Technical Performance and Environmental Effects of the Treated Effluent of Wastewater Treatment Plants in the Shenzhen Bay Catchment, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Technical Performance Assessment
2.2. The Effluent Environmental Impact Assessment
2.3. Ecological Risk Assessment
2.4. Human Health Risk Assessment
3. Results and Discussion
3.1. Technical Performance in Removal of Pollutants
3.2. Eutrophication Effect of the Treated Effluent
3.3. Global Warming Effect of the Treated Effluent
3.4. Heavy Metal Risk of the Treated Effluent
3.5. Microbial Risk of the Treated Effluent
3.6. Eco-System Based Evaluation of Environmental Effect of WWTPs
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Reemtsma, T.; Weiss, S.; Mueller, J.; Petrovic, M.; González, S.; Barcelo, D.; Ventura, F.; Knepper, T.P. Polar pollutants entry into the water cycle by municipal wastewater: A European perspective. Environ. Sci. Technol. 2006, 40, 5451–5458. [Google Scholar] [CrossRef] [PubMed]
- Panepinto, D.; Genon, G. Modeling of Po River Water Quality in Torino (Italy). Water Resour. Manag. 2010, 24, 2937–2958. [Google Scholar] [CrossRef]
- Panepinto, D.; Genon, G.; Borsarelli, A. Improvement of nitrogen removal in a large municipal wastewater plant. Chem. Eng. Trans. 2013, 34, 67–72. [Google Scholar]
- Panepinto, D.; Marchese, F.; Genon, G. Evaluation of Po River water quality in Torino (Italy): Effects of diffuse and local point loads. Urban Water J. 2016, 13, 583–599. [Google Scholar] [CrossRef]
- Papa, M.; Ceretti, E.; Viola, G.C.V.; Feretti, D.; Zerbini, I.; Mazzoleni, G.; Steimberg, N.; Pedrazzani, R.; Bertanza, G. The assessment of WWTP performance: Towards a jigsaw puzzle evaluation? Chemosphere 2016, 145, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Baserba, M.; Hospido, A.; Reif, R.; Molinos-Senante, M.; Comas, J.; Poch, M. Including the environmental criteria when selecting a wastewater treatment plant. Environ. Model. Soft. 2014, 56, 74–82. [Google Scholar] [CrossRef]
- Yi, L.; Jiao, W.; Chen, X.; Chen, W. An overview of reclaimed water reuse in China. J. Environ. Sci. 2011, 23, 1585–1593. [Google Scholar] [CrossRef]
- Vasquez, M.I.; Fatta-Kassinos, D. Is the evaluation of “traditional” physicochemical parameters sufficient to explain the potential toxicity of the treated wastewater at sewage treatment plants? Environ. Sci. Pollut. Res. 2013, 20, 3516–3528. [Google Scholar] [CrossRef] [PubMed]
- Shahabadi, M.B.; Yerushalmi, L.; Haghighat, F. Impact of process design on greenhouse gas (GHG) generation by wastewater treatment plants. Water Res. 2009, 43, 2679–2687. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Y.; Wang, C.; Zhang, W.; Xiong, W. Towards more accurate life cycle assessment of biological wastewater treatment plants: A review. J. Clean Prod. 2015, 107, 676–692. [Google Scholar] [CrossRef]
- Gallego, A.; Hospido, A.; Moreira, M.T.; Feijoo, G. Environmental performance of wastewater treatment plants for small populations. Resour. Conserv. Recycl. 2008, 52, 931–940. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IGES: Hayama, Japan, 2006. [Google Scholar]
- Binkley, J.; Simpson, J.A. Heavy Metals in Wastewater Treatment Processes. In The Handbook of Water and Wastewater Microbiology; Mara, D., Horam, N., Eds.; Academic Press: Millbrae, CA, USA, 2003; pp. 597–610. [Google Scholar]
- Karvelas, M.; Katsoyiannis, A.; Samara, C. Occurrence and fate of heavy metals in the wastewater treatment process. Chemosphere 2003, 53, 1201–1210. [Google Scholar] [CrossRef]
- Kendir, E.; Kentel, E.; Sanin, F.D. Evaluation of heavy metals and associated health risks in a metropolitan wastewater treatment plant’s sludge for its land application. Hum. Ecol. Risk Assess. 2015, 21, 1631–1643. [Google Scholar] [CrossRef]
- Li, J.; Luo, G.; Gao, J.; Yuan, S.; Du, J.; Wang, Z. Quantitative evaluation of potential ecological risk of heavy metals in sewage sludge from three wastewater treatment plants in the main urban area of Wuxi, China. Chem. Ecol. 2015, 31, 235–251. [Google Scholar] [CrossRef]
- Khan, M.U.; Malik, R.N.; Muhammad, S. Human health risk from heavy metal via food crops consumption with wastewater irrigation practices in Pakistan. Chemosphere 2013, 93, 2230–2238. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qiao, M.; Liu, Y.; Zhu, Y. Health risk assessment of heavy metals in soils and vegetables from wastewater irrigated area, Beijing-Tianjin city cluster, China. J. Environ. Sci. 2012, 24, 690–698. [Google Scholar] [CrossRef]
- Gao, Q.; Li, Y.; Cheng, Q.; Yu, M.; Hu, B.; Wang, Z.; Yu, Z. Analysis and assessment of the nutrients, biochemical indexes and heavy metals in the Three Gorges Reservoir, China, from 2008 to 2013. Water Res. 2016, 92, 262–274. [Google Scholar] [CrossRef] [PubMed]
- Emmanuel, E.; Pierre, M.G.; Perrodin, Y. Groundwater contamination by microbiological and chemical substances released from hospital wastewater: Health risk assessment for drinking water consumers. Environ. Int. 2009, 35, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Min, X.; Xie, X.; Chai, L.; Liang, Y.; Li, M.; Ke, Y. Environmental availability and ecological risk assessment of heavy metals in zinc leaching residue. Trans. Nonferrous Met. Soc. China 2013, 23, 208–218. [Google Scholar] [CrossRef]
- Westrell, T.; Schönning, C.; Stenström, T.A.; Ashbolt, N.J. QMRA (quantitative microbial risk assessment) and HACCP (hazard analysis critical control points) for management of pathogens in wastewater and sewage sludge treatment and reuse. Water Sci. Technol. 2004, 50, 23–30. [Google Scholar] [PubMed]
- Harder, R.; Heimersson, S.; Svanstrom, M.; Peters, G.M. Including pathogen risk in life cycle assessment of wastewater management. 1. Estimating the burden of disease associated with pathogens. Environ. Sci. Technol. 2014, 48, 9438–9445. [Google Scholar] [CrossRef] [PubMed]
- Salgot, M.; Huertas, E.; Weber, S.; Dott, W.; Hollender, J. Wastewater reuse and risk: Definition of key objectives. Desalination 2006, 187, 29–40. [Google Scholar] [CrossRef]
- Teunis, P.F.M.; Medema, G.J.; Kruidenier, L.; Havelaar, A.H. Assessment of the risk of infection by Cryptosporidium or Giardia in drinking water from a surface water source. Water Res. 1997, 31, 1333–1346. [Google Scholar] [CrossRef]
- Haas, C.N.; Rose, J.B.; Gerba, C.P. Quantitative Microbial Risk Assessment; John Wiley & Sons, Inc.: New York, NY, USA, 1999. [Google Scholar]
- Haas, C.N.; Eisenberg, J.N.S. Risk Assessment. In Water Quality: Guidelines, Standards and Health; Fewtrell, L., Bartram, J., Eds.; IWA Publishing: London, UK, 2001; pp. 161–183. [Google Scholar]
- Ten Veldhuis, J.A.E.; Clemens, F.H.L.R.; Sterk, G.; Berends, B.R. Microbial risks associated with exposure to pathogens in contaminated urban flood water. Water Res. 2010, 44, 2910–2918. [Google Scholar] [CrossRef] [PubMed]
- Copp, J.B.; Spaniers, H.; Vanrolleghem, P.A. Respirometry in Control of the Activated Sludge Process: Benchmarking Control Strategies; IWA Publishing: London, UK, 2002. [Google Scholar]
- Guinee, J.B. Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards; Kluwer Academic Publishers: New York, NY, USA, 2002. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- State Environmental Protection Administration of China (SEPA). China National Standards-Marine Water Quality Standard (GB 3097-1997); State Environmental Protection Administration of China: Beijing, China, 1997. (In Chinese)
- Machdar, E.; Van Der Steen, N.P.; Raschid-Sally, L.; Lens, P.N.L. Application of quantitative microbial risk assessment to analyze the public health risk from poor drinking water quality in a low income area in Accra, Ghana. Sci. Total Environ. 2013, 449, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, Q. Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the Upper Han River, China. J. Hazard. Mater. 2010, 181, 1051–1058. [Google Scholar] [CrossRef] [PubMed]
- US Environmental Protection Agency (USEPA). Risk Assessment Guidance for Superfund (RAGS). In Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final; US Environmental Protection Agency: Washington, DC, USA, 2004. [Google Scholar]
- Jin, L.; Zhang, G.; Tian, H. Current state of sewage treatment in China. Water Res. 2014, 66, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Barth, E.F.; Brenner, R.C.; Lewis, R.F. Chemical-biological control of nitrogen and phosphorus in wastewater effluent. J. Water Pollut. Control Fed. 1968, 40, 2040–2054. [Google Scholar]
- Liao, Z.; Hu, T.; Roker, S.A.C. An obstacle to China’s WWTPs: The COD and BOD standards for discharge into municipal sewers. Environ. Sci. Pollut. Res. 2015, 22, 16434–16440. [Google Scholar] [CrossRef] [PubMed]
- Monteith, H.D.; Sahely, H.R.; MacLean, H.L.; Bagley, D.M. A rational procedure for estimation of greenhouse-gas emissions from municipal wastewater treatment plants. Water Environ. Res. 2005, 77, 390–403. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, J.; Wang, J.; Qi, P.; Ren, Y.; Hu, Z. Nitrous oxide emissions from a typical northern Chinese municipal wastewater treatment plant. Desalination Water Treat. 2011, 32, 145–152. [Google Scholar] [CrossRef]
- Dionisi, D.; Levantesi, C.; Majone, M.; Bornoroni, L.; De Sanctis, M. Effect of micropollutants (organic xenobiotics and heavy metals) on the activated sludge process. Ind. Eng. Chem. Res. 2007, 46, 6762–6769. [Google Scholar] [CrossRef]
- Brown, M.J.; Lester, J.N. Metal removal in activated sludge: The role of bacterial extracellular polymers. Water Res. 1979, 13, 817–837. [Google Scholar] [CrossRef]
- Stephenson, T.; Lester, J.N. Heavy metal behaviour during the activated sludge process I. Extent of soluble and insoluble metal removal. Sci. Total Environ. 1987, 63, 199–214. [Google Scholar] [CrossRef]
- Couillard, D.; Chartier, M. Removal of metals from aerobic sludges by biological solubilization in batch reactors. J. Biotechnol. 1991, 20, 163–180. [Google Scholar] [CrossRef]
- Papa, M.; Pedrazzani, R.; Bertanza, G. How green are environmental technologies? A new approach for a global evaluation: The case of WWTP effluents ozonation. Water Res. 2013, 47, 3679–3687. [Google Scholar] [CrossRef] [PubMed]
- Papa, M.; Alfonsín, C.; Moreira, M.T.; Bertanza, G. Ranking wastewater treatment trains based on their impacts and benefits on human health: A “Biological Assay and Disease” approach. J. Clean. Product. 2016, 113, 311–317. [Google Scholar] [CrossRef]
WWTP | Treatment Process | Capacity (104 m3/Day) |
---|---|---|
WWTP1 | AB/Oxidation Ditch | 30 |
WWTP2 | AB/Oxidation Ditch | 35 |
WWTP3 | MUCT | 56 |
WWTP4 | Oxidation Ditch | 3 |
WWTP5 | BIOSTYR | 5 |
WWTP6 | A2O | 5 |
WWTP7 | A2O | 5 |
Influent | WWTP1 | WWTP2 | WWTP3 | WWTP4 | WWTP5 | WWTP6 | WWTP7 |
Treated Water (104 m3/year) | 9968.57 | 11,247.06 | 20,839.92 | 839.94 | 1341.10 | 6902.57 | 1186.87 |
SS (mg/L) | 328.13 | 234.42 | 395.73 | 413.91 | 164.92 | 144.12 | 312.40 |
COD (mg/L) | 386.30 | 249.98 | 262.37 | 490.69 | 142.55 | 288.09 | 210.37 |
BOD5 (mg/L) | 121.35 | 85.48 | 93.56 | 138.73 | 44.13 | 111.71 | 66.47 |
NH4-N (mg/L) | 43.81 | 37.80 | 30.03 | 27.57 | 21.58 | 24.07 | 16.67 |
TN (mg/L) | 55.63 | 44.56 | 40.76 | 39.51 | 26.56 | 33.90 | 20.74 |
TP (mg/L) | 5.92 | 4.56 | 5.39 | 8.03 | 3.48 | 4.62 | 3.73 |
Cr (mg/L) | 0.012 | 0.009 | 0.007 | 0.009 | 0.012 | 0.126 | 0.061 |
As (mg/L) | 0.010 | 0.011 | 0.010 | 0.015 | 0.010 | 0.010 | 0.010 |
Hg (μg/L) | 0.083 | 0.131 | 0.107 | 0.138 | 0.998 | 0.089 | 0.356 |
Pb (mg/L) | 0.019 | 0.032 | 0.018 | 0.023 | 0.012 | 0.012 | 0.019 |
Cd (mg/L) | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 |
Fecal coliforms (CFU/L) | 4.02 × 108 | 5.05 × 108 | 2.73 × 108 | 2.84 × 108 | 1.53 × 108 | 1.56 × 108 | 5.30 × 107 |
Effluent | WWTP1 | WWTP2 | WWTP3 | WWTP4 | WWTP5 | WWTP6 | WWTP7 |
SS (mg/L) | 7.07 | 8.70 | 8.39 | 17.24 | 6.90 | 5.50 | 4.67 |
COD (mg/L) | 19.16 | 19.90 | 19.13 | 42.89 | 15.05 | 17.61 | 13.40 |
BOD5 (mg/L) | 3.16 | 3.00 | 2.66 | 7.20 | 1.85 | 2.99 | 1.80 |
NH4-N (mg/L) | 4.17 | 3.99 | 0.51 | 15.43 | 0.87 | 3.07 | 0.57 |
TN (mg/L) | 13.44 | 13.65 | 11.95 | 17.40 | 9.84 | 10.59 | 6.46 |
TP (mg/L) | 0.38 | 0.415 | 0.343 | 1.32 | 0.20 | 0.44 | 0.10 |
Cr (mg/L) | 0.003 | 0.004 | 0.003 | 0.004 | 0.005 | 0.010 | 0.005 |
As (mg/L) | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.009 | 0.010 |
Hg (μg/L) | 0.034 | 0.047 | 0.060 | 0.041 | 0.077 | 0.055 | 0.043 |
Pb (mg/L) | 0.011 | 0.012 | 0.012 | 0.013 | 0.011 | 0.009 | 0.012 |
Cd (mg/L) | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Fecal coliforms (CFU/L) | 2.83 × 103 | 5.37 × 103 | 2.10 × 103 | 2.20 × 103 | 1.23 × 102 | 4.1 × 103 | 1.77 × 101 |
Removal Capacity (kg·COD-eq/m3) | WWTP1 | WWTP2 | WWTP3 | WWTP4 | WWTP5 | WWTP6 | WWTP7 |
---|---|---|---|---|---|---|---|
AB/Oxidation Ditch | AB/Oxidation Ditch | MUCT | Oxidation Ditch | BIOSTYR | A2O | A2O | |
COD | 0.37 | 0.23 | 0.24 | 0.45 | 0.13 | 0.27 | 0.20 |
BOD5 | 0.24 | 0.16 | 0.18 | 0.26 | 0.08 | 0.22 | 0.13 |
SS | 0.64 | 0.45 | 0.77 | 0.79 | 0.32 | 0.28 | 0.62 |
TN | 0.84 | 0.62 | 0.58 | 0.44 | 0.33 | 0.47 | 0.29 |
TP | 0.55 | 0.41 | 0.50 | 0.67 | 0.33 | 0.42 | 0.36 |
Total COD-eq | 2.64 | 1.88 | 2.28 | 2.62 | 1.19 | 1.65 | 1.59 |
Removal Efficiency (%) | WWTP1 | WWTP2 | WWTP3 | WWTP4 | WWTP5 | WWTP6 | WWTP7 |
COD | 95.04 | 92.04 | 92.71 | 91.26 | 89.44 | 93.89 | 93.63 |
BOD5 | 97.39 | 96.49 | 97.16 | 94.81 | 95.82 | 97.33 | 97.29 |
SS | 97.84 | 96.29 | 97.88 | 95.84 | 95.82 | 96.18 | 98.51 |
TN | 75.84 | 69.37 | 70.68 | 55.95 | 62.94 | 68.75 | 68.84 |
TP | 93.57 | 90.89 | 93.63 | 83.61 | 94.18 | 90.59 | 97.26 |
Total CODeq | 88.41 | 84.00 | 87.88 | 82.08 | 82.66 | 85.05 | 90.56 |
WWTP | Removal Efficiency (%) | RI | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cr | As | Hg | Pb | Cd | Cr | As | Hg | Pb | Cd | ||
WWTP1 | 72.88 | 0.00 | 58.90 | 40.50 | 6.78 | 0.03 | 2.00 | 2.71 | 5.63 | 3.00 | 13.37 |
WWTP2 | 62.59 | 5.67 | 64.07 | 63.11 | 5.47 | 0.04 | 2.02 | 3.75 | 5.83 | 3.05 | 14.69 |
WWTP3 | 55.95 | 0.00 | 44.04 | 29.36 | −3.17 | 0.03 | 2.00 | 4.79 | 6.21 | 3.15 | 16.17 |
WWTP4 | 58.46 | 33.09 | 70.59 | 43.17 | 8.06 | 0.04 | 2.00 | 3.25 | 6.51 | 3.11 | 14.91 |
WWTP5 | 61.27 | 0.00 | 92.29 | 8.70 | −2.38 | 0.05 | 2.00 | 6.15 | 5.38 | 3.31 | 16.89 |
WWTP6 | 92.10 | 4.02 | 37.87 | 18.24 | 38.95 | 0.10 | 1.88 | 4.44 | 4.72 | 2.96 | 14.10 |
WWTP7 | 92.50 | 0.00 | 88.03 | 36.32 | 2.94 | 0.05 | 2.00 | 3.41 | 6.05 | 3.30 | 14.81 |
Risk Types | Heavy Metals | WWTP1 | WWTP2 | WWTP3 | WWTP4 | WWTP5 | WWTP6 | WWTP7 |
---|---|---|---|---|---|---|---|---|
HI (Adults) | Cr | 5.64 × 10−6 | 6.34 × 10−6 | 5.76 × 10−6 | 6.85 × 10−6 | 8.10 × 10−6 | 1.78 × 10−5 | 8.21 × 10−6 |
As | 4.37 × 10−5 | 4.41 × 10−5 | 4.37 × 10−5 | 4.37 × 10−5 | 4.37 × 10−5 | 4.10 × 10−5 | 4.37 × 10−5 | |
Hg | 2.23 × 10−7 | 3.08 × 10−7 | 3.93 × 10−7 | 2.67 × 10−7 | 5.05 × 10−7 | 3.64 × 10−7 | 2.80 × 10−7 | |
Pb | 4.03 × 10−6 | 4.17 × 10−6 | 4.44 × 10−6 | 4.66 × 10−6 | 3.85 × 10−6 | 3.38 × 10−6 | 4.33 × 10−6 | |
Cd | 1.73 × 10−6 | 6.86 × 10−6 | 7.08 × 10−6 | 7.00 × 10−6 | 7.44 × 10−6 | 6.67 × 10−6 | 7.43 × 10−6 | |
HI (Children) | Cr | 1.40 × 10−4 | 1.58 × 10−4 | 1.43 × 10−4 | 1.71 × 10−4 | 2.02 × 10−4 | 4.42 × 10−4 | 2.04 × 10−4 |
As | 4.44 × 10−3 | 4.49 × 10−3 | 4.44 × 10−3 | 4.44 × 10−3 | 4.44 × 10−3 | 4.17 × 10−3 | 4.44 × 10−3 | |
Hg | 1.51 × 10−5 | 2.09 × 10−5 | 2.66 × 10−5 | 1.81 × 10−5 | 3.42 × 10−5 | 2.47 × 10−5 | 1.90 × 10−5 | |
Pb | 4.29 × 10−4 | 4.44 × 10−4 | 4.73 × 10−4 | 4.96 × 10−4 | 4.10 × 10−4 | 3.59 × 10−4 | 4.61 × 10−4 | |
Cd | 1.33 × 10−4 | 1.36 × 10−4 | 1.40 × 10−4 | 1.38 × 10−4 | 1.47 × 10−4 | 1.32 × 10−4 | 1.47 × 10−4 | |
CR (Adults) | Cr | 5.72 × 10−8 | 6.43 × 10−8 | 5.84 × 10−8 | 6.95 × 10−8 | 8.22 × 10−8 | 1.80 × 10−7 | 8.33 × 10−8 |
As | 1.44 × 10−8 | 1.45 × 10−8 | 1.44 × 10−8 | 1.44 × 10−8 | 1.44 × 10−8 | 1.35 × 10−8 | 1.44 × 10−8 | |
Pb | 5.29 × 10−9 | 5.49 × 10−9 | 5.84 × 10−9 | 6.13 × 10−9 | 5.07 × 10−9 | 4.44 × 10−9 | 5.69 × 10−9 | |
Cd | 5.93 × 10−9 | 6.03 × 10−9 | 6.22 × 10−9 | 6.15 × 10−9 | 6.54 × 10−9 | 5.86 × 10−9 | 6.52 × 10−9 | |
CR (Children) | Cr | 1.52 × 10−6 | 1.70 × 10−6 | 1.55 × 10−6 | 1.84 × 10−6 | 2.18 × 10−6 | 4.78 × 10−6 | 2.21 × 10−6 |
As | 1.71 × 10−7 | 1.73 × 10−7 | 1.71 × 10−7 | 1.71 × 10−7 | 1.71 × 10−7 | 1.61 × 10−7 | 1.71 × 10−7 | |
Pb | 6.43 × 10−8 | 6.67 × 10−8 | 7.10 × 10−8 | 7.44 × 10−8 | 6.15 × 10−8 | 5.39 × 10−8 | 6.91 × 10−8 | |
Cd | 7.20 × 10−8 | 7.32 × 10−8 | 7.55 × 10−8 | 7.46 × 10−8 | 7.94 × 10−8 | 7.11 × 10−8 | 7.92 × 10−8 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Wang, D.; Li, M.; Wei, J.; Wu, G. Technical Performance and Environmental Effects of the Treated Effluent of Wastewater Treatment Plants in the Shenzhen Bay Catchment, China. Sustainability 2016, 8, 984. https://doi.org/10.3390/su8100984
Li B, Wang D, Li M, Wei J, Wu G. Technical Performance and Environmental Effects of the Treated Effluent of Wastewater Treatment Plants in the Shenzhen Bay Catchment, China. Sustainability. 2016; 8(10):984. https://doi.org/10.3390/su8100984
Chicago/Turabian StyleLi, Bo, Dan Wang, Mingyuan Li, Jie Wei, and Guangxue Wu. 2016. "Technical Performance and Environmental Effects of the Treated Effluent of Wastewater Treatment Plants in the Shenzhen Bay Catchment, China" Sustainability 8, no. 10: 984. https://doi.org/10.3390/su8100984
APA StyleLi, B., Wang, D., Li, M., Wei, J., & Wu, G. (2016). Technical Performance and Environmental Effects of the Treated Effluent of Wastewater Treatment Plants in the Shenzhen Bay Catchment, China. Sustainability, 8(10), 984. https://doi.org/10.3390/su8100984