Earth Observation for Maritime Spatial Planning: Measuring, Observing and Modeling Marine Environment to Assess Potential Aquaculture Sites
Abstract
:1. Introduction
- the analyses of biologically, chemically and physically relevant seawater parameters to verify that values are within the vitality ranges of fish species;
- a spatial simulation of a harvesting model to evaluate aquaculture potential productivity performances.
2. Northern Adriatic Sea
3. Data and Materials
3.1. In Situ Measurements
3.2. Earth Observation Data
3.3. Ocean Modeling Products
3.4. Fish Harvest Modeling Products and the Potential Outcome
4. Methods
4.1. The Existing Competing Maritime Uses
4.2. Criteria, Requirements and Constraints for the Selected Species
- when the temperature rises, the solubility of oxygen decreases;
- when the salinity increases, the solubility of oxygen decreases;
- when tidal currents and wave motion increase, the solubility of oxygen increases;
- when the presence of aquatic plants varies, the solubility of oxygen varies.
4.3. Toolbox
5. Results
5.1. Maritime Space Potentially Available for Aquaculture
5.2. Feasibility Scenario
5.3. Suitability Scenario
6. Discussion
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Acronyms
CDOM | Colored Dissolved Organic Matter |
CFP | Common Fisheries Policy |
Chl-a | Chlorophyll-a |
CMEMS | Copernicus Marine Environment Monitoring Service |
CNR | Consiglio Nazionale delle Ricerche (Italian National Research Council) |
DO | Dissolved Oxygen |
EMODnet | European Marine Observation and Data Network |
ENVISAT | ENVironmentalSATellite |
EO | Earth Observation |
EU | European Union |
FAO | Food and Agriculture Organization of the United Nations |
GVA | Gross Value Added |
ISPRA | Istituto Superiore per la Protezione e la Ricerca Ambientale (Institute for Environmental Protection and Research) |
ME | Mean Error |
MERIS | MEdium Resolution Imaging Spectrometer |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MSP | Maritime Spatial Planning |
R2 | Coefficient of determination |
RMSE | Root Mean Square Error |
RON | Rete Ondametrica Nazionale (Italian Data Buoy Network) |
Rrs | Remote Sensing Reflectance |
SST | Sea Surface Temperature |
TSM | Total Suspended Matter |
WAC | Western Adriatic Current |
References
- Mare, D.G. Blue Growth: Scenarios and Drivers for Sustainable Growth from the Oceans, Seas and Coasts. Final Report. Available online: https://webgate.ec.europa.eu/maritimeforum/en/node/2946 (accessed on 6 May 2016).
- Directive 2014/89/EU of the European Parliament and of the Council of 23 July 2014 Establishing a Framework for Maritime Spatial Planning. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_2014.257.01.0135.01.ENG (accessed on 6 May 2016).
- Schaefer, N.; Barale, V. Maritime spatial planning: Opportunities & challenges in the framework of the EU integrated maritime policy. J. Coast. Conserv. 2011, 15, 237–245. [Google Scholar]
- Cristina, S.; Icely, J.; Goela, P.C.; DelValls, T.A.; Newton, A. Using remote sensing as a support to the implementation of the European Marine Strategy Framework Directive in SW Portugal. Cont. Shelf Res. 2015. [Google Scholar] [CrossRef] [Green Version]
- European Commission Maritime Affairs. Available online: http://ec.europa.eu/maritimeaffairs/policy/maritime_spatial_planning/index_en.htm (accessed on 14 April 2015).
- Schultz-Zehden, A.; Gee, K. BaltSeaPlan Findings–Experiences and Lessons; S. Pro: Berlin, Germany, 2013; p. 148. [Google Scholar]
- Barale, V.; Gade, M. (Eds.) Remote Sensing of the European Seas; Springer Science & Business Media: Berlin, Germany, 2008.
- Fiedler, P.C. Satellite observations of the 1982–1983 El Niño along the US Pacific coast. Science 1984, 224, 1251–1254. [Google Scholar] [CrossRef] [PubMed]
- Laurs, R.M.; Brucks, J.T. Living marine resources applications. Adv. Geophys. 1983, 27, 419–452. [Google Scholar]
- Njoku, E.G. Satellite-derived sea surface temperature: Workshop comparisons. Bull. Am. Meteorol. Soc. 1985, 66, 274–281. [Google Scholar] [CrossRef]
- Barale, V.; Schiller, C.; Tacchi, R.; Marechal, C. Trends and interactions of physical and bio-geo-chemical features in the Adriatic Sea as derived from satellite observations. Sci. Total Environ. 2005, 353, 68–81. [Google Scholar] [CrossRef] [PubMed]
- Barale, V.; Jaquet, J.M.; Ndiaye, M. Algal blooming patterns and anomalies in the Mediterranean Sea as derived from the SeaWiFS data set (1998–2003). Remote Sens. Environ. 2008, 112, 3300–3313. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2014; p. 223. [Google Scholar]
- FEAP Secretariat. European Aquaculture Production Report 2005–2014. Available online: http://www.feap.info/default.asp?SHORTCUT=582 (accessed on 28 April 2016).
- Grethe, A. A guide to marine aquaculture an introduction to the main challenges when establishing and managing marine aquaculture plants. Documents of AQUAFIMA Project Interreg Baltic Sea Region Programme 2007–2013. Available online: http://www.aquafima.eu/export/sites/aquafima/documents/WP4/Guide-to-marine-aquaculture.pdf (accessed on 6 May 2016).
- Swann, L.A. Fish farmer’s guide to understanding water quality. Available online: https://www.extension.purdue.edu/extmedia/as/as-503.html (accessed on 6 May 2016).
- Cura, A. Acquacoltura Responsabile; Cataudella, S., Bronzi, P., Eds.; Unimar-Uniprom: Rome, Italy, 2001; Available online: http://www.unimar.it/Documenti/Pubblicazioni/acquacolturaresp_rid.pdf (accessed on 24 May 2016).
- Handeland, S.O.; Imsland, A.K.; Stefansson, S.O. The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture 2008, 283, 36–42. [Google Scholar] [CrossRef]
- Person-Le Ruyet, J.; Mahe, K.; Le Bayon, N.; Le Delliou, H. Effects of temperature on growth and metabolism in a Mediterranean population of European sea bass. Dicentrarchus labrax. Aquaculture 2004, 237, 269–280. [Google Scholar] [CrossRef]
- Pavlidis, M.; Koumoundouros, G.; Sterioti, A.; Somarakis, S.; Divanach, P.; Kentouri, M. Evidence of temperature-dependent sex determination in the European sea bass (Dicentrarchus labrax L.). J. Exp. Zool. 2000, 287, 225–232. [Google Scholar] [CrossRef]
- Sigholt, T.; Finstad, B. Effect of low temperature on seawater tolerance in Atlantic salmon (Salmo salar) smolts. Aquaculture 1990, 84, 167–172. [Google Scholar] [CrossRef]
- Tandler, A.; Har'el, M.; Wilks, M.; Levinson, A.; Brickell, L.; Christie, S.; Avital, E.; Barr, Y. Effect of environmental temperature on survival, growth and population structure in the mass rearing of the gilthead seabream, Sparus aurata. Aquaculture 1989, 78, 277–284. [Google Scholar] [CrossRef]
- Jonsson, B.; Ruud-Hansen, J. Water temperature as the primary influence on timing of seaward migrations of Atlantic salmon (Salmo salar) smolts. Can. J. Fish. Aquat. Sci. 1985, 42, 593–595. [Google Scholar] [CrossRef]
- Weber, K.; Hoover, E.; Sturmer, L.; Baker, S. The Role of Dissolved Oxygen in Hard Clam. Available online: http://edis.ifas.ufl.edu/fa152 (accessed on 6 May 2016).
- Soto, D.; Norambuena, F. Evaluation of salmon farming effects on marine systems in the inner seas of southern Chile: A large-scale mensurative experiment. J. Appl. Ichtyol. 2004, 20, 493–501. [Google Scholar] [CrossRef]
- Pitta, P.; Tsapakis, M.; Apostolaki, E.T.; Tsagaraki, T.; Holmer, M.; Karakassis, I. Ghost nutrients from fish farms are transferred up the food web by phytoplankton grazers. Mar. Ecol Prog Ser. 2009, 374, 1–6. [Google Scholar] [CrossRef]
- Kapetsky, J.M.; Aguilar-Manjarrez, J. Geographic information systems, remote sensing and mapping for the development and management of marine aquaculture. In FAO Fisheries Technical Paper No. 458; FAO: Rome, Italy, 2007; p. 125. [Google Scholar]
- Cataudella, S.; Spagnolo, M. The State of Italian Marine Fisheries and Aquaculture; Ministero delle Politiche Agricole, Alimentari e Forestali (MiPAAF): Rome, Italy, 2011; pp. 340–343. Available online: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/6412 (accessed on 14 April 2015).
- Gašparović, B. Decreased production of surface-active organic substances as a consequence of the oligotrophication in the northern Adriatic Sea. Estuar. Coast. Shelf S. 2012, 115, 33–39. [Google Scholar] [CrossRef]
- Silió-Calzada, A.; Bricaud, A.; Gentili, B. Estimates of sea surface nitrate concentrations from sea surface temperature and chlorophyll concentration in upwelling areas: A case study for the Benguela system. Remote Sens. Environ. 2008, 112, 3173–3180. [Google Scholar] [CrossRef]
- Anding, D.; Kauth, R. Estimation of sea surface temperature from space. Remote Sens. Environ. 1970, 1, 217–220. [Google Scholar] [CrossRef]
- Merchant, C.J.; Le Borgne, P.; Marsouin, A.; Roquet, H. Optimal estimation of sea surface temperature from split-window observations. Remote Sens. Environ. 2008, 112, 2469–2484. [Google Scholar] [CrossRef]
- FAO. Fisheries and Aquaculture Department. Available online: http://www.fao.org/fishery/en (accessed on 14 April 2015).
- Traykovski, P.; Wiberg, P.L.; Geyer, W.R. Observations and modeling of wave-supported sediment gravity flows on the Po prodelta and comparison to prior observations from the Eel shelf. Cont. Shelf Res. 2007, 27, 375–399. [Google Scholar] [CrossRef]
- Cozzi, S.; Giani, M. River water and nutrient discharges in the Northern Adriatic Sea: Current importance and long term changes. Cont. Shelf Res. 2011, 31, 1881–1893. [Google Scholar] [CrossRef]
- Artegiani, A.; Paschini, E.; Russo, A.; Bregant, D.; Raicich, F.; Pinardi, N. The Adriatic Sea general circulation. Part I: Air-sea interactions and water mass structure. J. Phys. Oceanogr. 1997, 27, 1492–1514. [Google Scholar] [CrossRef]
- Artegiani, A.; Paschini, E.; Russo, A.; Bregant, D.; Raicich, F.; Pinardi, N. The Adriatic Sea general circulation. Part II: Baroclinic circulation structure. J. Phys. Oceanogr. 1997, 27, 1515–1532. [Google Scholar] [CrossRef]
- Boldrin, A.; Langone, L.; Miserocchi, S.; Turchetto, M.; Acri, F. Po river plume on the Adriatic continental shelf: Dispersion and sedimentation of dissolved and suspended matter during different river discharge rates. Mar. Geol. 2005, 222, 135–158. [Google Scholar] [CrossRef]
- Alvisi, F.; Giani, M.; Ravaioli, M.; Giordano, P. Role of sedimentary environment in the development of hypoxia and anoxia in the NW Adriatic shelf (Italy). Estuar. Coast. Shelf S 2013, 128, 9–21. [Google Scholar] [CrossRef]
- Veneto Agricoltura—Osservatorio Socio Economico della Pesca e dell’Acquacoltura. Analisi socio-economica della filiera ittica nelle Regioni del Distretto di Pesca Nord Adriatico—anno 2015. Available online: http://www.venetoagricoltura.org/upload/File/osservatorio_economico/PESCA%20IN%20NUMERI/Distretto%20di%20Pesca%20Nord%20Adriatico%20-%202015.pdf (accessed on 24 May 2016). (In Italian)
- LEGGE 5 febbraio 1992, n. 71 Disciplina del fermo temporaneo obbligatorio delle unità di pesca. (GU n.36 del 13-2-1992)—Entrata in vigore della legge: 28/2/1992. Available online: http://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:legge:1992;71 (accessed on 6 May 2016). (In Italian)
- Bignami, F.; Sciarra, R.; Carniel, S.; Santoleri, R. Variability of Adriatic Sea coastal turbid waters from SeaWiFS imagery. J. Geophys. Res. 2007, 112, C03S10. [Google Scholar] [CrossRef]
- Oddo, P.; Adani, M.; Pinardi, N.; Fratianni, C.; Tonani, M.; Pettenuzzo, D.A. Nested Atlantic-Mediterranean Sea General Circulation Model for Operational Forecasting. Ocean Sci. Discuss. 2009, 6, 1093–1127. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST + VERSION + User’s Guide. Available online: http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/html/ (accessed on 6 May 2016).
- COUNCIL REGULATION (EC) No 1967/2006 of 21 December 2006 Concerning Management Measures for the Sustainable Exploitation of Fishery Resources in the Mediterranean Sea. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:409:0011:0085:EN:PDF (accessed on 6 May 2016).
- Ross, L.G.; Mendoza, Q.M.E.A.; Beveridge, M.C.M. The application of geographical information systems to site selection for coastal aquaculture: An example based on salmonid cage culture. Aquaculture 1993, 112, 165–178. [Google Scholar] [CrossRef]
- Valavanis, V. Geographic Information Systems in Oceanography and Fisheries; Taylor and Francis: London, UK, 2002; p. 209. [Google Scholar]
- Scientific Opinion of the Panel on Animal Health; Welfare on a Request from the European Commission (Question N° EFSA-Q-2006-149) on Animal Welfare. Aspects of Husbandry Systems for Farmed European Seabass and Gilthead Seabream. EFSA J. 2008, 844, 1–21. [Google Scholar]
- Scientific Report of EFSA Prepared by Working Group on Seabass/Seabream Welfare on Animal Welfare. Aspects of Husbandry Systems for Farmed European Seabass and Gilthead Seabream. EFSA J. 2008, 844, 1–89. [Google Scholar]
- Directive 2014/101/EU of the European Parliament and of the Council Amending Directive 2000/60/EC of the European Parliament and of the Council Establishing a Framework for Community Action in the Field of Water Policy. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32014L0101 (accessed on 6 May 2016).
- Mallya, Y.J. The Effects of Dissolved Oxygen on Fish Growth in Aquaculture. Available online: https://ay14-15.moodle.wisc.edu/prod/pluginfile.php/172666/mod_resource/content/3/DO%20Reqjuirements%20Fish%20Culure.pdf (accessed on 6 May 2016).
- Jensen, M.K.; Madsen, S.S.; Kristiansen, K. Osmoregulation and salinity effects on the expression and activity of Na+, K+-ATPase in the gills of European sea bass, Dicentrarchus labrax (L.). J. Exp. Zool. 1998, 282, 290–300. [Google Scholar] [CrossRef]
- Supplizi, A.V. Appunti di Acquacoltura. Unpublished 2004. Available online: http://www.maella.it/Download/Amici%20animali%20Allevamento%20pesci.pdf (accessed on 6 May 2016).
- Hopkins, J.; Lucas, M.; Dufau, C.; Sutton, M.; Stum, J.; Lauret, O.; Channelliere, C. Detection and variability of the Congo River plume from satellite derived sea surface temperature, salinity, ocean colour and sea level. Remote Sens. Environ. 2013, 139, 365–385. [Google Scholar] [CrossRef]
- Petus, C.; Marieu, V.; Novoa, S.; Chust, G.; Bruneau, N.; Froidefond, J.M. Monitoring spatio-temporal variability of the Adour River turbid plume (Bay of Biscay, France) with MODIS 250-m imagery. Cont. Shelf Res. 2014, 74, 35–49. [Google Scholar] [CrossRef] [Green Version]
- Black, K.D.; McDougall, N. Hydrography of four Mediterranean marine cage sites. J. Appl. Ichthyol. 2002, 18, 129–133. [Google Scholar] [CrossRef]
- Yokoyama, H. Environmental quality criteria for fish farms in Japan. Aquaculture 2003, 226, 45–56. [Google Scholar] [CrossRef]
- Prata, L. Impianti di sollevamento e distribuzione dell’acqua. In Tecniche di Acquacoltura; Soraglia, M., Ingle, E., Eds.; Edagricole: Bologna, Italy, 1992; pp. 37–70. [Google Scholar]
- Stigebrandt, A. Turnover of Energy and Matter by Fish—A General Model with Application to Salmon; Fisken and Havet No. 5; Institute of Marine Research: Bergen, Norway, 1999; p. 26. [Google Scholar]
- Filipponi, F.; Taramelli, A.; Zucca, F.; Valentini, E.; El Serafy, G.Y. Ten years sediment dynamics in northern Adriatic Sea investigated through optical Remote Sensing observations. In Proceedings of the IEEE International International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 2265–2268.
- Italian Ministry of Agricultural, Food and Forestry Policies. Legislative Decree No. 11954 of 2010, Art. 4 on the Production of Marine Animals and Algae by Biological Aquaculture. Available online: https://www.politicheagricole.it/flex/cm/pages/ServeAttachment.php/L/IT/D/8%252F3%252F6%252FD.a31c178e4488d8b6fe2d/P/BLOB%3AID%3D4849 (accessed on 6 May 2016).
- Rogers, L.A.; Schindler, D.E. Scale and the detection of climatic influences on the productivity of salmon populations. Glob. Chang. Biol. 2011, 17, 2546–2558. [Google Scholar] [CrossRef]
- Frankic, A.; Hershner, C. Sustainable aquaculture: Developing the promise of aquaculture. Aquacult. Int. 2003, 11, 517–530. [Google Scholar] [CrossRef]
- Valentini, E.; Filipponi, F.; Nguyen Xuan, A.; Taramelli, A. Marine food provision ecosystem services assessment using EO products. In Proceedings of ESA Living Planet Symposium 2016, Prague, Czech Republic, 9–13 May 2016. in press.
Type | Name | Property | Parameter | Period |
---|---|---|---|---|
Oceanographic Platform | Acqua Alta | CNR | seawater temperature | 2002–2013 |
Buoy | the Italian Data Buoy Network (RON): Venice | ISPRA | seawater temperature | 2010–2012 |
Buoy | Goro buoy (located southern of the Po Delta) | Province of Ferrara | seawater temperature, salinity and DO at different water depth (1, 3, 6 m) | 2009–2011 |
Buoy | MAMBO buoy (located close to Trieste) | OGS | seawater temperature, DO, turbidity, wind field, wave field | 1999–2013 |
Station | Pontelagoscuro (located 90 km from Po river mouth) | ARPA EMR (Emilia Romagna Regional Agency for Environmental Protection) | freshwater discharge of Po river | 2003–2012 |
Water samplings acquired during oceanographic cruises | EMODnet | Various data sources | chlorophyll-a, DO, pH, salinity, nitrate, nitrite, orthophosphate, temperature, total ammonium, total phosphorus, total alkalinity, total inorganic nitrogen, total nitrogen | 1999–2012 |
Water quality measurements | ARPAV database | ARPAV (Veneto Regional Agency for Environmental Protection) | chlorophyll-a, total suspended matter | 2008–2011 |
Parameter | Spatial Resolution | Source/Sensor | Period | Processing |
---|---|---|---|---|
Temperature | 1 km (horizontal resolution) | OceanColor archive: daily Level 2 SST from MODIS | 2000–2011 | corrected for the bowtie effect and quality flags were used to remove all bad pixels. Finally binning process allowed to reproject and resample Level 2 pixels to a fixed Level 3 grid at 1 km resolution. |
1 km (horizontal resolution) | Copernicus Marine Environment Monitoring Service (CMEMS): daily SST products | 2012–2014 | none | |
Chlorophyll-a, Colored Dissolved Organic Matter, Total Suspended Matter | 300 m | MERIS sensor aboard ENVISAT satellite (from European Space Agency) | 2002–2012 | Chl-a, CDOM, TSM obtained by applying processing chain described in [42] for Case 2 Ocean Color product |
Parameters | Min | Max | Reference |
---|---|---|---|
NH4-N (µmol·L−1) Ammonium | 0 | 5 | Directive 2014/101/EU [50] |
NT (µmol·L−1) Total Nitrogen | 0 | 100 | Directive 2014/101/EU [50] |
PT (µmol·L−1) Total Phosphorous | 0 | 2.5 | Directive 2014/101/EU [50] |
pH | 6.5 | 8.5 | Panel EFSA, 2008 [48,49] |
Dissolved Oxygen (mL·L−1) | 3 | -- | Mallya, 2007 [51] |
Salinity (PSU) | 0−5 | 40–50 1 (*) | Jensen et al., 1998 [52] |
Parameter | Threshold Value | Reference |
---|---|---|
Chl-a | 2.0 mg·m−3 | Hopkins et al., 2013 [54] |
TSM | 3.0 g·m−3 | Petus et al., 2014 [55] |
CDOM | 0.6·m−1 | Authors’ estimation * |
Step | Parameters | Input | Decision Question | RULE | Further Investigation |
---|---|---|---|---|---|
0 | Space available for aquaculture | Current maritime uses | Are there locations where competing maritime uses are present? | IF competing maritime uses are present THEN the pixel IS masked, otherwise IS acceptable → go to STEP 1 | ---- |
1 | Temperature OR Dissolved Oxygen OR pH OR Salinity | T: buoy hourly measurements; DO, Salinity and pH: buoys hourly measurements and cruise single measurements | Do values of any of these parameters exceed vitality ranges? | IF the exceeding values are present THEN further investigations are needed, otherwise parameters ARE acceptable → go to STEP 2 | If the further investigation shows that exceeding values are not relevant (e.g., related to an episodic climatic event) → go to STEP 2 Otherwise → STOP |
2 | Total Phosphorous OR Nitrogen OR Ammonium | Cruise single measurements | Do values of any of these parameters exceed vitality ranges? | IF the exceeding values are present THEN further investigations are needed, otherwise parameters ARE acceptable → go to STEP 3 | If the further investigation shows that exceeding values are not relevant (e.g., related to an episodic event) → go to STEP 3 Otherwise → STOP |
3 | Sea Surface Temperature | Daily observations from satellite radiometer | Are there locations where SST exceeds vitality ranges? | IF exceeding values are present THEN the pixel IS masked, otherwise IS acceptable → go to STEP 4 | ---- |
4 | Total Suspended Matter OR Colored Dissolved Organic Matter OR Chlorophyll-a | Daily observations from satellite multispectral images | Are there locations where seawater properties exceed high turbid water threshold value? | IF frequency of exceeding values occurrence is higher than 40% THEN the pixel IS masked (turbid water), otherwise IS acceptable → go to STEP 5 | ---- |
5 | Currents | Daily average products from numerical model | Are there locations where current speed threshold value is not achieved? | IF the minimum speed (average of daily products) IS NOT reached THEN the pixel IS masked, otherwise IS acceptable→ go to STEP 6 | ---- |
6 | Generation of Aquaculture Feasibility Scenario Feasibility scenario is obtained by overlaying (logical AND): pixels in which SST does not exceed threshold values (STEP 3) pixels not characterized by high turbid water conditions (STEP 4) pixels in which average current velocities are higher than the minimum threshold value (STEP 5) |
Required Information | Model | Parameters | Standard Input | Customization |
---|---|---|---|---|
Potential Harvest | Harvest Model | Temperature at farm | Time series of daily water temperature (°C) for each farm | Earth Observation-derived data |
Farm location | A user-defined vector polygon or point dataset, with a latitude and longitude value and a numerical identifier for each farm | Latitude and longitude value of all the pixels (grid cell) | ||
Fish growth parameters | Weight is a function of growth rate and temperature (Stigebrandt 1999) [59] | Function of growth adapted for seabass and seabream | ||
Farm operation parameters | User defined: Weight of fish when they are outplanted, Target weight of fish at harvest, Number of fish in farm, Length of fallowing period | Weight of fish when they are outplanted (20 g), Target weight of fish at harvest (1200 g), Number of fish in farm (2,700,000 juveniles), Length of fallowing period (6 years) |
Station | Location | Extreme Values Recorded | Limits | Exceeding |
---|---|---|---|---|
Boa Mambo | NS | 6.25 | <5 °C | NO |
Boa Mambo | NS | 28.78 | >30 °C | NO |
Boa Goro −1 m | NS | 3.38 | <5 °C | YES |
Boa Goro −1 m | NS | 33.62 | >30 °C | YES |
Boa Goro −3 m | NS | 3.98 | <5 °C | YES |
Boa Goro −3 m | NS | 30.50 | >30 °C | YES |
Boa Goro −6 m | NS | 5.91 | <5 °C | NO |
Boa Goro −6 m | NS | 28.46 | >30 °C | NO |
Acqua Alta Platform | OS | 5.80 | <5 °C | NO |
Acqua Alta Platform | OS | 32.00 | >30 °C | YES |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valentini, E.; Filipponi, F.; Nguyen Xuan, A.; Passarelli, F.M.; Taramelli, A. Earth Observation for Maritime Spatial Planning: Measuring, Observing and Modeling Marine Environment to Assess Potential Aquaculture Sites. Sustainability 2016, 8, 519. https://doi.org/10.3390/su8060519
Valentini E, Filipponi F, Nguyen Xuan A, Passarelli FM, Taramelli A. Earth Observation for Maritime Spatial Planning: Measuring, Observing and Modeling Marine Environment to Assess Potential Aquaculture Sites. Sustainability. 2016; 8(6):519. https://doi.org/10.3390/su8060519
Chicago/Turabian StyleValentini, Emiliana, Federico Filipponi, Alessandra Nguyen Xuan, Francesco Maria Passarelli, and Andrea Taramelli. 2016. "Earth Observation for Maritime Spatial Planning: Measuring, Observing and Modeling Marine Environment to Assess Potential Aquaculture Sites" Sustainability 8, no. 6: 519. https://doi.org/10.3390/su8060519
APA StyleValentini, E., Filipponi, F., Nguyen Xuan, A., Passarelli, F. M., & Taramelli, A. (2016). Earth Observation for Maritime Spatial Planning: Measuring, Observing and Modeling Marine Environment to Assess Potential Aquaculture Sites. Sustainability, 8(6), 519. https://doi.org/10.3390/su8060519