A Novel Method for Simulating Urban Population Potential Based on Urban Patches: A Case Study in Jiangsu Province, China
Abstract
:1. Introduction
2. Study Area and Data Collection
2.1. Study Area
2.2. Data Sources and Preprocessing
Name | Type | Year | Scale or Resolution | Source |
---|---|---|---|---|
Land-use data | Raster | 2010 | 1 km | Resources and Environmental Scientific Data Center (RESDC), Chinese Academy of Sciences (CAS) |
Gridded population | Raster | 2010 | 1 km | Resources and Environmental Scientific Data Center (RESDC), Chinese Academy of Sciences (CAS) |
Time-consumptive grid surface | Raster | 2010 | 1 km | Resources and Environmental Scientific Data Center (RESDC), Chinese Academy of Sciences (CAS) |
Urban population, Jiangsu Province | Statistical data | 2010 | District or county level | Tabulation on the 2010 population census of Jiangsu Province |
The seat of the government | Vector | 2010 | District or county level | National Geomatics Center of China |
Boundary of districts or counties | Vector | 2010 | District or county level | National Geomatics Center of China |
3. Methodology
3.1. Urban-Scale Hierarchical Classification
3.1.1. A Classification Scheme Based on Area for Urban Patches
Rank | Area of Urban Patches (Sk)/km2 | Area Reduction (ΔSk)/km2 | The Relative Change Rate of Area (Rk) | Classify (Y/N) | Urban-Scale Level | Number of Urban Patches |
---|---|---|---|---|---|---|
1 | 575.0 | - | - | - | I | 2 |
75.0 | 0.13 | N (Do not meet the criteria 2) | ||||
2 | 500.0 | |||||
177.0 | 0.35 | Y(ΔSk ≥ 2 km2 and Rk is the max from rank 2 to rank 213) | ||||
3 | 323.0 | II | 2 | |||
1.0 | 0.00 | N(Do not meet the criteria 1 and 2) | ||||
4 | 322.0 | |||||
90.0 | 0.28 | Y(ΔSk ≥ 2 km2 and Rk is the max from rank 4 to rank 213) | ||||
5 | 232.0 | III | 2 | |||
33.0 | 0.14 | N(Do not meet the criteria 2) | ||||
6 | 199.0 | |||||
38.0 | 0.19 | Y(ΔSk ≥ 2 km2 and Rk is the max from rank 6 to rank 213) | ||||
7 ~ 18 | 161.0 ~ 72.0 | IV | 12 | |||
N (Do not meet the criteria 1 or 2) | ||||||
12.0 | 0.17 | Y(ΔSk ≥ 2 km2 and Rk is the max from rank 18 to rank 213) | ||||
19 ~ 77 | 60.0 ~ 20.0 | V | 59 | |||
… | … | N (Do not meet the criteria 1 or 2) | ||||
2.0 | 0.10 | Y (ΔSk≥ 2 km2 and Rk is the max from rank 78 to rank 213) | ||||
78 ~ 213 | 18.0 ~ 4.0 | VI | 136 | |||
… | … | N (Do not meet the criteria 1 or 2) | ||||
Y (According to the condition: Sk < 3.19 km2) | ||||||
214 ~ 691 | 3.0 ~ 1.0 | - | - | VII | 478 | |
… | … | N |
3.1.2. A Classification Based on Population for the Seat of the Government
City Hierarchy | Threshold Value of Classified Standard | Urban-Scale Level | Number | Counties or Districts |
---|---|---|---|---|
The mega city | 10 million or more | 1 | 0 | - |
The megalopolis | 3–10 million | 2 | 0 | - |
Large city | 1,000,000–3,000,000 | 3 | 20 | Jiangning, Peixian, Tongshan, Suining, Pizhou, Shuyang, Jiangdu, Xinghua, Taixing, Tongzhou… |
Medium-sized city | 500,000–1,000,000 | 4 | 58 | Xuanwu, Baixia, Gulou, Pukou, Xixia, Liuhe, Quanshan, Fengxian, Xinyi, Xinpu… |
Small city | 500,000 or less | 5 | 28 | Qinhuai, Jianye, Xiaguan, Yuhuatai, Lishui, Gaochun, Yunlong, Gulou, Jiuli, Jiawang… |
3.2. Urban Population Potential Modeling
4. Results
4.1. Urban Population Potential at Different Urban-Scale Levels
4.2. Urban Population Potential of Jiangsu Province
5. Discussion
5.1. Distribution of Urban Population Potential
Prefecture-Level City | Urban Population (Individuals) | Urban Population Density(Individuals/km2) | Length of Expressways(km) | Expressway Density(km/km2) |
---|---|---|---|---|
Nanjing | 6,238,186 | 947 | 435 | 0.066 |
Suzhou | 7,329,514 | 864 | 535 | 0.063 |
Wuxi | 4,481,903 | 969 | 273 | 0.059 |
Changzhou | 2,900,970 | 664 | 221 | 0.051 |
Lianyungang | 2,273,872 | 303 | 336 | 0.045 |
Taizhou | 2,570,087 | 444 | 244 | 0.042 |
Yangzhou | 2,530,918 | 384 | 267 | 0.041 |
Zhenjiang | 1,929,892 | 502 | 152 | 0.040 |
Huai'an | 2,438,667 | 242 | 377 | 0.037 |
Xuzhou | 4,561,500 | 405 | 412 | 0.037 |
Nantong | 4,064,388 | 508 | 277 | 0.035 |
Suqian | 2,278,812 | 266 | 207 | 0.024 |
Yancheng | 3,772,779 | 222 | 322 | 0.019 |
5.2. Comparison with Results of the Method Based on the Seat of the Government
5.2.1. Comparison of the Number of UPP Zones
5.2.2. Comparison of the Spatial Distribution of UPP Zones
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- National Bureau of Statistics of China. Statistical communique of the People’s Republic of China on the 2013 national economic and social development. Available online: http://www.stats.gov.cn/tjsj/zxfb/201402/t20140224_514970.html (accessed on 24 February 2014). (In Chinese)
- Czyz, T. Application of the population potential model in the structural regionalisation of Poland. Geogr. Pol. 1995, 66, 13–31. [Google Scholar] [PubMed]
- Faíña, A.; López-Rodríguez, J. European union enlargement, european spatial development perspective and regional policy: Lessons from population potentials. Investig. Reg. 2006, 9, 3–21. [Google Scholar]
- Wu, W.; Zhang, W.; Jin, F.; Deng, Y. Spatio-temporal analysis of urban spatial interaction in globalizing China—A case study of Beijing-Shanghai corridor. Chin. Geogr. Sci. 2009, 19, 126–134. [Google Scholar] [CrossRef]
- Pueyo, A.; Zuniga, M.; Jover, J.A.; Calvo, J.L. Supranational study of population potential: Spain and France. J. Maps 2013, 9, 29–35. [Google Scholar] [CrossRef]
- Alonso, W. A theory of movements. In Human Settlement Systems: International Perspectives on Structure, Change and Public Policy; Hansen, N.M., Ed.; Ballinger Publishing Company: Cambridge, MA, USA, 1978; pp. 197–212. [Google Scholar]
- Fotheringham, A.S.; O’Kelly, M.E. Spatial Interaction Models: Formulations and Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1989. [Google Scholar]
- Biosca, O.; Spiekermann, K.; Stępniak, M. Transport accessibility at regional scale. Europa XXI 2013, 24, 5–17. [Google Scholar] [CrossRef]
- Middleton, N.; Gunnell, D.; Frankel, S.; Whitley, E.; Dorling, D. Urban–rural differences in suicide trends in young adults: England and Wales, 1981–1998. Soc. Sci. Med. 2003, 57, 1183–1194. [Google Scholar] [CrossRef] [PubMed]
- Verburg, P.H.; Overmars, K.P.; Witte, N. Accessibility and land-use patterns at the forest fringe in the northeastern part of the Philippines. Geogr. J. 2004, 170, 238–255. [Google Scholar] [CrossRef]
- Xiao, Y. Local economic impacts of natural disasters. J. Reg. Sci. 2011, 51, 804–820. [Google Scholar] [CrossRef]
- Eyre, H.A. Measuring the Performance of Spatial Interaction Models in Practice. Ph.D. Thesis, The University of Leeds, Leeds, UK, January 1999. [Google Scholar]
- Tayyebi, A.; Pekin, B.K.; Pijanowski, B.C.; Plourde, J.D.; Doucette, J.S.; Braun, D. Hierarchical modeling of urban growth across the conterminous USA: Developing meso-scale quantity drivers for the land transformation model. J. Land Use Sci. 2013, 8, 422–442. [Google Scholar] [CrossRef]
- Tayyebi, A.; Perry, P.C.; Tayyebi, A.H. Predicting the expansion of an urban boundary using spatial logistic regression and hybrid raster–vector routines with remote sensing and GIS. Int. J. Geogr. Inf. Sci. 2014, 28, 639–659. [Google Scholar] [CrossRef]
- Tayyebi, A.; Pijanowski, B.C.; Linderman, M.; Gratton, C. Comparing three global parametric and local non-parametric models to simulate land use change in diverse areas of the world. Environ. Model. Softw. 2014, 59, 202–221. [Google Scholar] [CrossRef]
- Tayyebi, A.; Pijanowski, B.C.; Pekin, B. Two rule-based urban growth boundary models applied to the tehran metropolitan area, Iran. Appl. Geogr. 2011, 31, 908–918. [Google Scholar] [CrossRef]
- Jiangsu Provincial Statistics Bureau. Jiangsu Statistical Yearbook, 2011; China Statistics Press: Beijing, China, 2012. [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook, 2011; China Statistics Press: Beijing, China, 2012. [Google Scholar]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s. Acta Geogr. Sin. 2014, 69, 3–14. [Google Scholar]
- Luo, W.; Wang, F. Measures of spatial accessibility to health care in a GIS environment: Synthesis and a case study in the Chicago region. Environ. Plan. B 2003, 30, 865–884. [Google Scholar] [CrossRef]
- Yang, X.; Huang, Y.; Dong, P.; Jiang, D.; Liu, H. An updating system for the gridded population database of China based on remote sensing, GIS and spatial database technologies. Sensors 2009, 9, 1128–1140. [Google Scholar] [CrossRef] [PubMed]
- Apparicio, P.; Abdelmajid, M.; Riva, M.; Shearmur, R. Comparing alternative approaches to measuring the geographical accessibility of urban health services: Distance types and aggregation-error issues. Int. J. Health Geogr. 2008. [Google Scholar] [CrossRef]
- Zhou, Y. Urban Geography; The Commercial Press: Beijing, China, 1995; pp. 254–255. [Google Scholar]
- Tan, M.; Lu, C. Distribution of China city size expressed by urban built-up area. Acta Geogr. Sin. 2003, 58, 285–293. [Google Scholar]
- Chen, Y. The rank-size scaling law and entropy-maximizing principle. Phys. A: Statist. Mech. Appl. 2012, 391, 767–778. [Google Scholar] [CrossRef]
- Schweitzer, F.; Steinbrink, J. Estimation of megacity growth: Simple rules vs. complex phenomena. Appl. Geogr. 1998, 18, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Jiangsu Yearbook Magazine. Jiangsu Yearbook, 2011, Jiangsu Yearbook Magazine: Jiangsu, China, 2012.
- CSMC. Research outputs of the scientific development evaluation system for chinese small and medium cities. Available online: http://www.csmcity.com/luntan/bbs2011/pjbg.html (accessed on 17 September 2011). (In Chinese)
- Stewart, J.Q. An inverse distance variation for certain social influences. Science 1941, 93, 89–90. [Google Scholar] [CrossRef] [PubMed]
- Salze, P.; Banos, A.; Oppert, J.-M.; Charreire, H.; Casey, R.; Simon, C.; Chaix, B.; Badariotti, D.; Weber, C. Estimating spatial accessibility to facilities on the regional scale: An extended commuting-based interaction potential model. Int. J. Health Geogr. 2011. [Google Scholar] [CrossRef] [Green Version]
- Hansen, W.G. How accessibility shapes land use. J. Am. Inst. Plann. 1959, 25, 73–76. [Google Scholar] [CrossRef]
- Deichmann, U. A review of spatial population database design and modeling. Available online: http://www.ncgia.ucsb.edu/Publications/Tech_Reports/96/96–3.PDF (accessed on 28 March 1996).
- Fotheringham, A.S. Spatial competition and agglomeration in urban modelling. Environ. Plan. A 1985, 17, 213–230. [Google Scholar] [CrossRef]
- Rich, D.C. Population potential, potential transportation cost and industrial location. Area 1978, 10, 222–226. [Google Scholar]
- Love, R.; Morris, J. Mathematical models of road travel distances. Manag. Sci. 1979, 25, 130–139. [Google Scholar] [CrossRef]
- Berens, W.; Körling, F. Estimating road distances by mathematical functions. Eur. J. Oper. Res. 1985, 21, 54–56. [Google Scholar] [CrossRef]
- Brimberg, J.; Love, R. General considerations on the use of the weighted lp norm as an empirical distance measure. Transp. Sci. 1993, 27, 341–349. [Google Scholar] [CrossRef]
- Peeters, D.; Thomas, I. Distance predicting functions and applied location-allocation models. J. Geogr. Syst. 2000, 2, 167–184. [Google Scholar] [CrossRef]
- Grübler, A.; O‘Neill, B.; Riahi, K.; Chirkov, V.; Goujon, A.; Kolp, P.; Prommer, I.; Scherbov, S.; Slentoe, E. Regional, national, and spatially explicit scenarios of demographic and economic change based on sres. Technol. Forec. Soc. Change 2007, 74, 980–1029. [Google Scholar] [CrossRef]
- Arbia, G.; Petrarca, F. Effects of scale in spatial interaction models. J. Geogr. Syst. 2013, 15, 249–264. [Google Scholar] [CrossRef]
- Jones, B.; O’Neill, B.C. Historically grounded spatial population projections for the continental United States. Environ. Res. Lett. 2013, 8, 044021. [Google Scholar] [CrossRef]
- Department of Comprehensive Statistics of National Bureau of Statistics. China Statistical Yearbook for the Regional Economy, 2011; China Statistics Press: Beijing, China, 2012. [Google Scholar]
- Duan, Q.; Mao, J. On economic regionalization in provincial scope based on the gravity model and 0–1 programming model: A case study of Jiangsu province. Econ. Geogr. 2011, 31, 1239–1245. [Google Scholar]
- Shen, S.; An, Y.; Dai, X. A review and preview on the regional economic study in Jiangsu since 1980s. Econ. Geogr. 2005, 25, 302–306. [Google Scholar]
- Gottman, J. Megalopolitan systems around the world. Ekist. Probl. Sci. Hum. Settl. 1976, 41, 109–113. [Google Scholar]
- Lu, D. Formation and dynamics of the“pole-axisˮ spatial system. Sci. Geogr. Sin. 2002, 22, 1–6. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, N.; Yang, X.; Cai, H.; Wang, L. A Novel Method for Simulating Urban Population Potential Based on Urban Patches: A Case Study in Jiangsu Province, China. Sustainability 2015, 7, 3984-4003. https://doi.org/10.3390/su7043984
Dong N, Yang X, Cai H, Wang L. A Novel Method for Simulating Urban Population Potential Based on Urban Patches: A Case Study in Jiangsu Province, China. Sustainability. 2015; 7(4):3984-4003. https://doi.org/10.3390/su7043984
Chicago/Turabian StyleDong, Nan, Xiaohuan Yang, Hongyan Cai, and Liming Wang. 2015. "A Novel Method for Simulating Urban Population Potential Based on Urban Patches: A Case Study in Jiangsu Province, China" Sustainability 7, no. 4: 3984-4003. https://doi.org/10.3390/su7043984
APA StyleDong, N., Yang, X., Cai, H., & Wang, L. (2015). A Novel Method for Simulating Urban Population Potential Based on Urban Patches: A Case Study in Jiangsu Province, China. Sustainability, 7(4), 3984-4003. https://doi.org/10.3390/su7043984