Thermodynamic Analysis of a Power Plant Integrated with Fogging Inlet Cooling and a Biomass Gasification
Abstract
:1. Introduction
- High pressure fogging (evaporative fogging) [1]: During the injection of water into the compressor inlet duct, water evaporation is completed before the air enters the compressor.
- Overspray fogging (spraying more water into the air stream than can be evaporated,) [2,3,4]: The quantity of water injected into the inlet air exceeds greatly the amount required for air saturation. Hence, a percentage of the water (often ~2%) remains in a liquid phase (i.e., as overspray) and enters the compressor for evaporation there. This method includes a series of high pressure reciprocating pumps providing demineralized water to an array of fogging nozzles located after the air filter elements. The nozzles create a large number of micron size droplets which evaporate, cooling the inlet air to wet bulb conditions.
- Fog intercooling (interstage injection) [5]: The water is injected through the compressor stator blades in order to provide traditional intercooling during compression.
2. Plant Description and Modeling
2.1. BIFSTIG Plant
Device or Condition | Assumptions and Data |
---|---|
Ambient parameters |
|
Compressor, turbine, pump |
|
Gasifier |
|
Heat recovery steam generator |
|
Combustion chamber |
|
2.2. Assumptions and Data
2.3. Thermodynamic Modeling and Simulation
Component | Mass Rate Balance | Energy Rate Balance | ||
---|---|---|---|---|
Fog cooler | ||||
Compressor | , | |||
Turbine | , | |||
Heat recovery steam generator | ||||
Gasifier | ||||
Combustion chamber |
2.4. Validation of Results Obtained for Cycle
Part A: Fogging Cooler | Part B: Biomass Gasification | |||||
Comparsion conditions | Comparison of reported and computed results for selected conditions: TIT = 1122 °C, compressor pressure ratio = 11.84, inlet mass rate of turbine = 374.59 kg/s, overspray = 2% | Comparsion conditions | Comparison between model and experimental constituent breakdown (in %) for wood at 20% moisture content and a gasification temperature of 800 °C | |||
Parameter | Reported in [6] | Computed here | Parameter | Computed here | Reported in [26] | Reported in [27] |
CIT (°C) | 30.00 | 30.08 | Hydrogen | 18.01 | 15.23 | 21.06 |
CDT (°C) | 293 | 286.9 | Carbon monoxide | 18.77 | 23.04 | 19.61 |
(MW) | 133 | 136 | Methane | 0.68 | 1.58 | 0.64 |
TOT (°C) | 553 | 577 | Carbon dioxide | 13.84 | 16.42 | 12.01 |
Heat rate (kJ/kWh) | 10,609 | 10,653 | Nitrogen | 48.7 | 42.31 | 46.68 |
Oxygen | 0.00 | 1.42 | 0.00 |
3. Results and Discussion
4. Conclusions
Author Contributions
Nomenclature
BIFSTIG | Biomass integrated fog cooling steam injection gas turbine |
BISTIG | Biomass integrated gas turbine with steam injection |
BIFGT | Biomass integrated gas turbine with fog cooling |
BISGT | Biomass integrated simple gas turbine |
CIT | Compressor inlet temperature (°C) |
CC | Combustion chamber |
CDT | Compressor discharge temperature (°C) |
Exergy rate (kW) | |
Exergy destruction rate (kW) | |
FA | Ratio of fuel mass to inlet air mass |
FSTIG | Fog cooling steam injection gas turbine with firing of natural gas |
ha | Specific enthalpy of dry air (kJ/kg) |
hv | Specific enthalpies of vapor (kJ/kg) |
hf | Specific enthalpy of water injected into air (kJ/kg) |
HRSG | Heat recovery steam generator |
LHV | Lower heating value (kJ/kg K) |
Mass flow rate of dry air (kg/s) | |
Mass flow rate of the sprayed water in fogging cooler (kg/s) | |
Mass consumption rate of fuel (kg/s) | |
Mass flow rate of steam at location i (kg/s) | |
Mass flow rate of steam injected into combustion chamber (kg/s) | |
Mass flow rate of overspray in fogging cooler (kg/s) | |
m | Number of carbon atoms in hydrocarbon fuel (CnHm) |
n | Number of hydrogen atoms in hydrocarbon fuel (CnHm) |
ns | Molar quantity of steam (mole) |
OS | Overspray (spraying of more water into air stream than can be evaporated) |
rp | Compressor pressure ratio (-) |
TIT | Turbine inlet temperature (K) |
TOT | Turbine outlet temperature (K) |
W | Specific humidity (-) |
Molar specific humidity per 1 molar of dry air at point i | |
Net power in the cycle (kW) | |
turb | Outlet power of turbine (kW) |
X | Ratio of injected steam from HRSG to 20 kg inlet air mass |
Greek Letters
η | Energy efficiency |
Exergy efficiency | |
ηcc | Combustion chamber efficiency |
λ | Excess air fraction |
Subscripts
Comp | Compressor |
CC | Combustion chamber |
G | Gasifier |
F | Fuel |
FC | Fog cooler |
HRSG | Heat recovery steam generator |
i | State point |
P | Product |
S | Steam |
Turb | Turbine |
W | Water |
Conflicts of Interest
References
- Bianchi, M.; Melino, F.; Peretto, A.; Bhargava, R. Parametric analysis of combined cycles equipped with inlet fogging. J. Eng. Gas Turbines Power 2006, 128, 326–335. [Google Scholar] [CrossRef]
- Bettocchi, R.; Morini, M.; Pinelli, M.; Spina, P.R.; Venturini, M.; Torsello, G. Setup of an experimental facility for the investigation of wet compression on a multistage compressor. J. Eng. Gas Turbines Power 2011, 133, 102001:1–102001:8. [Google Scholar] [CrossRef]
- Ehyaei, M.A.; Mozafari, A.; Alibiglou, M.H. Exergy economic and environmental (3E) analysis of inlet fogging for gas turbine power plant. Energy 2011, 36, 6851–6861. [Google Scholar]
- Mahto, D.; Pal, S. Thermodynamics and thermo-economic analysis of simple combined cycle with inlet fogging. Appl. Therm. Eng. 2013, 51, 413–424. [Google Scholar] [CrossRef]
- Bagnoli, M.; Bianchi, M.; Melino, F.; Peretto, A.; Spina, P.R.; Bhargava, R.; Ingistov, S. A Parametric Study of Interstage Injection on GE Frame 7EA Gas Turbine. In Proceedings of the ASME Turbo Expo 2004, Vienna, Austria, 14–17 June 2004. Paper No. GT-2004-53042.
- Sanaye, S.; Tahani, M. Analysis of gas turbine operating parameters with inlet fogging and wet compression processes. Appl. Therm. Eng. 2010, 30, 234–244. [Google Scholar] [CrossRef]
- Kim, H.; Ko, H.; Perez-Blanco, H. Exergy analysis of gas-turbine systems with high fogging compression. Int. J. Exergy 2011, 8, 16–32. [Google Scholar] [CrossRef]
- Kim, H.; Perez-Blanco, H. Potential of regenerative gas-turbine systems with high fogging compression. Appl. Energy 2007, 84, 16–28. [Google Scholar] [CrossRef]
- Soltani, S.; Mahmoudi, S.M.S.; Yari, M.; Morosuk, T.; Rosen, M.A.; Zare, V. A comparative exergoeconomic analysis of two biomass and co-firing combined power plants. Energy Convers. Manag. 2013, 76, 83–91. [Google Scholar] [CrossRef]
- Park, S.R.; Pandey, A.K.; Tyagi, V.V.; Tyagi, S.K. Energy and exergy analysis of typical renewable energy systems. Renew. Sustain. Energy Rev. 2014, 30, 105–123. [Google Scholar] [CrossRef]
- Consonni, S.; Larson, E.D. Biomass-gasifier/aeroderivative gas turbine combined cycles. Part A—Technologies and performance modeling. J. Eng. Gas Turbines Power 1996, 118, 507–515. [Google Scholar] [CrossRef]
- Faaij, A.; van Ree, R.; Waldheim, L.; Olsson, E.; Oudhuis, A.; van Wijk, A.; Daey-Ouwens, C.; Turkenburg, W. Gasification of biomass wastes and residues for electricity production. Biomass Bioenergy 1997, 12, 387–407. [Google Scholar] [CrossRef]
- Heidenreich, S.; Foscolo, P.U. New concepts in biomass gasification. Prog. Energy Combust. Sci. 2014. [Google Scholar] [CrossRef]
- Rodrigues, M.; Andre Faaij, P.C.; Walter, A. Techno-economic analysis of co-fired biomass integrated gasification/combined cycle systems with inclusion of economies of scale. Energy 2003, 28, 1229–1258. [Google Scholar] [CrossRef]
- Tsatsaronis, G.; Pisa, J. Exergoeconomic evaluation and optimization of energy system: Application to the CGAM problem. Energy 1994, 9, 287–321. [Google Scholar] [CrossRef]
- Klimantos, P.; Koukouzas, N.; Katsiadakis, A.; Kakaras, E. Air-blown biomass gasification combined cycles (BGCC): System analysis and economic assessment. Energy 2009, 34, 708–714. [Google Scholar] [CrossRef]
- Soltani, S.; Yari, M.; Mahmoudi, S.M.S.; Morosuk, T.; Rosen, M.A. Advanced exergy analysis applied to an externally-fired combined-cycle power plant integrated with a biomass gasification unit. Energy 2013, 59, 775–780. [Google Scholar] [CrossRef]
- Rahman Khan, J.; Wang, T. Fog and overspray cooling for gas turbine systems with low calorific value fuels. In Proceedings of the GT2006ASME Turbo Expo 2006: Power for Land, Sea and Air, Barcelona, Spain, 8–11 May 2006. Paper No. GT 2006-90396.
- Robert, H.P.; Don, W.G. Perry’s Chemical Engineers Handbook, 6th ed.; McGraw Hill: New York, NY, USA, 1984. [Google Scholar]
- Soltani, S.; Mahmoudi, S.M.S.; Yari, M.; Rosen, M.A. Thermodynamic analyses of an externally fired gas turbine combined cycle integrated with a biomass gasification plant. Energy Convers. Manag. 2013, 70, 107–115. [Google Scholar] [CrossRef]
- Moran, M.J.; Shapiro, H.N.; Boettner, D.D.; Bailey, M.B. Fundamentals of Engineering Thermodynamics, 7th ed.; Wiley: New York, NY, USA, 2011. [Google Scholar]
- Dincer, I.; Rosen, M.A. Exergy: Energy, Environment and Sustainable Development, 2nd ed.; Elsevier: Oxford, UK, 2013. [Google Scholar]
- Szargut, J.; Styrylska, T. Approximate evaluation of exergy of fuels. Brennstoff Warme Kraft 1964, 16, 589–596. [Google Scholar]
- Bejan, A. Advanced Engineering Thermodynamics, 3rd ed.; Wiley: New York, NY, USA, 2006. [Google Scholar]
- EES (Engineering Equation Solver); v7.847, #92; F-Chart Software, LLC: Madison, WI, USA, 2010.
- Alauddin, Z.A. Performance and Characteristics of a Biomass Gasifier System. Ph.D. Thesis, University of Wales, College of Cardiff, Cardiff, UK, 1996. [Google Scholar]
- Zainal, Z.A.; Ali, R.; Lean, C.H. Prediction of performance of downdraft gasifier using equilibrium modeling for different biomass materials. Energy Convers. Manag. 2001, 42, 1499–1515. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Athari, H.; Soltani, S.; Rosen, M.A.; Mahmoudi, S.M.S.; Morosuk, T. Thermodynamic Analysis of a Power Plant Integrated with Fogging Inlet Cooling and a Biomass Gasification. Sustainability 2015, 7, 1292-1307. https://doi.org/10.3390/su7021292
Athari H, Soltani S, Rosen MA, Mahmoudi SMS, Morosuk T. Thermodynamic Analysis of a Power Plant Integrated with Fogging Inlet Cooling and a Biomass Gasification. Sustainability. 2015; 7(2):1292-1307. https://doi.org/10.3390/su7021292
Chicago/Turabian StyleAthari, Hassan, Saeed Soltani, Marc A. Rosen, Seyed Mohammad Seyed Mahmoudi, and Tatiana Morosuk. 2015. "Thermodynamic Analysis of a Power Plant Integrated with Fogging Inlet Cooling and a Biomass Gasification" Sustainability 7, no. 2: 1292-1307. https://doi.org/10.3390/su7021292
APA StyleAthari, H., Soltani, S., Rosen, M. A., Mahmoudi, S. M. S., & Morosuk, T. (2015). Thermodynamic Analysis of a Power Plant Integrated with Fogging Inlet Cooling and a Biomass Gasification. Sustainability, 7(2), 1292-1307. https://doi.org/10.3390/su7021292