Air Pollution Monitoring Changes to Accompany the Transition from a Control to a Systems Focus
Abstract
:1. Introduction
2. Trends in Sustainable Air Quality Solutions
3. Sustainability Tools for Air Pollution Control Systems
3.1. Near-Field versus Far-Field Exposure Scenarios
3.2. Dose Calculations
3.3. Screening Tools
3.4. Enhanced Characterization of Activities within Micro-Environments
3.5. Citizen Science and Sensors
4. Discussion
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Vallero, D.A. Fundamentals of Air Pollution, 5th ed.; Elsevier Academic Press: Waltham, MA, USA, 2014. [Google Scholar]
- American Lung Association. Health Effects of Air Pollution; American Lung Association: New York, NY, USA, 1978. [Google Scholar]
- Bates, D.V.; Fish, B.R.; Hatch, T.F.; Mercer, T.T.; Morrow, P.E. Deposition and retention models for internal dosimetry of the human respiratory tract. Health Phys. 1966, 12, 173. [Google Scholar] [PubMed]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Meier, R.; Eeftens, M.; Phuleria, H.C.; Ineichen, A.; Corradi, E.; Davey, M.; Fierz, M.; Ducret-Stich, R.E.; Aguilera, I.; Schindler, C.; et al. Differences in indoor versus outdoor concentrations of ultrafine particles, PM2.5, PMabsorbance and NO2 in Swiss homes. J. Expo. Anal. Environ. Epidemiol. 2015, 25, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Lai, D.; Karava, P.; Chen, Q. Study of outdoor ozone penetration into buildings through ventilation and infiltration. Build. Environ. 2015, 93, 112–118. [Google Scholar] [CrossRef]
- Wambaugh, J.F.; Setzer, R.W.; Reif, D.M.; Gangwal, S.; Mitchell-Blackwood, J.; Arnot, J.A.; Joliet, O.; Frame, A.; Rabinowitz, J.; Knudsen, T.B.; et al. High-throughput models for exposure-based chemical prioritization in the ExpoCast project. Environ. Sci. Technol. 2013, 47, 8479–8488. [Google Scholar] [CrossRef] [PubMed]
- Wood, M.D.; Plourde, K.; Larkin, S.; Egeghy, P.P.; Williams, A.J.; Zemba, V.; Linkov, I.; Vallero, D.A. Advances on a Decision Analytic Approach to Exposure-Based Chemical Prioritization. Risk Anal. 2016. submitted. [Google Scholar]
- Schulte, P.A.; Schulte, P.A.; McKernan, L.T.; Heidel, D.S.; Okun, A.H.; Dotson, G.S.; Lentz, T.J.; Geraci, C.L.; Heckel, P.E.; Branche, C.M. Occupational safety and health, green chemistry, and sustainability: A review of areas of convergence. Environ. Health 2013. [Google Scholar] [CrossRef] [PubMed]
- Bare, J. TRACI 2.0: The tool for the reduction and assessment of chemical and other environmental impacts 2.0. Clean Technol. Environ. Policy 2011, 13, 687–696. [Google Scholar] [CrossRef]
- Van Zelm, R.; Huijbregts, M.A.; den Hollander, H.A.; Van Jaarsveld, H.A.; Sauter, F.J.; Struijs, J.; van Wijnen, H.J.; van de Meent, D. European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment. Atmos. Environ. 2008, 42, 441–453. [Google Scholar] [CrossRef]
- Bare, J.C.; Vallero, D.A. Incorporating exposure science into life-cycle assessment. In AccessScience; Yearbook of Science & Technology; McGraw-Hill Education: New York, NY, USA, 2014. [Google Scholar]
- Vallero, D.A. Air Pollution. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Rydén, L.; Migula, P.; Andersson, M. How pollution affects life. In Environmental Science: Understanding, Protecting and Managing the Environment in the Baltic Sea Region; The Baltic University Programme, Uppsala University: Uppsala, Sweden, 2003; ISBN 91-970017-0-8. [Google Scholar]
- Price, P.S.; Dionisio, K.L.; Isaacs, K.K.; Egeghy, P.P.; Vallero, D.A. Human Exposure Model Flowchart—Discussion Draft; National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park: Durham, NC, USA, 2016.
- Chin, J.Y.; Godwin, C.; Jia, C.; Robins, T.; Lewis, T.; Parker, E.; Max, P.; Batterman, S. Concentrations and risks of p-dichlorobenzene in indoor and outdoor air. Indoor Air 2013, 23, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, K.K.; Glen, W.G.; Egeghy, P.; Goldsmith, M.R.; Smith, L.; Vallero, D.; Brooks, R.; Grulke, C.M.; Özkaynak, H. SHEDS-HT: An Integrated Probabilistic Exposure Model for Prioritizing Exposures to Chemicals with Near-Field and Dietary Sources. Environ. Sci. Technol. 2014, 48, 12750–12759. [Google Scholar] [CrossRef] [PubMed]
- Csiszar, S.A.; Meyer, D.E.; Dionisio, K.L.; Egeghy, P.; Isaacs, K.K.; Price, P.; Scanlon, K.A.; Tan, Y.-M.; Thomas, K.; Vallero, D.A.; et al. A conceptual framework to extend life cycle assessment using near-field human exposure modeling and high-throughput tools for chemicals. Environ. Sci. Technol. 2016, 50, 11922–11934. [Google Scholar] [CrossRef] [PubMed]
- Starr, J.; Gemma, A.A.; Graham, S.E.; Stout, D.M. A test house study of pesticides and pesticide degradation products following an indoor application. Indoor Air 2014, 24, 390–402. [Google Scholar] [CrossRef] [PubMed]
- Büch, T.R.; Schäfer, E.A.; Duffus, J.H.; Gudermann, T. Single Compounds Versus Combination Effects in Toxicology. In Regulatory Toxicology; Springer: Heidelberg, Germany, 2014; pp. 407–411. [Google Scholar]
- Jolliet, O.; Ernstoff, A.; Csiszar, S.A.; Fantke, P. Health Impacts of Consumer Exposure During Product Use: Near Field Exposure Applied to Risk Assessment and LCA. In Proceedings of the 24th Annual Meeting of the International Society of Exposure Science, Cincinnati, OH, USA, 12–16 October 2014.
- United Nations Environment Programme. Rio Declaration on Environment and Development; United Nations Environment Programme: Nairobi, Kenya, 1992. [Google Scholar]
- Gauthier, A.M.; Fung, M.; Panko, J.; Kingsbury, T.; Perez, A.L.; Hitchcock, K.; Ferracini, T.; Sahmel, J.; Banducci, A.; Jacobsen, M.; et al. Chemical assessment state of the science: Evaluation of 32 decision-support tools used to screen and prioritize chemicals. Integr. Environ. Assess. Manag. 2015, 11, 242–255. [Google Scholar] [CrossRef] [PubMed]
- Karmaus, A.L.; Filer, D.L.; Martin, M.T.; Houck, K.A. Evaluation of food-relevant chemicals in the ToxCast high-throughput screening program. Food Chem. Toxicol. 2016, 92, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Anastas, P.T.; Lankey, R.L. Life cycle assessment and green chemistry: The Yin and Yang of industrial ecology. Green Chem. 2000, 2, 289–295. [Google Scholar] [CrossRef]
- Wild, C.P. The exposome: From concept to utility. Int. J. Epidemiol. 2012, 41, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Moya, J.; Phillips, L.; Schuda, L.; Wood, P.; Diaz, A.; Lee, R.; Clickner, R.; Birch, R.J.; Adjei, N.; Blood, P.; et al. Exposure Factors Handbook: 2011 Edition; US Environmental Protection Agency: Washington, DC, USA, 2011.
- Rudel, R.A.; Camann, D.E.; Spengler, J.D.; Korn, L.R.; Brody, J.G. Phthalates, alkylphenols, pesticides, polybrominated diphenyl ethers, and other endocrine-disrupting compounds in indoor air and dust. Environ. Sci. Technol. 2003, 37, 4543–4553. [Google Scholar] [CrossRef] [PubMed]
- Jones-Otazo, H.A.; Clarke, J.P.; Diamond, M.L.; Archbold, J.A.; Ferguson, G.; Harner, T.; Richardson, G.M.; Ryan, J.J.; Wilford, B. Is house dust the missing exposure pathway for PBDEs? An analysis of the urban fate and human exposure to PBDEs. Environ. Sci. Technol. 2005, 39, 5121–5130. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Liu, J.; Wang, Q.; Liang, Z. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Sci. Total Environ. 2010, 408, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Dennis, K.K.; Auerbach, S.S.; Balshaw, D.M.; Cui, Y.; Fallin, M.D.; Smith, M.T.; Spira, A.; Sumner, S.; Miller, G.W. The Importance of the Biological Impact of Exposure to the Concept of the Exposome. Environ. Health Perspect. 2016, 124, 1504–1510. [Google Scholar] [CrossRef] [PubMed]
- Hasenfratz, D.; Saukh, O.; Sturzenegger, S.; Thiele, L. Participatory air pollution monitoring using smartphones. In Proceedings of the 2nd International Workshop on Mobile Sensing, Beijing, China, 16–20 April 2012.
- Haklay, M. Citizen science and volunteered geographic information: Overview and typology of participation. In Crowdsourcing Geographic Knowledge; Springer: Heidelberg, Germany, 2013; pp. 105–122. [Google Scholar]
- McKinley, D.C.; Miller-Rushing, A.J.; Ballard, H.L.; Bonney, R.; Brown, H.; Cook-Patton, S.C.; Evans, D.M.; French, R.A.; Parrish, J.K. Citizen science can improve conservation science, natural resource management, and environmental protection. Biol. Conserv. 2016. Available online: www.sciencedirect.com/science/article/pii/S0006320716301963 (acessed on 23 Novermber 2016). [CrossRef]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vallero, D.A. Air Pollution Monitoring Changes to Accompany the Transition from a Control to a Systems Focus. Sustainability 2016, 8, 1216. https://doi.org/10.3390/su8121216
Vallero DA. Air Pollution Monitoring Changes to Accompany the Transition from a Control to a Systems Focus. Sustainability. 2016; 8(12):1216. https://doi.org/10.3390/su8121216
Chicago/Turabian StyleVallero, Daniel A. 2016. "Air Pollution Monitoring Changes to Accompany the Transition from a Control to a Systems Focus" Sustainability 8, no. 12: 1216. https://doi.org/10.3390/su8121216
APA StyleVallero, D. A. (2016). Air Pollution Monitoring Changes to Accompany the Transition from a Control to a Systems Focus. Sustainability, 8(12), 1216. https://doi.org/10.3390/su8121216