Environmental Profile of the Swiss Supply Chain for French Fries: Effects of Food Loss Reduction, Loss Treatments and Process Modifications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope Definition
- Assess the environmental impacts of each stage of the Swiss French fry supply chain and to identify environmental hot spots;
- Demonstrate the impact on the environment of losses, loss reduction and loss treatment at each stage of the French fry supply chain;
- Evaluate how the total environmental impacts of the entire Swiss French fry supply chain might be reduced beyond loss reduction or loss treatments.
2.2. Mass Flow of the Current Supply Chain, System Boundary and Data Sources
2.3. Life Cycle Assessment
2.3.1. Modeling Structure
2.3.2. Agricultural Production Input Data
2.3.3. Wholesaler Input Data
2.3.4. Processing Industry Input Data
2.3.5. Retailer Input Data
2.3.6. Private Household Input Data
2.3.7. Process Modification
2.4. Allocation
2.5. Substitution
2.6. Further Assumptions
2.7. Impact Assessment
2.8. Sensitivity Analyses
3. Results
3.1. Environmental Impact Profile of the Current Supply Chain
3.2. Potential to Reduce Impacts by Loss Treatment and Loss Reduction
3.3. Hot Spots for Process Modifications
3.4. Optimization Potential of Choosing Frying Oils
3.5. Sensitivity Analyses
4. Discussion
4.1. Environmental Benefits from Loss Reduction
4.2. Environmental Benefits from Loss Treatment
4.3. Optimization Frontiers
4.4. Strengths and Limitations
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Input | Amount Per Hectare Processed Potatoes | Source | |
---|---|---|---|
Seed potatoes | 3238 | kg | Keiser et al. [25] |
Fungicides | 8174 | g | Keiser et al. [25] and specifications from SALCA database |
Herbicides | 2776 | g | |
Insecticides | 42.75 | g | |
Slurry (cattle) | 7.05 | m3 | Keiser et al. [25] |
Slurry (pork) | 1.19 | m3 | |
Feces (poultry) | 0.6 | m3 | |
Cow dung | 4.05 | t | |
Horse dung | 0 | t | |
Poultry dung | 0.29 | t | |
Nitrogen | 90.73 | kg | Keiser et al. [25] and specifications from SALCA database |
Phosphorus as P2O5 | 40.35 | kg | |
Potassium as K2O | 201.5 | kg | |
Surface water | 213 | m3 | Keiser et al. [25]; Weber et al. [58] |
Underground water | 172 | m3 | Keiser et al. [25]; BFS [27] |
Tap water | 75 | m3 |
Inputs | Amount | Unit | Source |
---|---|---|---|
Transportation from farm | 30 | km | Own calculations based on personal communication with a wholesaler and Kellenberger et al. [28] |
Building (storage building) | 0.000014 | m2 | |
Demand for land | 0.0015 | m2/year | |
0.00006 | m2/year | ||
Land transformation | 0.00003 | m2 | |
0.00003 | m2 | ||
Inputs phase | |||
Electricity for storage | 0.032 | kWh | Own calculations based on Uhlmann et al. [30] |
Germicides | 0.018 | g | Omya [31] |
Loading of boxes with a forklift | 1.00 × 10−3 | MJ | Own calculations based on Uhlmann et al. [30] |
Potato boxes | 0.00025 | p | |
Outputs phase | |||
Potatoes | 1 | kg | |
CIPC—Emissions to water | 1.80 × 10−2 | g | Bos et al. [59] |
CIPC—to air | 2.00 × 10−3 | g | Kerstholt et al. [60] |
Inputs | Amount | Unit | Source |
---|---|---|---|
Transportation from wholesaler | 50 | km | Own calculations based on Verbund et al. [61] and Kellenberger et al. [28] |
Building (processing building) | 0.00001 | m2 | |
Demand for land | 0.0016 | m2/year | |
0.00007 | m2/year | ||
Land transformation | 0.00003 | m2 | |
0.00003 | m2 | ||
Inputs phase (1) | |||
Electricity | 0.002 | kWh | Own calculations based on Boema S.p.A. [62], Eima [32] and Uhlmann et al. [30] |
Heat | 0.25 | MJ | Own calculations based on personal communication with a project engineer |
Water | 18 | kg | Personal communication with a potato processor |
Machinery | 0.00002 | kg | Own calculations based on personal communication with a project engineer |
Conveyor belts | 6.91 × 10−9 | m | |
Outputs phase (1) | |||
Raw potato strips | 1 | kg | |
Wastewater | 0.018 | m3 | Own assumption |
Inputs phase (1I) | |||
Electricity | 0.32 | kWh | Ponsioen and Blonk [34] |
Heat | 4.75 | MJ | Calculations based on Foster et al. [33] and personal communications |
Frying oil | 0.05 | kg | Personal communication with a potato processor |
Packaging material (PET bag, film) | 0.0041 | kg | |
Packaging material (paperboard) | 0.03 | kg | |
Machinery | 4.53 × 10−5 | kg | Calculations based on personal communication with a project engineer |
Conveyor belts | 6.91 × 10−9 | m | |
Loading of boxes with a forklift | 0.001 | MJ | Calculations based on Uhlmann et al. [30] |
Outputs phase (1I) | |||
French fries | 1 | kg |
Inputs | Amount | Unit | Source |
---|---|---|---|
Transportation from wholesaler | 50 | km | Personal communication |
Electricity | 0.37 | kWh | Nielsen et al. [35] |
Heat from natural gas | 0.05 | MJ | Nielsen et al. [35]; Bachmann et al. [63] |
Heat from mineral oil | 0.08 | MJ | |
Outputs | |||
French fries | 1 | kg |
Inputs | Amount | Unit | Source |
---|---|---|---|
Transportation from retailer | 4.7 | km | BFS [40] |
Electricity | 1.8 | kWh | Own calculations based Franke et al. [37] and manufacturer’s specifications; Sonesson, et al. [38] |
Frying oil | 0.4 | kg | Own calculations based on Franke et al. [37], DGF [39] and manufacturer’s specifications |
Outputs | |||
French fries | 1 | kg |
Appendix B
- Tractors with two-tire trailers transport potatoes from farm to wholesaler. Average transportation distance from farm to wholesaler was calculated (weighted average) based on information from two Swiss potato wholesalers (30 km).
- Storage occurs in wooden boxes; filling weight: 1 ton; weight of each box: 55 kg; useful life: 10 years [30].
- Average storage duration (under cool conditions): 125 days; packing density: 338 kg/m3; energy consumption: 10.8 kWh/m3/year [26].
- Trucks (20–28 tons effective load) transport potatoes from wholesaler to processing industry; transportation distance: 50 km (personal communication with a potato processor).
- Trucks (20–28 tons effective load; cooling system integrated based on data of Tassou et al. [64]) transport potatoes from processing industry to retailers (average transportation distance according to four retailers: 50 km).
- Water input for potato washing and processing equals water output.
- Machines consist of 100% stainless steel.
- In private households, French fries are stored in a freezer: average energy consumption: 0.27 kWh (calculated on models according to Sonesson, Janestad and Raaholt [38]; model assumptions: large freezer: 270 L; small freezer: 120 L; average storage time: 15 days; storage density of French fries: 420 kg/m3 [65]; volume of all products comprises 80% of freezer’s volume).
- In private households, French fries are fried in a deep-fryer: oil volume: 22 L; heating power: 1.82 kW (average calculated according to Franke and Strijowski [37]).
- Heating period and frying time: 18 min [66].
References
- Notarnicola, B.; Tassielli, G.; Renzulli, P.A.; Castellani, V.; Serenella, S. Environmental impacts of food consumption in Europe. J. Clean. Prod. 2016, in press. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Corrado, S.; Ardente, F.; Sala, S.; Saouter, E. Modelling of food loss within life cycle assessment: From current practice towards a systematisation. J. Clean. Prod. 2016, in press. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of The United Nations; The International Fund for Agricultural Development; The World Food Programme. The State of Food Insecurity in the World 2015. In Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress; FAO: Rome, Italy, 2015. [Google Scholar]
- Akkerman, R.; Donk, D.P. Development and application of a decision support tool for reduction of product losses in the food-processing industry. J. Clean. Prod. 2008, 16, 335–342. [Google Scholar] [CrossRef]
- Giuseppe, A.; Mario, E.; Cinzia, M. Economic benefits from food recovery at the retail stage: An application to Italian food chains. Waste Manag. 2014, 34, 1306–1316. [Google Scholar] [CrossRef] [PubMed]
- Buzby, J.C.; Hyman, J. Total and per capita value of food loss in the United States. Food Policy 2012, 37, 561–570. [Google Scholar] [CrossRef]
- Scholz, K.; Eriksson, M.; Strid, I. Carbon footprint of supermarket food waste. Resour. Conserv. Recycl. 2015, 94, 56–65. [Google Scholar] [CrossRef]
- Takata, M.; Fukushima, K.; Kino-Kimata, N.; Nagao, N.; Niwa, C.; Toda, T. The effects of recycling loops in food waste management in Japan: Based on the environmental and economic evaluation of food recycling. Sci. Total Environ. 2012, 432, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Aschemann-Witzel, J.; de Hooge, I.; Amani, P.; Bech-Larsen, T.; Oostindjer, M. Consumer-Related Food Waste: Causes and Potential for Action. Sustainability 2015, 7, 6457–6477. [Google Scholar] [CrossRef] [Green Version]
- Beretta, C.; Stoessel, F.; Baier, U.; Hellweg, S. Quantifying food losses and the potential for reduction in Switzerland. Waste Manag. 2012, 33, 764–773. [Google Scholar] [CrossRef] [PubMed]
- Willersinn, C.; Mack, G.; Mouron, P.; Keiser, A.; Siegrist, M. Quantity and quality of food losses along the Swiss potato supply chain: Stepwise investigation and the influence of quality standards on losses. Waste Manag. 2015, 46, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Willersinn, C.; Möbius, S.; Mouron, P.; Lansche, J.; Mack, G. Environmental impacts of food losses along the entire Swiss potato supply chain—Current situation and reduction potentials. J. Clean. Prod. 2017, 140, 860–870. [Google Scholar] [CrossRef]
- International Organization for Standardization. International Organization for Standardization 14040. Environmental management–Life cycle assessment—Principles and framework; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Osborn, S. Wastage of Food. Encycl. Food Health 2016. [Google Scholar] [CrossRef]
- Cecchini, L.; Torquati, B.; Paffarini, C.; Barbanera, M.; Foschini, D.; Chiorri, M. The Milk Supply Chain in Italy’s Umbria Region: Environmental and Economic Sustainability. Sustainability 2016, 8, 728. [Google Scholar] [CrossRef]
- Arzoumanidis, I.; Raggi, A.; Petti, L. Considerations When Applying Simplified LCA Approaches in the Wine Sector. Sustainability 2014, 6, 5018–5028. [Google Scholar] [CrossRef]
- Accorsi, R.; Versari, L.; Manzini, R. Glass vs. Plastic: Life Cycle Assessment of Extra-Virgin Olive Oil Bottles across Global Supply Chains. Sustainability 2015, 7, 2818–2840. [Google Scholar] [CrossRef]
- Notarnicola, B.; Hayashi, K.; Curran, M.A.; Huisingh, D. Progress in working towards a more sustainable agri-food industry. J. Clean. Prod. 2012, 28, 1–8. [Google Scholar] [CrossRef]
- Betz, A.; Buchli, J.; Göbel, C.; Müller, C. Food waste in the Swiss food service industry—Magnitude and potential for reduction. Waste Manag. 2014, 2015, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, G.; Nemecek, T. Swiss Agricultural Life Cycle Assessment (SALCA): An Integrated Environmental Assessment Concept for Agriculture. In International Conference Integrated Assessment of Agriculture and Sustainable Development, Setting the Agenda for Science and Policy; AgSAP Office, Wageningen University: Egmond aan Zee, The Netherlands, 2009; pp. 134–135. [Google Scholar]
- Jungbluth, N.; Tietje, O.; Scholz, R.W. Food Purchases: Impacts from the Consumers’ Point of View Investigated with a Modular LCA. LCA Case Stud. 2000, 5, 134–142. [Google Scholar] [CrossRef]
- Ecoinvent Data v2. 2 the 2010 Version of the Most Com-Prehensive and Most Popular Public LCI Database. Available online: https://www.ecoinvent.org/files/201004_report_of_changes_ecoinvent_2.1_to_2.2.pdf (accessed on 22 November 2016).
- Frischknecht, R.; Jungbluth, N.; Althaus, H.-J.; Doka, G.; Dones, R.; Heck, T.; Hellweg, S.; Hischier, R.; Nemecek, T.; Rebitzer, G.; et al. Overview and Methodology–Data v2.0; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2007. [Google Scholar]
- Keiser, A.; Häberli, M.; Schnyder, E.; Berchier, P. Einfluss des Anbausystems, der Anbautechnik und des Standorts auf die Kartoffelqualität in der Schweiz; Schweizerische Hochschule für Landwirtschaft (SHL): Zollikofen, Switzerland, 2007. [Google Scholar]
- Bystricky, M.; Alig, M.; Nemecek, T.; Gaillard, G. Ökobilanz ausgewählter Schweizer Landwirtschaftsprodukte im Vergleich zum Import; Agroscope: Zürich, Switzerland, 2014. [Google Scholar]
- Bundesamt für Statistik. Schweizer Landwirtschaft–zwischen Moderne und Tradition; Bundesamt für Statistik BFS: Neuchâtel, Switzerland, 2012. [Google Scholar]
- Kellenberger, D.; Althaus, H.-J.; Jungbluth, N.; Künniger, T. Life Cycle Inventories of Building Products; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2007. [Google Scholar]
- Nemecek, T.; Kägi, T.; Blaser, S. Life Cycle Inventories of Agricultural Production Systems; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2007. [Google Scholar]
- Uhlmann, S.; Leppack, E.; Sauer, N. Aufbereitung von Kartoffeln: Kalkulationsdaten; KTBL-Schr.-Vertrieb im Landwirtschaftsverl: Münster, Switzerland, 2003. [Google Scholar]
- Sicherheitsdatenblatt gemäß 2001/58/EG Gro Stop HN. Available online: http://www.omya-agro.ch/C12574E2002CF54D/vwLookupDownloads/Gro%20Stop%20HN-D-090324.pdf/$FILE/Gro%20Stop%20HN-D-090324.pdf (accessed on 3 April 2015).
- Food Processing Machines. Available online: http://www.eima.de/Content/food-processing-machines/?lang=en (accessed on 3 April 2015).
- Foster, C.; Green, K.; Bleda, M.; Dewick, P.; Evans, B.; Flynn, A.; Mylan, J. Environmental Impacts of Food Production and Consumption; Manchester Business School: London, UK, 2006. [Google Scholar]
- Ponsioen, T.; Blonk, H. Case Studies for More Insight into the Methodology and Composition of Carbon Footprints of Table Potatoes and Chips; Blonk Environmental Consultants: Gouda, The Netherlands, 2011. [Google Scholar]
- LCA Food Data Base. Available online: http://lca-net.com/publications/show/lca-food-data-base/ (accessed on 22 November 2016).
- Bundesamt für Energie. Schweizerische Gesamtenergiestatistik 2013, Bundesamt für Energie BFE: Bern, Switzerland, 2014.
- Franke, K.; Strijowski, U. Standardization of Domestic Frying Processes by an Engineering Approach. J. Food Sci. 2011, 76, E333–E340. [Google Scholar] [CrossRef] [PubMed]
- Sonesson, U.; Janestad, H.; Raaholt, B. Energy for Preparation and Storing of Food—Models for Calculation of Energy Use for Cooking and Cold Storage in Households; SIK—The Swedish Institute for Food and Biotechnology: Göteborg, Sweden, 2003. [Google Scholar]
- Deutsche Gesellschaft für Fettwissenschaft. Optimal Frittieren–Empfehlungen der Deutschen Gesellschaft für Fettwissenschaft; Deutsche Gesellschaft für Fettwissenschaft (DGF): Frankfurt/Main, Germany, 2012. [Google Scholar]
- Bundesamt für Statistik. Mobilität und Verkehr; Bundesamt für Statistik BFS: Neuchâtel, Switzerland, 2015. [Google Scholar]
- Andersson, K.; Ohlsson, T.; Olsson, P. Screening life cycle assessment (LCA) of tomato ketchup: A case study. J. Clean. Prod. 1998, 6, 277–288. [Google Scholar] [CrossRef]
- Nemecek, T.; Bengoa, X.; Lansche, J.; Mouron, P.; Riedener, E.; Rossi, V.; Humbert, S. Methodological Guidelines for the Life Cycle Inventory of Agricultural Products; Quantis and Agroscope: Zurich, Switzerland, 2015. [Google Scholar]
- Klöpffer, W.; Grahl, B. Ökobilanz (LCA): Ein Leitfaden für Ausbildung und Beruf; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009. [Google Scholar]
- Swiss Association for the Development of Rural Areas; Research Institute for Organic Agriculture. Deckungsbeiträge; Agridea: Lindau/Lausanne, Switzerland, 2012. [Google Scholar]
- Coop Pommes Frites. Available online: https://www.coopathome.ch/de/tiefk%c3%bchlprodukte-%26-fertiggerichte/gefrorenes-gem%c3%bcse-%26-fr%c3%bcchte/gem%c3%bcse-%26-kartoffelprodukte/kartoffelprodukte/pommes-frites/p/3010099 (accessed on 8 June 2016).
- Hischier, R.; Weidema, B.; Althaus, H.-J.; Bauer, C.; Doka, G.; Dones, R.; Frischknecht, R.; Hellweg, S.; Humbert, S.; Jungbluth, N.; et al. Implementation of Life Cycle Impact Assessment Methods; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2010. [Google Scholar]
- Change Intergovernmental Panel on Climate. Climate Change 2007: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Guinée, J.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; de Koning, A.; van Oers, L.; Wegener Sleeswijk, A.; Suh, S.; de Haes, H.A.U.; et al. Life Cycle Assessment—An Operational Guide to the ISO standards; Leiden University (CML): Leiden, The Netherlands, 2001. [Google Scholar]
- FAO FAOSTAT-Production/Crops. Available online: http://faostat3.fao.org/browse/Q/QC/E (accessed on 9 June 2016).
- Bundesamt für Statistik. Schweizer Landwirtschaft-Taschenstatistik 2015; Bundesamt für Statistik BFS: Neuchâtel, Switzerland, 2015. [Google Scholar]
- Papargyropoulou, E.; Lozano, R.; Steinberger, J.K.; Wright, N.; Ujang, Z.B. The food waste hierarchy as a framework for the management of food surplus and food waste. J. Clean. Prod. 2014, 2014, 106–115. [Google Scholar] [CrossRef]
- Schott, A.B.S.; Andersson, T. Food waste minimization from life-cycle perspective. J. Environ. Manag. 2015, 147, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Gentil, E.C.; Gallo, D.; Christensen, T.H. Environmental evaluation of municipal waste prevention. Waste Manag. 2011, 31, 2371–2379. [Google Scholar] [CrossRef] [PubMed]
- Richter, B.; Bokelmann, W. Approaches of the German food industry for addressing the issue of food losses. Waste Manag. 2016, 48, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Mena, C.; Adenso-Diaz, B.; Yurt, O. The causes of food waste in the supplier–retailer interface: Evidences from the UK and Spain. Resourc. Conserv. Recycl. 2011, 55, 648–658. [Google Scholar] [CrossRef]
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; Otterdijk, R.V.; Meybeck, A. Global Food Losses and Food Waste. Extent, Causes and Prevention; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- Seuring, S.; Müller, M. From a literature review to a conceptual framework for sustainable supply chain management. J. Clean. Prod. 2008, 16, 1699–1710. [Google Scholar] [CrossRef]
- Weber, M.; Schild, A. Stand der Bewässerung in der Schweiz. Bericht zur Umfrage 2006; Bundesamt für Landwirtschaft: Bern, Switzerland, 2007. [Google Scholar]
- Bos, D.; van der Schans, D.A.; Mosquera Losada, J. Air Flow and Chlorpropham (CIPC) Emissions from a Potato Storage; Applied Plant Research (Praktijkonderzoek Plant & Omgeving), Part of Wageningen UR: Wageningen, The Netherlands, 2011. [Google Scholar]
- Kerstholt, R.P.V.; Ree, C.M.; Moll, H.C. Environmental life cycle analysis of potato sprout inhibitors. Ind. Crops Prod. 1997, 6, 187–194. [Google Scholar] [CrossRef]
- Verbund Oldenburger Münsterland Die Oldenburger Münsterland Wirtschaftsnachrichten. Ausgabe Dezember. Available online: http://www.om23.de/cms/de/wirtschaftsnachrichten-om/archiv/194-ausgabe-dezember2005 (accessed on 3 April 2015).
- Boema S.p.A. Dampfschäler. Available online: http://www.boema.com/modules/coreCatalog/?linea=76&l=de (accessed on 3 April 2015).
- Bachmann, S.; Scherer, R.; Salamin, P.-A.; Ferster, M.; Sterzl, J.G. Energieverbrauch in der Industrie und im Dienstleistungssektor-Resultate 2013; Bundesamt für Energie: Bern, Switzerland, 2014. [Google Scholar]
- Tassou, S.A.; de-Lille, G.; Ge, Y.T. Food transport refrigeration—Approaches to reduce energy consumption and environmental impacts of road transport. Appl. Therm. Eng. 2009, 29, 1467–1477. [Google Scholar] [CrossRef]
- Johnson, A.T. Biological Process Engineering: An Analogical Approach to Fluid Flow, Heat Transfer, and Mass Transfer Applied to Biological Systems; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Steba. Steba Fritteusen. Available online: www.steba.com (accessed on 7 August 2014).
- Biskin 1x1 des Frittierens. Available online: http://www.biskin.de/1-x-1-des-frittierens.html (accessed on 7 August 2015).
Module | Product (Marketable Potatoes) | Co-Product (Potato Losses) | Allocation Factor | ||||
---|---|---|---|---|---|---|---|
Mass (kg) | Price (CHF/kg) | Mass (kg) | Price (CHF/kg) | Marketable Potatoes | POTATO LOSSES | ||
Agricultural production | 1.37 | 0.47 | 0.47 | 0.06 | 0.955 | 0.045 | |
Wholesaler | 1.26 | 1.63 | 0.11 | 0.06 | 0.997 | 0.003 | |
Processing industry | Phase (1) | 1.04 | 1.63 | 0.22 | 0.06 | 0.992 | 0.008 |
Phase (2) | 1.04 | 4.00 | 0.00 | 4.00 | 1.000 | 0.000 | |
Retailer | 1.04 | 4.00 | 0.00 | 4.00 | 1.000 | 0.000 | |
Private household | 1.00 | 4.00 | 0.04 | 4.00 | 0.962 | 0.038 |
Impact Category | Impact of Loss Treatment | Impact of Loss Transportation from… to Farms/Biogas Plant * | |||
---|---|---|---|---|---|
Animal Feed | Biogas | Incineration | Wholesaler | Processing Industry | |
Demand for nonrenewable energy resources (MJ eq.) | −0.8621 | −4.8032 | −3.4448 | 0.1465 | 0.3079 |
Global warming potential (kg CO2 eq.) | −0.1198 | −0.1265 | −0.1622 | 0.0093 | 0.0190 |
Human toxicity (kg 1.4‑DB eq.) | −0.0500 | −0.0340 | 0.0013 | 0.0116 | 0.0131 |
Terrestrial ecotoxicity (kg 1.4‑DB eq.) | −1.34 × 10−3 | −1.44 × 10−5 | 9.62 × 10−6 | 0.0000 | 0.0000 |
Aquatic ecotoxicity (kg 1.4‑DB eq.) | −0.0424 | −0.0248 | 0.0575 | 0.0024 | 0.0031 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mouron, P.; Willersinn, C.; Möbius, S.; Lansche, J. Environmental Profile of the Swiss Supply Chain for French Fries: Effects of Food Loss Reduction, Loss Treatments and Process Modifications. Sustainability 2016, 8, 1214. https://doi.org/10.3390/su8121214
Mouron P, Willersinn C, Möbius S, Lansche J. Environmental Profile of the Swiss Supply Chain for French Fries: Effects of Food Loss Reduction, Loss Treatments and Process Modifications. Sustainability. 2016; 8(12):1214. https://doi.org/10.3390/su8121214
Chicago/Turabian StyleMouron, Patrik, Christian Willersinn, Sabrina Möbius, and Jens Lansche. 2016. "Environmental Profile of the Swiss Supply Chain for French Fries: Effects of Food Loss Reduction, Loss Treatments and Process Modifications" Sustainability 8, no. 12: 1214. https://doi.org/10.3390/su8121214
APA StyleMouron, P., Willersinn, C., Möbius, S., & Lansche, J. (2016). Environmental Profile of the Swiss Supply Chain for French Fries: Effects of Food Loss Reduction, Loss Treatments and Process Modifications. Sustainability, 8(12), 1214. https://doi.org/10.3390/su8121214