A Model-Data Dual-Driven Approach for Predicting Shared Bike Flow near Metro Stations
Abstract
:1. Introduction
2. Literature Review
2.1. Model-Driven Methods
2.2. Data-Driven Techniques
3. Methodology
3.1. SARIMA-xLSTM Fusion Model Architecture
3.2. SARIMA Component
3.3. Extended LSTM (xLSTM) Component
3.3.1. Causal Convolution Layer
3.3.2. Scalar LSTM (sLSTM) Block
3.3.3. Matrix LSTM (mLSTM) Block
3.3.4. Hierarchical Output Layer
3.3.5. Model Training
3.4. Weight Optimization of the Fusion Model
3.5. Evaluation Metrics
4. Experiment
4.1. Data and Study Area
4.2. Empirical Results and Discussions of Fusion Model
4.2.1. Optimal Weight Combinations for Peak Flows
4.2.2. Ablation Experiments
4.2.3. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, Y.; Zhao, Z.; Webster, C. Generating sparse origin–destination flows on shared mobility networks using probabilistic graph neural networks. Sustain. Cities Soc. 2024, 114, 105777. [Google Scholar] [CrossRef]
- Caggiani, L.; Camporeale, R.; Ottomanelli, M.; Szeto, W.Y. A modeling framework for the dynamic management of free-floating bike-sharing systems. Transp. Res. Part C Emerg. Technol. 2018, 87, 159–182. [Google Scholar] [CrossRef]
- Meng, F.; Zheng, L.; Ding, T.; Wang, Z.; Zhang, Y.; Li, W. Understanding dockless bike-sharing spatiotemporal travel patterns: Evidence from ten cities in China. Comput. Environ. Urban Syst. 2023, 104, 102006. [Google Scholar] [CrossRef]
- Liu, Z.; Fang, C.; Li, H.; Wu, J.; Zhou, L.; Werner, M. Efficiency and equality of the multimodal travel between public transit and bike-sharing accounting for multiscale. Sustain. Cities Soc. 2024, 101, 105096. [Google Scholar] [CrossRef]
- Huajing Information Network. Analysis of the Current Situation and Development Trends of China’s Bike-Sharing Industry in 2023. 2024. Available online: https://www.huaon.com/channel/trend/962946.html (accessed on 30 November 2024).
- World Resources Institute. How Dockless Bike-Sharing Changes Lives: An Analysis of Chinese Cities. 2024. Available online: https://wri.org.cn/research/how-dockless-bike-sharing-changes-lives (accessed on 30 November 2024).
- Macioszek, E.; Jurdana, I. Bicycle Traffic in the Cities. Zesz. Nauk. Politech. Śla̦skiej 2022, 117, 115–127. [Google Scholar] [CrossRef]
- Guo, R.; Jiang, Z.; Huang, J.; Tao, J.; Wang, C.; Li, J.; Chen, L. BikeNet: Accurate Bike Demand Prediction Using Graph Neural Networks for Station Rebalancing. In Proceedings of the 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, UK, 19–23 August 2019. [Google Scholar]
- Bei, Y.; Ge, Y.; Zhang, D. A machine learning based shared bikes scheduling method. In Proceedings of the 2020 4th International Conference on Cloud and Big Data Computing, Virtual, 26–28 August 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 32–36. [Google Scholar]
- Cao, M.; Liang, Y.; Zhu, Y.; Lü, G.; Ma, Z. Prediction for Origin-Destination Distribution of Dockless Shared Bicycles: A Case Study in Nanjing City. Front. Public Health 2022, 10, 849766. [Google Scholar] [CrossRef]
- Zheng, L.; Meng, F.; Ding, T.; Yang, Q.; Xie, Z.; Jiang, Z. The effect of traffic status on dockless bicycle-sharing: Evidence from Shanghai, China. J. Clean. Prod. 2022, 381, 135207. [Google Scholar] [CrossRef]
- Luo, X.; Gu, W.; Fan, W. Joint design of shared-bike and transit services in corridors. Transp. Res. Part C Emerg. Technol. 2021, 132, 103366. [Google Scholar] [CrossRef]
- Garcia, E.; Calvet, L.; Carracedo, P.; Serrat, C.; Miró, P.; Peyman, M.T. Predictive Analyses of Traffic Level in the City of Barcelona: From ARIMA to eXtreme Gradient Boosting. Appl. Sci. 2024, 14, 4432. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, K.; Gao, J. Research on Traffic Safety Accident Prediction Based on ARIMA; Atlantis Press: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Harikrishnakumar, R.; Nannapaneni, S. Forecasting Bike Sharing Demand Using Quantum Bayesian Network. Expert Syst. Appl. 2023, 221, 119749. [Google Scholar] [CrossRef]
- Afandizadeh, S.; Abdolahi, S.; Mirzahossein, H. Deep Learning Algorithms for Traffic Forecasting: A Comprehensive Review and Comparison with Classical Ones. J. Adv. Transp. 2024, 2024, 9981657. [Google Scholar] [CrossRef]
- Kaltenbrunner, A.; Meza, R.; Grivolla, J.; Codina, J.; Banchs, R. Urban cycles and mobility patterns: Exploring and predicting trends in a bicycle-based public transport system. Pervasive Mob. Comput. 2010, 6, 455–466. [Google Scholar] [CrossRef]
- Yoon, J.W.; Pinelli, F.; Calabrese, F. Cityride: A Predictive Bike Sharing Journey Advisor. In Proceedings of the 2012 IEEE 13th International Conference on Mobile Data Management, Bengaluru, India, 23–26 July 2012. [Google Scholar]
- Caulfield, B.; O’Mahony, M.; Brazil, W.; Weldon, P. Examining usage patterns of a bike-sharing scheme in a medium sized city. Transp. Res. Part A Policy Pract. 2017, 100, 152–161. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Wang, L.L.; Zhong, R.; Tan, Y.L. A Markov Chain Based Demand Prediction Model for Stations in Bike Sharing Systems. Math. Probl. Eng. 2018, 2018, 8028714. [Google Scholar] [CrossRef]
- Nistor, M.; Dias, A. Bike distribution model for urban data applications. Int. J. Transp. Dev. Integr. 2019, 3, 67–78. [Google Scholar] [CrossRef]
- Cagliero, L.; Cerquitelli, T.; Chiusano, S.; Garza, P.; Xiao, X. Predicting critical conditions in bicycle sharing systems. Computing 2017, 99, 39–57. [Google Scholar] [CrossRef]
- Ma, H.; Peng, T.; Sun, Y. Prediction Model of Demand for Shared Bikes based on Bayesian Theory. In Proceedings of the 2021 2nd International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT), Shanghai, China, 15–17 October 2021. [Google Scholar]
- Duan, Y.M.; Zhang, S.; Yu, Z.R. Applying Bayesian spatio-temporal models to demand analysis of shared bicycle. Phys. A Stat. Mech. Its Appl. 2021, 583, 126296. [Google Scholar] [CrossRef]
- Gu, K.; Lin, Y. Prediction for bike-sharing demand in London using multiple linear regression and random forest. In Proceedings of the 2023 5th International Conference on Artificial Intelligence and Computer Science (AICS 2023), Wuhan, China, 26–28 July 2023; SPIE: Bellingham, WA, USA, 2023. [Google Scholar]
- Sathishkumar, V.E.; Park, J.; Cho, Y. Using data mining techniques for bike sharing demand prediction in metropolitan city. Comput. Commun. 2020, 153, 353–366. [Google Scholar]
- Chen, P.-C.; Hsieh, H.-Y.; Su, K.-W.; Sigalingging, X.K.; Chen, Y.-R.; Leu, J.-S. Predicting station level demand in a bike-sharing system using recurrent neural networks. IET Intell. Transp. Syst. 2020, 14, 554–561. [Google Scholar] [CrossRef]
- Wang, B.; Vu, H.L.; Kim, I.; Cai, C. Short-term traffic flow prediction in bike-sharing networks. J. Intell. Transp. Syst. 2022, 26, 461–475. [Google Scholar] [CrossRef]
- Zhai, L.; Yang, Y.; Song, S.; Ma, S.; Zhu, X.; Yang, F. Self-supervision Spatiotemporal Part-Whole Convolutional Neural Network for Traffic Prediction. Phys. A Stat. Mech. Its Appl. 2021, 579, 126141. [Google Scholar] [CrossRef]
- Pan, Y.; Zheng, R.C.; Zhang, J.; Yao, X. Predicting bike sharing demand using recurrent neural networks. Procedia Comput. Sci. 2019, 147, 562–566. [Google Scholar] [CrossRef]
- Sardinha, C.; Finamore, A.C.; Henriques, R. Context-aware demand prediction in bike sharing systems: Incorporating spatial, meteorological and calendrical context. arXiv 2021, arXiv:2105.01125. [Google Scholar]
- Collini, E.; Nesi, P.; Pantaleo, G. Deep Learning for Short-Term Prediction of Available Bikes on Bike-Sharing Stations. IEEE Access 2021, 9, 124337–124347. [Google Scholar] [CrossRef]
- Jin, K.; Wang, W.; Li, S.; Liu, P.; Sun, H. Dockless Shared-Bike Demand Prediction with Temporal Convolutional Networks. In Proceedings of the 20th COTA International Conference of Transportation Professionals (CICTP 2020), Xi’an, China, 14–16 August 2020; American Society of Civil Engineers: Reston, VA, USA, 2020; pp. 2851–2863. [Google Scholar]
- Lin, L.; He, Z.; Peeta, S. Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach. Transp. Res. Part C Emerg. Technol. 2018, 97, 258–276. [Google Scholar] [CrossRef]
- Qin, T.; Liu, T.; Wu, H.; Tong, W.; Zhao, S. RESGCN: RESidual Graph Convolutional Network based Free Dock Prediction in Bike Sharing System. In Proceedings of the 2020 21st IEEE International Conference on Mobile Data Management (MDM), Versailles, France, 30 June–3 July 2020. [Google Scholar]
- He, S.N.; Shin, K.G.; Assoc Comp, M. Towards Fine-grained Flow Forecasting: A Graph Attention Approach for Bike Sharing Systems. In Proceedings of the 29th World Wide Web Conference (WWW), Taipei, Taiwan, 20–24 April 2020. [Google Scholar]
- Lee, S.H.; Ku, H.C. A Dual Attention-Based Recurrent Neural Network for Short-Term Bike Sharing Usage Demand Prediction. IEEE Trans. Intell. Transp. Syst. 2023, 24, 4621–4630. [Google Scholar] [CrossRef]
- Zi, W.; Xiong, W.; Chen, H.; Chen, L. TAGCN: Station-level demand prediction for bike-sharing system via a temporal attention graph convolution network. Inf. Sci. 2021, 561, 274–285. [Google Scholar] [CrossRef]
- Mehdizadeh Dastjerdi, A.; Morency, C. Bike-Sharing Demand Prediction at Community Level under COVID-19 Using Deep Learning. Sensors 2022, 22, 1060. [Google Scholar] [CrossRef]
- Zhou, S.; Song, C.; Wang, T.; Pan, X.; Chang, W.; Yang, L. A Short-Term Hybrid TCN-GRU Prediction Model of Bike-Sharing Demand Based on Travel Characteristics Mining. Entropy 2022, 24, 1193. [Google Scholar] [CrossRef]
- Beck, M.; Pöppel, K.; Spanring, M.; Auer, A.; Prudnikova, O.; Kopp, M.; Klambauer, G.; Brandstetter, J.; Hochreiter, S. xLSTM: Extended Long Short-Term Memory. arXiv 2024, arXiv:2405.04517. [Google Scholar]
- Shenzhen Government Open Data Platform. Daily Order from Shared Bike Enterprises. 2021. Available online: https://opendata.sz.gov.cn/data/api/toApiDetails/29200_00403627 (accessed on 30 November 2024).
- Zhang, Y.; Hu, X.; Wang, H.; An, S. How does the built environment affect the usage efficiency of dockless-shared bicycle? An exploration of time-varying nonlinear relationships. J. Transp. Geogr. 2024, 118, 103908. [Google Scholar]
- Li, Z.; Tang, J.; Yu, T.; Liu, B.; Cao, J. Understanding the interplay among urban public transport modes: Spatial variation and built environment effects. J. Clean. Prod. 2024, 479, 144038. [Google Scholar] [CrossRef]
- Qu, X.; Lin, H.; Liu, Y. Envisioning the future of transportation: Inspiration of ChatGPT and large models. Commun. Transp. Res. 2023, 3, 100103. [Google Scholar] [CrossRef]
Peak Flow | SARIMA Weight | xLSTM Weight |
---|---|---|
Morning Access | 0.6 | 0.4 |
Morning Egress | 0.2 | 0.8 |
Evening Access | 0.4 | 0.6 |
Evening Egress | 0.7 | 0.3 |
Peak Flow | MAE | RMSE | MAPE | R2 |
---|---|---|---|---|
Morning Access | 33.12 | 37.09 | 4.79 | 0.9928 |
Morning Egress | 52.17 | 59.77 | 5.45 | 0.9535 |
Evening Access | 27.11 | 32.75 | 3.93 | 0.9560 |
Evening Egress | 28.43 | 32.89 | 5.27 | 0.9770 |
Model | R2 | MAE | RMSE | MAPE (%) |
---|---|---|---|---|
SARIMA-xLSTM | 0.9928 | 33.12 | 37.09 | 4.79 |
xLSTM | 0.9862 | 51.51 | 54.69 | 8.80 |
SARIMA-LSTM | 0.9912 | 33.08 | 39.34 | 4.72 |
LSTM | 0.9790 | 56.77 | 63.95 | 10.79 |
SARIMA | 0.9892 | 33.12 | 41.31 | 4.41 |
ARIMA | 0.9815 | 44.86 | 53.13 | 5.86 |
Model | R2 | MAE | RMSE | MAPE (%) |
---|---|---|---|---|
SARIMA-xLSTM | 0.9560 | 27.11 | 32.75 | 3.93 |
xLSTM | 0.9140 | 37.60 | 44.07 | 5.41 |
SARIMA-LSTM | 0.9467 | 29.27 | 34.98 | 4.06 |
LSTM | 0.8593 | 46.45 | 54.57 | 6.25 |
SARIMA | 0.9333 | 33.07 | 40.17 | 4.64 |
ARIMA | 0.8849 | 40.77 | 52.63 | 5.82 |
Model | R2 | MAE | RMSE | MAPE (%) |
---|---|---|---|---|
SARIMA-xLSTM | 0.9535 | 52.17 | 59.77 | 5.45 |
xLSTM | 0.9497 | 56.47 | 65.34 | 6.07 |
SARIMA-LSTM | 0.9169 | 65.33 | 78.45 | 6.69 |
LSTM | 0.8691 | 85.22 | 101.69 | 8.67 |
SARIMA | 0.8847 | 73.02 | 87.99 | 7.89 |
ARIMA | 0.8979 | 73.96 | 89.74 | 7.74 |
Model | R2 | MAE | RMSE | MAPE (%) |
---|---|---|---|---|
SARIMA-xLSTM | 0.9770 | 28.43 | 32.89 | 5.27 |
xLSTM | 0.9591 | 35.96 | 41.82 | 7.10 |
SARIMA-LSTM | 0.9744 | 30.64 | 36.08 | 5.89 |
LSTM | 0.9497 | 46.40 | 51.05 | 9.70 |
SARIMA | 0.9730 | 29.05 | 35.86 | 5.55 |
ARIMA | 0.9324 | 46.98 | 54.33 | 8.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Yu, D.; Zheng, X.; Meng, F.; Wu, X. A Model-Data Dual-Driven Approach for Predicting Shared Bike Flow near Metro Stations. Sustainability 2025, 17, 1032. https://doi.org/10.3390/su17031032
Wang Z, Yu D, Zheng X, Meng F, Wu X. A Model-Data Dual-Driven Approach for Predicting Shared Bike Flow near Metro Stations. Sustainability. 2025; 17(3):1032. https://doi.org/10.3390/su17031032
Chicago/Turabian StyleWang, Zhuorui, Dexin Yu, Xiaoyu Zheng, Fanyun Meng, and Xincheng Wu. 2025. "A Model-Data Dual-Driven Approach for Predicting Shared Bike Flow near Metro Stations" Sustainability 17, no. 3: 1032. https://doi.org/10.3390/su17031032
APA StyleWang, Z., Yu, D., Zheng, X., Meng, F., & Wu, X. (2025). A Model-Data Dual-Driven Approach for Predicting Shared Bike Flow near Metro Stations. Sustainability, 17(3), 1032. https://doi.org/10.3390/su17031032