Metafrontier Environmental Efficiency for China’s Regions: A Slack-Based Efficiency Measure
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. SBM Model
- Slack variables (potential reduction) of inputs;
- Slack variables (potential enhancement) of good outputs;
- Slack variables (potential enhancement) of bad outputs;
- Subscript “0”
- The decision-making unit whose efficiency is being estimated in the model;
- Zn
- A non-negative multiplier vector for construction linear programming.
3.2. Metafrontier SBM Model
3.3. Decomposition of MEEE
4. Empirical Findings
4.1. Data and Materials
Variable | Unit | N | Mean | StDev | Min | Max |
---|---|---|---|---|---|---|
K | 109 Won | 348 | 8479.4 | 8417.9 | 337.7 | 55,055.9 |
L | 103 Persons | 348 | 18,172.4 | 12,586.9 | 1296.2 | 53,448.9 |
E | 104 TSC | 348 | 9838.9 | 10,540.1 | 520.4 | 159,165.0 |
GDP | 108 Yuan | 348 | 6931.5 | 6530.5 | 263.6 | 39,550.9 |
SO2 | 104 Tons | 348 | 76.6 | 50.6 | 2.0 | 214.1 |
COD | 104 Tons | 348 | 46.2 | 29.2 | 3.2 | 124.6 |
Variables | GDP | COD | SO2 | K | L | E |
---|---|---|---|---|---|---|
GDP | 1.000 | |||||
COD | 0.544 *** | 1.000 | ||||
SO2 | 0.451 *** | 0.663 *** | 1.000 | |||
K | 0.942 *** | 0.478 *** | 0.486 *** | 1.000 | ||
L | 0.738 *** | 0.832 *** | 0.715 *** | 0.688 *** | 1.000 | |
E | 0.856 *** | 0.573 *** | 0.726 *** | 0.896 ** | 0.769 *** | 1.000 |
4.2. Regional Heterogeneities in China
4.3. Group Frontier Environmental Efficiency
Province | Area | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | E | 0.565 | 0.637 | 0.697 | 0.837 | 0.867 | 0.983 | 0.999 | 0.770 | 0.927 | 1.000 | 0.889 | 1.000 |
Fujian | E | 1.000 | 1.000 | 1.000 | 0.762 | 0.755 | 0.647 | 0.693 | 1.000 | 1.000 | 0.941 | 1.000 | 1.000 |
Hainan | E | 0.605 | 0.494 | 0.671 | 1.000 | 1.000 | 0.789 | 0.855 | 1.000 | 1.000 | 0.966 | 1.000 | 1.000 |
Guangdong | E | 1.000 | 1.000 | 1.000 | 0.994 | 0.881 | 0.914 | 0.871 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Hebei | E | 0.148 | 0.164 | 0.177 | 0.184 | 0.195 | 0.209 | 0.221 | 0.250 | 0.297 | 0.340 | 0.387 | 0.441 |
Jiangsu | E | 0.316 | 0.282 | 0.308 | 0.292 | 0.285 | 0.281 | 0.358 | 0.456 | 0.564 | 0.681 | 0.799 | 1.000 |
Liaoning | E | 0.417 | 0.573 | 1.000 | 1.000 | 0.661 | 0.382 | 0.362 | 0.352 | 0.420 | 0.462 | 0.414 | 0.470 |
Shandong | E | 0.151 | 0.172 | 0.195 | 0.212 | 0.247 | 0.268 | 0.325 | 0.418 | 0.521 | 0.637 | 0.800 | 1.000 |
Shanghai | E | 0.345 | 0.370 | 0.395 | 0.421 | 0.490 | 0.489 | 0.548 | 0.816 | 1.000 | 0.895 | 0.926 | 1.000 |
Tianjin | E | 0.333 | 0.546 | 0.582 | 0.491 | 0.575 | 1.000 | 0.613 | 1.000 | 0.782 | 0.893 | 0.989 | 1.000 |
Zhejiang | E | 0.590 | 0.498 | 0.488 | 0.442 | 0.395 | 0.366 | 0.387 | 0.462 | 0.540 | 0.641 | 0.754 | 0.846 |
Anhui | C | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.901 | 1.000 | 1.000 | 0.975 | 1.000 | 1.000 |
Henan | C | 0.459 | 0.483 | 0.490 | 0.495 | 0.468 | 0.437 | 0.458 | 0.537 | 0.649 | 0.761 | 0.897 | 1.000 |
Heilongjiang | C | 0.937 | 0.956 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.988 | 1.000 | 1.000 |
Hubei | C | 0.534 | 0.570 | 0.586 | 0.578 | 0.571 | 0.580 | 0.583 | 0.645 | 0.704 | 0.763 | 0.886 | 1.000 |
Hunan | C | 0.553 | 0.538 | 0.520 | 0.479 | 0.477 | 0.458 | 0.447 | 0.474 | 0.516 | 0.566 | 0.671 | 1.000 |
Jiling | C | 1.000 | 1.000 | 1.000 | 1.000 | 0.996 | 1.000 | 0.825 | 1.000 | 0.944 | 0.948 | 1.000 | 1.000 |
Jiangxi | C | 1.000 | 1.000 | 1.000 | 0.811 | 0.736 | 0.690 | 0.682 | 0.713 | 0.775 | 0.838 | 0.934 | 1.000 |
Shanxi | C | 1.000 | 1.000 | 1.000 | 0.601 | 0.581 | 0.575 | 0.588 | 0.620 | 0.630 | 0.636 | 0.649 | 1.000 |
Gansu | W | 0.250 | 0.285 | 0.272 | 0.239 | 0.255 | 0.235 | 0.257 | 0.285 | 0.312 | 0.336 | 1.000 | 1.000 |
Guangxi | W | 0.094 | 0.120 | 0.132 | 0.115 | 0.114 | 0.127 | 0.159 | 0.204 | 0.257 | 0.320 | 0.397 | 0.465 |
Guizhou | W | 0.120 | 0.136 | 0.143 | 0.141 | 0.147 | 0.154 | 0.160 | 0.177 | 0.197 | 0.218 | 0.235 | 0.246 |
Neimenggu | W | 0.166 | 0.168 | 0.191 | 0.160 | 0.184 | 0.206 | 0.259 | 0.342 | 0.430 | 0.570 | 0.794 | 1.000 |
Ningxia | W | 1.000 | 0.177 | 0.237 | 0.238 | 0.339 | 0.189 | 0.192 | 0.205 | 0.224 | 0.250 | 0.264 | 0.283 |
Qinghai | W | 1.000 | 1.000 | 1.000 | 1.000 | 0.709 | 0.418 | 0.415 | 0.425 | 0.448 | 0.459 | 1.000 | 1.000 |
Shaanxi | W | 0.163 | 0.171 | 0.184 | 0.183 | 0.187 | 0.192 | 0.229 | 0.297 | 0.382 | 0.485 | 0.210 | 0.211 |
Sichuan | W | 0.157 | 0.187 | 0.220 | 0.248 | 0.295 | 0.356 | 0.430 | 0.632 | 0.766 | 1.000 | 1.000 | 1.000 |
Xinjiang | W | 0.250 | 0.265 | 0.277 | 0.265 | 0.220 | 0.222 | 0.225 | 0.237 | 0.251 | 0.279 | 0.122 | 0.115 |
Yunnan | W | 0.234 | 0.253 | 0.268 | 0.257 | 0.267 | 0.278 | 0.308 | 0.379 | 0.464 | 0.555 | 0.643 | 0.699 |
Eastern area | 0.497 | 0.521 | 0.592 | 0.603 | 0.577 | 0.575 | 0.567 | 0.684 | 0.732 | 0.769 | 0.814 | 0.887 | |
Central area | 0.810 | 0.818 | 0.825 | 0.746 | 0.729 | 0.717 | 0.685 | 0.749 | 0.777 | 0.809 | 0.880 | 1.000 | |
Western area | 0.343 | 0.276 | 0.292 | 0.284 | 0.271 | 0.238 | 0.263 | 0.318 | 0.373 | 0.447 | 0.567 | 0.602 | |
China | 0.530 | 0.519 | 0.553 | 0.533 | 0.514 | 0.498 | 0.495 | 0.576 | 0.621 | 0.669 | 0.747 | 0.820 |
4.4. Metafrontier Environmental Efficiency
Province | Area | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | E | 0.527 | 0.607 | 0.694 | 0.802 | 0.861 | 0.978 | 0.994 | 0.752 | 0.908 | 1.000 | 0.884 | 1.000 |
Fujian | E | 0.467 | 0.537 | 0.625 | 0.440 | 0.448 | 0.380 | 0.416 | 0.615 | 0.745 | 0.746 | 0.888 | 0.939 |
Hainan | E | 0.365 | 0.363 | 0.460 | 0.524 | 1.000 | 0.656 | 0.796 | 1.000 | 1.000 | 0.963 | 1.000 | 1.000 |
Guangdong | E | 1.000 | 1.000 | 1.000 | 0.990 | 0.874 | 0.902 | 0.866 | 0.907 | 1.000 | 1.000 | 1.000 | 1.000 |
Hebei | E | 0.142 | 0.158 | 0.170 | 0.175 | 0.187 | 0.200 | 0.212 | 0.240 | 0.287 | 0.331 | 0.377 | 0.441 |
Jiangsu | E | 0.222 | 0.218 | 0.246 | 0.261 | 0.277 | 0.281 | 0.358 | 0.456 | 0.564 | 0.681 | 0.799 | 1.000 |
Liaoning | E | 0.164 | 0.184 | 0.214 | 0.253 | 0.290 | 0.228 | 0.235 | 0.260 | 0.311 | 0.363 | 0.414 | 0.470 |
Shandong | E | 0.144 | 0.165 | 0.187 | 0.203 | 0.237 | 0.258 | 0.325 | 0.418 | 0.521 | 0.637 | 0.800 | 1.000 |
Shanghai | E | 0.343 | 0.369 | 0.394 | 0.419 | 0.479 | 0.489 | 0.540 | 0.616 | 0.736 | 0.891 | 0.925 | 1.000 |
Tianjin | E | 0.285 | 0.458 | 0.531 | 0.490 | 0.566 | 0.541 | 0.600 | 0.679 | 0.765 | 0.851 | 0.978 | 1.000 |
Zhejiang | E | 0.265 | 0.292 | 0.308 | 0.313 | 0.330 | 0.341 | 0.380 | 0.453 | 0.540 | 0.641 | 0.754 | 0.846 |
Anhui | C | 0.260 | 0.280 | 0.301 | 0.295 | 0.317 | 0.328 | 0.372 | 0.573 | 0.687 | 0.779 | 1.000 | 1.000 |
Henan | C | 0.189 | 0.207 | 0.187 | 0.193 | 0.193 | 0.185 | 0.205 | 0.237 | 0.278 | 0.318 | 0.373 | 0.437 |
Heilongjiang | C | 0.304 | 0.322 | 0.346 | 0.313 | 0.352 | 0.363 | 0.494 | 1.000 | 1.000 | 0.577 | 0.630 | 0.698 |
Hubei | C | 0.195 | 0.212 | 0.218 | 0.216 | 0.216 | 0.227 | 0.237 | 0.277 | 0.317 | 0.359 | 0.411 | 0.466 |
Hunan | C | 0.168 | 0.177 | 0.189 | 0.163 | 0.169 | 0.172 | 0.191 | 0.234 | 0.267 | 0.286 | 0.305 | 0.322 |
Jiling | C | 0.239 | 0.280 | 0.311 | 0.324 | 0.343 | 0.279 | 0.286 | 0.321 | 0.373 | 0.420 | 0.466 | 0.512 |
Jiangxi | C | 0.236 | 0.255 | 0.288 | 0.235 | 0.221 | 0.212 | 0.218 | 0.238 | 0.271 | 0.299 | 0.337 | 0.368 |
Shanxi | C | 0.130 | 0.139 | 0.151 | 0.143 | 0.148 | 0.155 | 0.167 | 0.191 | 0.210 | 0.226 | 0.252 | 0.280 |
Gansu | W | 0.250 | 0.285 | 0.272 | 0.239 | 0.255 | 0.235 | 0.257 | 0.285 | 0.312 | 0.336 | 0.667 | 0.586 |
Guangxi | W | 0.094 | 0.120 | 0.132 | 0.115 | 0.114 | 0.112 | 0.120 | 0.134 | 0.152 | 0.168 | 0.192 | 0.200 |
Guizhou | W | 0.120 | 0.136 | 0.143 | 0.141 | 0.147 | 0.154 | 0.160 | 0.177 | 0.197 | 0.218 | 0.233 | 0.232 |
Neimenggu | W | 0.166 | 0.168 | 0.191 | 0.160 | 0.184 | 0.189 | 0.204 | 0.237 | 0.269 | 0.302 | 0.346 | 0.376 |
Ningxia | W | 0.183 | 0.177 | 0.237 | 0.238 | 0.339 | 0.189 | 0.192 | 0.205 | 0.224 | 0.250 | 0.264 | 0.283 |
Qinghai | W | 1.000 | 1.000 | 1.000 | 1.000 | 0.709 | 0.418 | 0.415 | 0.425 | 0.448 | 0.459 | 1.000 | 1.000 |
Shaanxi | W | 0.163 | 0.171 | 0.184 | 0.183 | 0.187 | 0.187 | 0.194 | 0.220 | 0.251 | 0.291 | 0.210 | 0.211 |
Sichuan | W | 0.106 | 0.120 | 0.112 | 0.115 | 0.125 | 0.141 | 0.153 | 0.180 | 0.206 | 0.237 | 0.273 | 0.323 |
Xinjiang | W | 0.250 | 0.265 | 0.277 | 0.265 | 0.220 | 0.222 | 0.225 | 0.237 | 0.251 | 0.260 | 0.122 | 0.115 |
Yunnan | W | 0.234 | 0.253 | 0.268 | 0.257 | 0.267 | 0.270 | 0.274 | 0.298 | 0.331 | 0.360 | 0.391 | 0.402 |
Eastern area | 0.357 | 0.395 | 0.439 | 0.443 | 0.505 | 0.478 | 0.520 | 0.582 | 0.671 | 0.737 | 0.802 | 0.881 | |
Central area | 0.215 | 0.234 | 0.249 | 0.235 | 0.245 | 0.240 | 0.271 | 0.384 | 0.425 | 0.408 | 0.472 | 0.510 | |
Western area | 0.257 | 0.269 | 0.281 | 0.271 | 0.255 | 0.212 | 0.219 | 0.240 | 0.264 | 0.288 | 0.370 | 0.373 | |
China | 0.283 | 0.307 | 0.332 | 0.326 | 0.347 | 0.320 | 0.348 | 0.409 | 0.463 | 0.491 | 0.562 | 0.604 |
4.5. Meta-Technology Gap Ratio
Province | Area | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | E | 0.067 | 0.047 | 0.004 | 0.043 | 0.006 | 0.004 | 0.006 | 0.024 | 0.021 | 0.000 | 0.006 | 0.000 |
Fujian | E | 0.533 | 0.463 | 0.375 | 0.424 | 0.407 | 0.413 | 0.400 | 0.385 | 0.255 | 0.207 | 0.112 | 0.061 |
Hainan | E | 0.397 | 0.266 | 0.315 | 0.476 | 0.000 | 0.169 | 0.070 | 0.000 | 0.000 | 0.003 | 0.000 | 0.000 |
Guangdong | E | 0.000 | 0.000 | 0.000 | 0.004 | 0.009 | 0.013 | 0.006 | 0.093 | 0.000 | 0.000 | 0.000 | 0.000 |
Hebei | E | 0.038 | 0.039 | 0.038 | 0.047 | 0.044 | 0.044 | 0.042 | 0.038 | 0.032 | 0.028 | 0.026 | 0.000 |
Jiangsu | E | 0.297 | 0.227 | 0.203 | 0.107 | 0.027 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Liaoning | E | 0.607 | 0.679 | 0.786 | 0.747 | 0.560 | 0.404 | 0.351 | 0.260 | 0.259 | 0.215 | 0.000 | 0.000 |
Shandong | E | 0.043 | 0.046 | 0.039 | 0.042 | 0.038 | 0.037 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Shanghai | E | 0.005 | 0.001 | 0.003 | 0.004 | 0.021 | 0.001 | 0.016 | 0.245 | 0.264 | 0.004 | 0.001 | 0.000 |
Tianjin | E | 0.142 | 0.160 | 0.087 | 0.002 | 0.016 | 0.459 | 0.022 | 0.321 | 0.021 | 0.047 | 0.011 | 0.000 |
Zhejiang | E | 0.551 | 0.413 | 0.369 | 0.291 | 0.166 | 0.069 | 0.018 | 0.020 | 0.000 | 0.000 | 0.000 | 0.000 |
Anhui | C | 0.740 | 0.720 | 0.699 | 0.705 | 0.683 | 0.672 | 0.587 | 0.427 | 0.313 | 0.201 | 0.000 | 0.000 |
Henan | C | 0.587 | 0.572 | 0.618 | 0.610 | 0.588 | 0.577 | 0.553 | 0.559 | 0.572 | 0.582 | 0.584 | 0.563 |
Heilongjiang | C | 0.675 | 0.663 | 0.654 | 0.687 | 0.648 | 0.637 | 0.506 | 0.000 | 0.000 | 0.416 | 0.370 | 0.302 |
Hubei | C | 0.635 | 0.627 | 0.628 | 0.626 | 0.622 | 0.608 | 0.593 | 0.571 | 0.550 | 0.530 | 0.537 | 0.534 |
Hunan | C | 0.697 | 0.671 | 0.637 | 0.660 | 0.646 | 0.623 | 0.573 | 0.507 | 0.483 | 0.494 | 0.545 | 0.678 |
Jiling | C | 0.761 | 0.720 | 0.689 | 0.676 | 0.655 | 0.721 | 0.654 | 0.679 | 0.605 | 0.557 | 0.534 | 0.488 |
Jiangxi | C | 0.764 | 0.745 | 0.712 | 0.710 | 0.700 | 0.693 | 0.680 | 0.666 | 0.650 | 0.644 | 0.639 | 0.632 |
Shanxi | C | 0.870 | 0.861 | 0.849 | 0.761 | 0.744 | 0.730 | 0.715 | 0.693 | 0.667 | 0.645 | 0.611 | 0.720 |
Gansu | W | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.333 | 0.414 |
Guangxi | W | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.118 | 0.243 | 0.343 | 0.409 | 0.474 | 0.518 | 0.570 |
Guizhou | W | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.008 | 0.054 |
Neimenggu | W | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.084 | 0.211 | 0.307 | 0.375 | 0.470 | 0.564 | 0.624 |
Ningxia | W | 0.817 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Qinghai | W | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Shaanxi | W | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.023 | 0.151 | 0.259 | 0.343 | 0.401 | 0.000 | 0.000 |
Sichuan | W | 0.324 | 0.359 | 0.489 | 0.535 | 0.575 | 0.605 | 0.645 | 0.714 | 0.731 | 0.763 | 0.727 | 0.677 |
Xinjiang | W | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.068 | 0.000 | 0.000 |
Yunnan | W | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.028 | 0.111 | 0.214 | 0.286 | 0.351 | 0.392 | 0.425 |
Eastern area | 0.244 | 0.213 | 0.202 | 0.199 | 0.118 | 0.147 | 0.085 | 0.126 | 0.078 | 0.046 | 0.014 | 0.006 | |
Central area | 0.716 | 0.697 | 0.686 | 0.679 | 0.661 | 0.658 | 0.608 | 0.513 | 0.480 | 0.509 | 0.477 | 0.490 | |
Western area | 0.114 | 0.036 | 0.047 | 0.054 | 0.055 | 0.086 | 0.136 | 0.184 | 0.214 | 0.253 | 0.254 | 0.276 | |
China | 0.329 | 0.286 | 0.282 | 0.281 | 0.246 | 0.267 | 0.247 | 0.253 | 0.236 | 0.245 | 0.225 | 0.232 |
Test | Null Hypothesis (Ho) | Statistics | p-value |
---|---|---|---|
Wilcoxon–Mann–Whitney | Mean(MEEE) = Mean(GEEE) | 93 | 0.0011 |
Wilcoxon–Mann–Whitney | Mean(MEEE Eastern) = Mean(MEEE Central) | 207 | 0.0011 |
Wilcoxon–Mann–Whitney | Mean(MEEE Eastern) = Mean(MEEE Western) | 220 | 0.0001 |
4.6. Economic Efficiency vs. Environmental Efficiency
5. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- National Bureau of Statistics of China (NBSC). National Environmental Statistical Bulletin 2010; China Statistics Press: Beijing, China, 2011.
- Färe, R.; Grosskopf, S.; Norris, M.; Zhang, Z. Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar]
- Krüger, J.J. The Global Trends of Total Factor Productivity: Evidence from the Nonparametric Malmquist Index Approach. Oxf. Econ. Papers 2003, 55, 265–286. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S. New Directions: Efficiency and Productivity; Springer: New York, NY, USA, 2005. [Google Scholar]
- Färe, R.; Grosskopf, S.; Pasurka, C.A. Environmental production functions and environmental directional distance functions. Energy 2007, 32, 1055–1066. [Google Scholar] [CrossRef]
- Kumar, S. Environmentally sensitive productivity growth: A global analysis using Malmquist–Luenberger index. Ecol. Econ. 2006, 56, 280–293. [Google Scholar] [CrossRef]
- Chung, Y.K.; Färe, R.; Grosskopf, S. Productivity and Undesirable Outputs: A Directional Distance Function Approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef]
- Picazo-Tadeo, A.J.; Diego, P. Environmental externalities and efficiency measurement. J. Environ. Manag. 2009, 90, 3332–3339. [Google Scholar] [CrossRef]
- Fukuyama, H.; Weber, W.L. A directional slacks-based measure of technical efficiency. Socio-Econ. Plan. Sci. 2009, 43, 274–287. [Google Scholar] [CrossRef]
- Tone, K. A Slacks-based Measure of Efficiency in Data Envelopment Analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Li, L.B.; Hu, L.J. Ecological Total-Factor Efficiency of Regions in China. Energy Policy 2012, 46, 216–224. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Poh, K.L. Slacks-based efficiency measures for modeling environmental performance. Ecol. Econ. 2006, 60, 111–118. [Google Scholar] [CrossRef]
- Zhang, N.; Choi, Y. Environmental efficiency of China’s Regional Economies: A Non-oriented slacks-based measure analysis. Soc. Sci. J. 2013, 50, 225–234. [Google Scholar] [CrossRef]
- Zhou, Y.; Xing, X.P.; Fang, K.; Liang, D.P.; Xu, C.L. Environmental efficiency analysis of power industry in China based on an entropy SBM model. Energy Policy 2013, 57, 68–75. [Google Scholar] [CrossRef]
- Li, H.; Fang, K.N.; Yang, W.; Wang, D.; Hong, X.X. Regional environmental efficiency evaluation in China: Analysis based on the Super-SBM model with undesirable outputs. Math. Comput. Model. 2013, 58, 1018–1031. [Google Scholar] [CrossRef]
- Zhang, N.; Choi, Y. A note on the evolution of directional distance function and its development in energy and environmental studies 1997–2013. Renew. Sustain. Energy Rev. 2014, 33, 50–59. [Google Scholar] [CrossRef]
- Battese, G.; Rao, D.S.P.; O’Donnell, C.J. A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies. J. Product. Anal. 2004, 21, 91–103. [Google Scholar] [CrossRef]
- O’Donnell, C.J.; Rao, D.; Battese, G. Metafrontier frameworks for the study of firm-level efficiencies and technology ratios. Empir. Econ. 2008, 34, 231–255. [Google Scholar] [CrossRef]
- Oh, D.H.; Lee, J.D. A metafrontier approach for measuring Malmquist productivity index. Empir. Econ. 2010, 38, 47–64. [Google Scholar] [CrossRef]
- Zhang, N.; Choi, Y. A comparative study of dynamic changes in CO2 emission performance of fossil fuel power plants in China and Korea. Energy Policy 2013, 62, 324–332. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, P.; Choi, Y. Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance function analysis. Energy Policy 2013, 56, 653–662. [Google Scholar] [CrossRef]
- Song, M.; Guan, Y. The environmental efficiency of Wanjiang demonstration area: A Bayesian estimation approach. Ecol. Indic. 2014, 36, 59–67. [Google Scholar] [CrossRef]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software; Kluwer Academic Publishers: Boston, MA, USA, 2007. [Google Scholar]
- Zhang, N.; Kong, F.; Yu, Y. Measuring ecological total-factor energy efficiency incorporating regional heterogeneities in China. Ecol. Indic. 2014, 51, 165–172. [Google Scholar] [CrossRef]
- Wu, Y. China’s Capital Stock Series by Region and Sector; The University of Western Australia Discussion Paper 09.02; University of Western Australia: Perth, Australia, 2009. [Google Scholar]
- National Bureau of Statistics of China (NBSC). Available online: http://www.stats.gov.cn/tjsj/ndsj/ (accessed on 12 March 2015). (In Chinese)
- National Bureau of Statistics of China (NBSC). Available online: http://tongji.cnki.net/kns55/Navi/HomePage.aspx?id=N2010080088&name=YCXME&floor=1 (accessed on 12 March 2015). (In Chinese)
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, G.; Gan, J.; Zhang, N. Metafrontier Environmental Efficiency for China’s Regions: A Slack-Based Efficiency Measure. Sustainability 2015, 7, 4004-4021. https://doi.org/10.3390/su7044004
Mei G, Gan J, Zhang N. Metafrontier Environmental Efficiency for China’s Regions: A Slack-Based Efficiency Measure. Sustainability. 2015; 7(4):4004-4021. https://doi.org/10.3390/su7044004
Chicago/Turabian StyleMei, Guoping, Jingyi Gan, and Ning Zhang. 2015. "Metafrontier Environmental Efficiency for China’s Regions: A Slack-Based Efficiency Measure" Sustainability 7, no. 4: 4004-4021. https://doi.org/10.3390/su7044004
APA StyleMei, G., Gan, J., & Zhang, N. (2015). Metafrontier Environmental Efficiency for China’s Regions: A Slack-Based Efficiency Measure. Sustainability, 7(4), 4004-4021. https://doi.org/10.3390/su7044004