smart technologies for promotion of energy efficiency, utilization of sustainable resources and waste management. J. Clean. Prod. 2019, 231, 565–591. [Google Scholar] [CrossRef]
- HPRC. A Medical Waste Recycling Best Practice of The Netherlands. Available online: https://www.hprc.org/a-medical-waste-recycling-best-practice-of-the-netherlands/ (accessed on 10 November 2024).
- CORDIS. Simplifying Hospital Waste with Bio-Based Disposables. Available online: https://cordis.europa.eu/article/id/123222-simplifying-hospital-waste-with-biobased-disposables (accessed on 10 November 2024).
- EBA. Circular Economy and Waste Management. Available online: https://www.europeanbiogas.eu/circular-economy-and-waste-legislation/ (accessed on 10 November 2024).
- Sharma, A.; Soni, R.; Soni, S.K. From waste to wealth: Exploring modern composting innovations and compost valorization. J. Mater. Cycles Waste Manag. 2024, 26, 20–48. [Google Scholar] [CrossRef]
- NHS Health Technical Memorandum 07-01: Safe and Sustainable Management of Healthcare Waste. Available online: https://www.england.nhs.uk/wp-content/uploads/2021/05/B2159iii-health-technical-memorandum-07-01.pdf (accessed on 10 November 2024).
- Uzun Ozsahin, D.; Gökçekuş, H.; Uzun, B.; LaMoreaux, J. (Eds.) Application of Multi-Criteria Decision Analysis in Environmental and Civil Engineering, 1st ed.; Professional Practice in Earth Sciences; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Dabija, D.; Nastase, C.-E.; Chetrariu, A.; Dabija, A. Multi-Criteria Analysis in Circular Economy Principles: Using AHP Model for Risk Assessment in Sustainable Whisky Production. Computation 2024, 12, 206. [Google Scholar] [CrossRef]
- Hassan, I.; Alhamrouni, I.; Azhan, N.H. A CRITIC–TOPSIS Multi-Criteria Decision-Making Approach for Optimum Site Selection for Solar PV Farm. Energies 2023, 16, 4245. [Google Scholar] [CrossRef]
- Greek Ministry of Health. Available online: https://www.moh.gov.gr/articles/bihealth/stoixeia-noshleytikhs-kinhshs/11344-klines-noshleythentes-hmeres-noshleias-2022 (accessed on 10 November 2024).
- Bala, A.; Raugei, M.; Teixeira, C.A.; Fernández, A.; Pan-Montojo, F.; Fullana-i-Palmer, P. Assessing the Environmental Performance of Municipal Solid Waste Collection: A New Predictive LCA Model. Sustainability 2021, 13, 5810. [Google Scholar] [CrossRef]
Criterion | Composting | Sanitary Landfill |
---|---|---|
Environmental Impact | 85 | 45 |
Cost Efficiency | 65 | 80 |
Resource Recovery | 90 | 25 |
Scalability | 55 | 95 |
Stakeholder Acceptance | 70 | 50 |
Criterion | Composting | Sanitary Landfill |
---|---|---|
Environmental Impact | 0.875 | 0.462 |
Cost Efficiency | 0.622 | 0.766 |
Resource Recovery | 0.955 | 0.265 |
Scalability | 0.500 | 0.866 |
Stakeholder Acceptance | 0.777 | 0.555 |
Criterion | Composting | Sanitary Landfill |
---|---|---|
Environmental Impact | 0.262 | 0.138 |
Cost Efficiency | 0.093 | 0.115 |
Resource Recovery | 0.191 | 0.053 |
Scalability | 0.050 | 0.087 |
Stakeholder Acceptance | 0.194 | 0.138 |
Alternative | Distance to PIS | Distance to NIS |
---|---|---|
Composting | 0.345 | 0.781 |
Sanitary Landfill | 0.652 | 0.529 |
Year | Hospitals | Total Beds | Bio-Waste (Kg) | Bio-Waste Per Bed (Kg/Bed) |
---|---|---|---|---|
2021 | 18 | 7.224 | 599.456 | 83 |
2022 | 20 | 7.857 | 667.224 | 85 |
2023 | 20 | 7.843 | 808.044 | 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sepetis, A.; Georgantas, K.; Nikolaou, I. A Proposed Circular Economy Model for Hospital Bio-Waste Management in Municipal Settings. Sustainability 2025, 17, 5. https://doi.org/10.3390/su17010005
Sepetis A, Georgantas K, Nikolaou I. A Proposed Circular Economy Model for Hospital Bio-Waste Management in Municipal Settings. Sustainability. 2025; 17(1):5. https://doi.org/10.3390/su17010005
Chicago/Turabian StyleSepetis, Anastasios, Konstantinos Georgantas, and Ioannis Nikolaou. 2025. "A Proposed Circular Economy Model for Hospital Bio-Waste Management in Municipal Settings" Sustainability 17, no. 1: 5. https://doi.org/10.3390/su17010005
APA StyleSepetis, A., Georgantas, K., & Nikolaou, I. (2025). A Proposed Circular Economy Model for Hospital Bio-Waste Management in Municipal Settings. Sustainability, 17(1), 5. https://doi.org/10.3390/su17010005