The Impact of Differential Settlement on Sloshing Dynamics in Coastal Zone Storage Tanks Under External Excitation: Implications for Sustainable Development
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Validation of Experimental Results
3.2. The Time Histories of Sloshing Liquid Under Horizontal and Tilted Conditions
3.3. The Effect of Excitation Amplitude on Sloshing Liquid Response
3.4. The Free Surface Elevation Affected by Different Tilted Angles
3.4.1. The Unstable Stage
3.4.2. The Stable Stage
3.4.3. The Comparison Between the Unstable Stage and the Stable Stage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.; Lin, Y. Buckling of cylindrical open-topped steel tanks under wind load. Thin-Walled Struct. 2014, 79, 83–94. [Google Scholar] [CrossRef]
- Jin, H.; Calabrese, A.; Liu, Y. Effects of different damping baffle configurations on the dynamic response of a liquid tank under seismic excitation. Eng. Struct. 2021, 229, 111652. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Kim, Y.; Kim, K.-H. Statistical analysis of sloshing-induced random impact pressures. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2013, 228, 235–248. [Google Scholar] [CrossRef]
- Hashimoto, H.; Hata, Y.; Kawamura, K. Estimation of oil overflow due to sloshing from oil storage tanks subjected to a possible Nankai Trough earthquake in Osaka bay area. J. Loss Prev. Process Ind. 2017, 50, 337–346. [Google Scholar] [CrossRef]
- Abramson, H.N. The Dynamic Behavior of Liquids in Moving Containers. NASA SP-106. NASA Spec. Publ. 1966, 106, 1–12. [Google Scholar]
- Zheng, J.-H.; Xue, M.-A.; Dou, P.; He, Y.-M. A review on liquid sloshing hydrodynamics. J. Hydrodyn. 2022, 33, 1089–1104. [Google Scholar] [CrossRef]
- Xie, F.; Liu, Y.; Zhu, Y.; Feng, Z.; Lu, D.; Zhang, F.; Zhou, Y. Experimental, theoretical, and numerical investigation on sloshing behavior in annular sectored containers. Phys. Fluids 2024, 36, 102109. [Google Scholar] [CrossRef]
- Liu, D.; Tang, W.; Wang, J.; Xue, H.; Wang, K. Comparison of laminar model, RANS, LES and VLES for simulation of liquid sloshing. Appl. Ocean. Res. 2016, 59, 638–649. [Google Scholar] [CrossRef]
- Sakai, F.; Nishimura, M.; Ogawa, H. Sloshing behavior of floating-roof oil storage tanks. Comput. Struct. 1984, 19, 183–192. [Google Scholar] [CrossRef]
- Faltinsen, O.M.; Timokha, A.N. Analytically approximate natural sloshing modes for a spherical tank shape. J. Fluid Mech. 2012, 703, 391–401. [Google Scholar] [CrossRef]
- Faltinsen, O.; Timokha, A. Analytically approximate natural sloshing modes and frequencies in two-dimensional tanks. Eur. J. Mech. B/Fluids 2014, 47, 176–187. [Google Scholar] [CrossRef]
- Kurihara, C.; Masuko, Y.; Sakurai, A. Sloshing Impact Pressure in Roofed Liquid Tanks. J. Press. Vessel. Technol. 1994, 116, 193–200. [Google Scholar] [CrossRef]
- Jiang, M.-R.; Ren, B.; Wang, G.-Y.; Wang, Y.-X. Laboratory investigation of the hydroelastic effect on liquid sloshing in rectangular tanks. J. Hydrodyn. 2014, 26, 751–761. [Google Scholar] [CrossRef]
- Wang, L.-S.; Wang, Z.; Li, Y.-C. Two-dimensional nonlinear parametric sloshing in the irregular tanks: Numerical analysis and experimental investigation. J. Vibroengineering 2017, 19, 2153–2163. [Google Scholar] [CrossRef]
- Hernandez-Hernandez, D.; Larkin, T.; Chouw, N.; Banide, Y. Experimental findings of the suppression of rotary sloshing on the dynamic response of a liquid storage tank. J. Fluids Struct. 2020, 96, 103007. [Google Scholar] [CrossRef]
- Luo, H.; Wu, W.; Jiang, B.; Guo, S.; Huang, L.; Yue, B. Experiments and analysis of dynamic characteristics of liquid sloshing in horizontal Cassini tank. Phys. Scr. 2023, 98, 075007. [Google Scholar] [CrossRef]
- Cui, L.; Sun, J.; Liu, W.; Wang, Z.; Li, X. Study on Sloshing Effect of Vertical Storage Tank with Displacement Seismic Excitation. J. Press. Vessel. Technol. 2021, 143, 021401. [Google Scholar] [CrossRef]
- Gurusamy, S.; Kumar, D. Experimental study on nonlinear sloshing frequency in shallow water tanks under the effects of excitation amplitude and dispersion parameter. Ocean. Eng. 2020, 213, 107761. [Google Scholar] [CrossRef]
- Tao, K.; Zhou, X.; Ren, H. A Novel Improved Coupled Dynamic Solid Boundary Treatment for 2D Fluid Sloshing Simulation. J. Mar. Sci. Eng. 2021, 9, 1395. [Google Scholar] [CrossRef]
- Su, Y.; Yuan, X.; Shi, S. Numerical and Experimental Studies of Shallow-Water Sloshing Motions in a Prismatic Tank. Shock. Vib. 2024, 2024, 8130844. [Google Scholar] [CrossRef]
- Nan, M.; Li, J.; Wang, T. Equivalent mechanical model of large-amplitude liquid sloshing under time-dependent lateral excitations in low-gravity conditions. J. Sound Vib. 2017, 386, 421–432. [Google Scholar] [CrossRef]
- Li, J.-C.; Lin, H.; Li, K.; Zhao, J.-F.; Hu, W.-R. Liquid Sloshing in Partially Filled Capsule Storage Tank Undergoing Gravity Reduction to Low/Micro-Gravity Condition. Microgravity Sci. Technol. 2020, 32, 587–596. [Google Scholar] [CrossRef]
- Liu, Z.; Yuan, K.; Liu, Y.; Qiu, Y.; Lei, G. Fluid sloshing thermo-mechanical characteristic in a cryogenic fuel storage tank under different gravity acceleration levels. Int. J. Hydrog. Energy 2022, 47, 25007–25021. [Google Scholar] [CrossRef]
- Lu, J.; Yang, Z.; Wu, H.; Wu, W.; Deng, J.; Yan, S. Effects of tank sloshing on submerged oil leakage from damaged tankers. Ocean. Eng. 2018, 168, 155–172. [Google Scholar] [CrossRef]
- Zhang, Y.; Wan, D. MPS-FEM coupled method for sloshing flows in an elastic tank. Ocean. Eng. 2018, 152, 416–427. [Google Scholar] [CrossRef]
- Jiang, Z.; Shi, Z.; Jiang, H.; Huang, Z.; Huang, L. Investigation of the load and flow characteristics of variable mass forced sloshing. Phys. Fluids 2023, 35, 033325. [Google Scholar] [CrossRef]
- Cao, W.; Li, X.; Gao, Y.; Li, X.; Liu, Z. A numerical analysis of sloshing dynamics of two-layer liquid with a free surface. Ocean. Eng. 2023, 268, 113295. [Google Scholar] [CrossRef]
- Feng, Y.-S.; Wu, Z.-G.; Jin, W.; Wang, J. Surface temperature and infrared characteristics of oil storage tank. In Proceedings of the ICOSM 2020: Optoelectronic Science and Materials, Hefei, China, 25–27 September 2020. [Google Scholar]
- Hosseini, S.E.A.; Beskhyroun, S. Fluid storage tanks: A review on dynamic behaviour modelling, seismic energy-dissipating devices, structural control, and structural health monitoring techniques. Structures 2023, 49, 537–556. [Google Scholar] [CrossRef]
- Godoy, L.; Sosa, E. Localized support settlements of thin-walled storage tanks. Thin-Walled Struct. 2003, 41, 941–955. [Google Scholar] [CrossRef]
- Bohra, H.; Guzey, S. Fitness-for-service of open-top storage tanks subjected to differential settlement. Eng. Struct. 2020, 225, 111277. [Google Scholar] [CrossRef]
- Ignatowicz, R.; Hotala, E. Failure of cylindrical steel storage tank due to foundation settlements. Eng. Fail. Anal. 2020, 115, 104628. [Google Scholar] [CrossRef]
- Lenzi, M.; Campana, P. Ovalization of Steel Storage Tanks as a Result of Differential Settlements. Struct. Eng. Int. 2008, 18, 403–411. [Google Scholar] [CrossRef]
- Zhao, Y.; Lei, X.; Zhang, X. Stability Analysis of Floating-Roof Tanks under Differential Settlement. Adv. Mater. Res. 2010, 163–167, 55–60. [Google Scholar] [CrossRef]
- Hotala, E.; Ignatowicz, R. Effect of settlement of foundations on the failure risk of the bottom of cylindrical steel vertical tanks for liquids. Stud. Geotech. Et Mech. 2019, 41, 171–176. [Google Scholar] [CrossRef]
- Wei, L.X.; Li, X.Y.; Ji, D.W. Structure Analysis of Large Steel Crude Oil Tank under the Planar Inclined Foundation. Adv. Mater. Res. 2013, 743, 142–145. [Google Scholar] [CrossRef]
- Gao, F.; Zhao, T.; Wang, W.; Zhang, X.; Zheng, L. Analysis and risk evaluation of current land subsidence in Ningbo City. Chin. J. Geol. Hazard Control. 2023, 34, 127–135. [Google Scholar] [CrossRef]
- Chen, W.; Haroun, M.A.; Liu, F. Large Amplitude Liquid Sloshing in Seismically Excited Tanks. Earthq. Eng. Struct. Dyn. 1996, 25, 653–669. [Google Scholar] [CrossRef]
- Chen, Y.; Hwang, W.; Ko, C. Sloshing behaviours of rectangular and cylindrical liquid tanks subjected to harmonic and seismic excitations. Earthq. Eng. Struct. Dyn. 2007, 36, 1701–1717. [Google Scholar] [CrossRef]
- Hoskins, L.M.; Jacobsen, L.S. Water pressure in a tank caused by a simulated earthquake. Bulletion Seismol. Soc. Am. 1934, 24, 1–32. [Google Scholar] [CrossRef]
- Haroun, M.A.; Abou-Izzeddine, W. Parametric study of seismic soil-tank interaction. I: Horizontal excitation. J. Struct. Eng. 1992, 118, 783–797. [Google Scholar] [CrossRef]
- Malhotra, P.K.; Wenk, T.; Wieland, M. Simple Procedure for Seismic Analysis of Liquid-Storage Tanks. Struct. Eng. Int. 2000, 10, 197–201. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Y.; Wan, H.; Jin, X.; Wang, B.; Li, B.; Wang, Y. Sloshing response in rectangular water tanks under seismic actions considering resonant effects. Phys. Fluids 2024, 36, 123632. [Google Scholar] [CrossRef]
- Jin, X.; Dai, C.; Tao, Y.; Chen, J.; Liu, M.-M.; Zhang, C. Effects of seismic characteristics and baffle damping on liquid sloshing. Phys. Fluids 2024, 36, 013613. [Google Scholar] [CrossRef]
- Jin, H.; Song, R.; Liu, Y. Sloshing Motion in a Real-Scale Water Storage Tank under Nonlinear Ground Motion. Water 2020, 12, 2098. [Google Scholar] [CrossRef]
- Lamb, H. Hydrodynamics; Cambridge University Press: Cambridge, UK, 1932. [Google Scholar]
- API Standard 653; Tank Inspection, Repair, Alteration, and Reconstruction. American Petroleum Institute: Washington, DC, USA, 2001.
- Faltinsen, O.M. Sloshing. Adv. Mech. 2017, 47, 201701. [Google Scholar]
- Linton, C.; McIver, P. Handbook of Mathematical Techniques for Wave/Structure Interactions; Chapman & Hall/CRC: Boca Raton, FL, USA, 2001. [Google Scholar]
States | Standards | Values |
---|---|---|
Critical depth | d/L = 0.3368 | d/L = 0.34 |
Finite liquid depth | 0.2–0.25 < d/L < 1.0 | d/L = 0.60 |
Motion | Displacement (Angle) | Velocity | Acceleration | Position Accuracy | Repeat Positioning Accuracy |
---|---|---|---|---|---|
Rotary | ±25° | ±60°/s | 120°/s2 | ≤0.05° | ≤0.04° |
Linear | ±250 mm | 500 mm/s | 4900 mm/s2 | ≤0.05 mm | ≤0.02 mm |
Parameters | Value |
---|---|
Sampling frequency | 100 Hz |
Operating range | 500 mm |
Working temperature | 0–40 °C |
d/L [-] | ω/ω1 [-] | A0 [m] | θ [°] |
---|---|---|---|
0.34 | 1.00 | 0.0003 | 0–10 (interval 1) |
0.0005 | |||
0.0020 | |||
1.90 | 0.0003 | ||
0.0005 | |||
0.0020 | |||
0.60 | 1.00 | 0.0003 | |
0.0005 | |||
0.0020 | |||
1.79 | 0.0003 | ||
0.0005 | |||
0.0020 |
d/L [-] | ω1 [rad/s] | ω3 [rad/s] |
---|---|---|
0.34 | 6.53 | 12.41 (1.90 ω1) |
0.60 | 6.94 | 12.43 (1.79 ω1) |
d/L [-] | 0.34 | 0.60 | ||||||
---|---|---|---|---|---|---|---|---|
ω/ω1 [-] | 1.00 | 1.90 | 1.00 | 1.79 | ||||
α [°] | Hmax [m] | Hstable/A0 [-] | Hmax [m] | Hstable/A0 [-] | Hmax [m] | Hstable/A0 [-] | Hmax [m] | Hstable/A0 [-] |
0 | 0.101 | 65.00 | 0.044 | 28.50 | 0.159 | 100.50 | 0.039 | 21.00 |
8 | 0.103 | 46.80 | 0.085 | 27.10 | 0.174 | 85.70 | 0.083 | 25.70 |
α [°] | 0 | 8 | ||||||
---|---|---|---|---|---|---|---|---|
ω/ω1 [-] | 1.00 | 1.90 | 1.00 | 1.90 | ||||
A0 [m] | Hmax [m] | Hstable/A0 [-] | Hmax [m] | Hstable/A0 [-] | Hmax [m] | Hstable/A0 [-] | Hmax [m] | Hstable/A0 [-] |
0.0003 | 0.0178 | 83.50 | 0.0040 | 23.20 | 0.0504 | 51.80 | 0.0482 | 48.10 |
0.0005 | 0.0228 | 67.70 | 0.0091 | 32.20 | 0.0553 | 42.00 | 0.0604 | 65.60 |
0.0020 | 0.1009 | 65.40 | 0.0444 | 28.60 | 0.1029 | 46.80 | 0.0852 | 27.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, H.; Lu, J.; Liu, Y.; Shen, J.; Zhang, F.; Zhu, C.; Li, S. The Impact of Differential Settlement on Sloshing Dynamics in Coastal Zone Storage Tanks Under External Excitation: Implications for Sustainable Development. Sustainability 2025, 17, 1029. https://doi.org/10.3390/su17031029
Jin H, Lu J, Liu Y, Shen J, Zhang F, Zhu C, Li S. The Impact of Differential Settlement on Sloshing Dynamics in Coastal Zone Storage Tanks Under External Excitation: Implications for Sustainable Development. Sustainability. 2025; 17(3):1029. https://doi.org/10.3390/su17031029
Chicago/Turabian StyleJin, Heng, Jintao Lu, Yi Liu, Jianmin Shen, Fashui Zhang, Chenhao Zhu, and Shu Li. 2025. "The Impact of Differential Settlement on Sloshing Dynamics in Coastal Zone Storage Tanks Under External Excitation: Implications for Sustainable Development" Sustainability 17, no. 3: 1029. https://doi.org/10.3390/su17031029
APA StyleJin, H., Lu, J., Liu, Y., Shen, J., Zhang, F., Zhu, C., & Li, S. (2025). The Impact of Differential Settlement on Sloshing Dynamics in Coastal Zone Storage Tanks Under External Excitation: Implications for Sustainable Development. Sustainability, 17(3), 1029. https://doi.org/10.3390/su17031029