A Simulation Study on the Urban Population of China Based on Nighttime Light Data Acquired from DMSP/OLS
Abstract
:1. Introduction
2. Study Area and Data
3. Methods
3.1. Regression Method
3.2. Optimal Regression Model
4. Results
4.1. National Scale
4.2. Provincial Scale
5. Discussion
5.1. Simulation Results of the UP Based on Nighttime Light Data Are Better than those of the NAP
5.2. Simulation Accuracy Levels Varied Across Cities of Different Sizes
5.3. Limitations and Avenues for Future Research
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Montgomery, M.R. The urban transformation of the developing world. Science 2008, 319, 761–764. [Google Scholar] [CrossRef] [PubMed]
- Han, B.L.; Wang, R.S.; Tao, Y.; Gao, H. Urban population agglomeration in view of complex ecological niche: A case study on Chinese prefecture cities. Ecol. Indic. 2014, 47, 128–136. [Google Scholar] [CrossRef]
- Zhang, K.H.L.; Song, S.F. Rural-urban migration and urbanization in China: Evidence from time-series and cross-section analyses. China Econ. Rev. 2003, 14, 386–400. [Google Scholar] [CrossRef]
- Bai, X.M.; Shi, P.J.; Liu, Y.S. Realizing China’s urban dream. Nature 2014, 509, 158–160. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.X.; Ma, L.J.C. China’s urbanization levels: Reconstructing a baseline from the fifth population census. The China Q. 2003, 173, 176–196. [Google Scholar]
- Zhou, Y.; Ma, L.J.C. China’s Urban population statistics: A critical evaluation. Eurasian Geogr. Econ. 2005, 46, 272–289. [Google Scholar] [CrossRef]
- Qin, B.; Zhang, Y. Note on urbanization in China: Urban definitions and census data. China Econ. Rev. 2014, 30, 495–502. [Google Scholar] [CrossRef]
- He, C.F.; Chen, T.M.; Mao, X.Y.; Zhou, Y. Economic transition, urbanization and population redistribution in China. Habitat Int. 2016, 51, 39–47. [Google Scholar] [CrossRef]
- Ma, L.J.C.; Cui, G.H. Administrative changes and urban population in China. Ann. Assoc. Am. Geogr. 1987, 77, 373–395. [Google Scholar]
- Shen, J. Counting urban population in Chinese censuses 1953–2000: Changing definitions, problems and solutions. Popul. Sp. Place 2005, 11, 381–400. [Google Scholar] [CrossRef]
- Tan, M.H.; Li, X.B.; Lv, C.H.; Luo, W.; Kong, X.B.; Ma, S.H. Urban population densities and their policy implications in China. Habitat Int. 2008, 32, 471–484. [Google Scholar] [CrossRef]
- Tao, L.; Hui, E.C.M.; Wong, F.K.W.; Chen, T.T. Housing choices of migrant workers in China: Beyond the Hukou perspective. Habitat Int. 2015, 49, 474–483. [Google Scholar] [CrossRef]
- Sutton, P.; Roberts, D.; Elvidge, C.; Meij, H. A comparison of nighttime satellite imagery and population density for the continental united states. Photogramm. Eng. Remote Sens. 1997, 63, 1303–1313. [Google Scholar]
- Dobson, J.E.; Brlght, E.A.; Coleman, P.R.; Durfee, R.C.; Worley, B.A. Landscan: A global population database for estimating populations at risk. Photogramm. Eng. Remote Sens. 2000, 66, 849–857. [Google Scholar]
- Sutton, P.C.; Elvidge, C.D.; Obremski, T. Building and evaluating models to estimate ambient population density. Photogramm. Eng. Remote Sens. 2003, 69, 545–553. [Google Scholar] [CrossRef]
- Amaral, S.; Câmara, G.; Monteiro, A.M.V.; Quintanilha, J.A.; Elvidge, C.D. Estimating population and energy consumption in Brazilian Amazonia using DMSP night-time satellite data. Comput. Environ. Urban Syst. 2005, 29, 179–195. [Google Scholar] [CrossRef]
- Zhuo, L.; Ichinose, T.; Zheng, J.; Chen, J.; Shi, P.J.; Li, X. Modeling population density of China at pixel level based on DMSP/OLS non-radiance calibrated nighttime light image. Int. J. Remote Sens. 2009, 30, 1003–1018. [Google Scholar] [CrossRef]
- Sutton, P.C.; Anderson, S.J.; Elvidge, C.D.; Tuttle, B.T.; Ghosh, T. Paving the planet: Impervious surface as proxy measure of the human ecological footprint. Prog. Phys. Geog. 2009, 33, 510–527. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Lawrence, W.T.; Stutzer, D.C.; Elvidge, C.D. A technique for using composite DMSP/OLS “city lights” satellite data to map urban area. Remote Sens. Environ. 1997, 61, 361–370. [Google Scholar] [CrossRef]
- Elvidge, C.; Baugh, K.; Hobson, V.; Kihn, E.; Kroehl, H.; Davis, E.; Cocero, D. Satellite inventory of human settlements using nocturnal radiation emissions: A contribution for the global tool chest. Glob. Chang. Biol. 1997, 3, 387–395. [Google Scholar] [CrossRef]
- Henderson, M.; Yeh, E.T.; Gong, P.; Elvidge, C.; Baugh, K. Validation of urban boundaries derived from global night-time satellite imagery. Int. J. Remote Sens. 2003, 24, 595–609. [Google Scholar] [CrossRef]
- He, C.Y.; Shi, P.J.; Li, J.G.; Chen, J.; Pan, Y.Z.; Li, J.; Zhuo, L.; Ichinose, T. Restoring urbanization process in China in the 1990s by using non-radiance-calibrated DMSP/OLS nighttime light imagery and statistical data. Chin. Sci. Bull. 2006, 51, 1614–1620. [Google Scholar] [CrossRef]
- Lu, D.; Tian, H.; Zhou, G.; Ge, H. Regional mapping of human settlements in southeastern China with multisensor remotely sensed data. Remote Sens. Environ. 2008, 112, 3668–3679. [Google Scholar] [CrossRef]
- Cao, X.; Chen, J.; Imura, H.; Higashi, O. A SVM-based method to extract urban areas from DMSP-OLS and spot vgt data. Remote Sens. Environ. 2009, 113, 2205–2209. [Google Scholar] [CrossRef]
- Liu, Z.F.; He, C.Y.; Zhang, Q.F.; Huang, Q.X.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Yang, Y.; He, C.; Zhang, Q.; Han, L.; Du, S. Timely and accurate national-scale mapping of urban land in China using defense meteorological satellite program’s operational linescan system nighttime stable light data. J. Appl. Remote Sens. 2013, 7, 073535. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Gao, B.; Huang, Q.X.; He, C.Y.; Ma, Q. Dynamics of urbanization levels in China from 1992 to 2012: Perspective from DMSP/OLS nighttime light data. Remote Sens. 2015, 7, 1721–1735. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Ziskin, D.; Baugh, K.E.; Tuttle, B.T.; Ghosh, T.; Pack, D.W.; Erwin, E.H.; Zhizhin, M. A fifteen year record of global natural gas flaring derived from satellite data. Energies 2009, 2, 595–622. [Google Scholar] [CrossRef]
- Chand, K.T.R.; Badarinath, K.V.S.; Elvidge, C.D.; Tuttle, B.T. Spatial characterization of electrical power consumption patterns over India using temporal DMSP-OLS night-time satellite data. Int. J. Remote Sens. 2009, 30, 647–661. [Google Scholar] [CrossRef]
- Townsend, A.C.; Bruce, D.A. The use of night-time lights satellite imagery as a measure of Australia’s regional electricity consumption and population distribution. Int. J. Remote Sens. 2010, 31, 4459–4480. [Google Scholar] [CrossRef]
- Coscieme, L.; Pulselli, F.M.; Bastianoni, S.; Elvidge, C.D.; Anderson, S.; Sutton, P.C. A thermodynamic geography: Night-time satellite imagery as a proxy measure of emergy. Ambio 2013, 43, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Doll, C.N.H.; Muller, J.P.; Morley, J.G. Mapping regional economic activity from night-timelight satellite imagery. Ecol. Econ. 2006, 57, 75–92. [Google Scholar] [CrossRef]
- Lo, C.P. Urban indicators of China from radiance-calibrated digital DMSP-OLS nighttime images. Ann. Assoc. Am. Geogr. 2002, 92, 225–240. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Sutton, P.C.; Ghosh, T.; Tuttle, B.T.; Baugh, K.E.; Bhaduri, B.; Bright, E. A global poverty map derived from satellite data. Comput. Geosci. 2009, 35, 1652–1660. [Google Scholar] [CrossRef]
- Milesi, C.; Elvidge, C.D.; Nemani, R.R.; Running, S.W. Assessing the impact of urban land development on net primary productivity in the southeastern United States. Remote Sens. Environ. 2003, 86, 401–410. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Bounoua, L.; DeFries, R.; Lawrence, W.T.; Stutzer, D.; Tucker, C.J.; Ricketts, T. The consequences of urban land transformation on net primary productivity in the United States. Remote Sens. Environ. 2004, 89, 434–443. [Google Scholar] [CrossRef]
- Ghosh, T.; Anderson, S.; Elvidge, C.D.; Sutton, P.C. Using nighttime satellite imagery as a proxy measure of human well-being. Sustainability 2013, 5, 4988–5019. [Google Scholar] [CrossRef]
- Small, C.; Elvidge, C.D. Night on earth: Mapping decadal changes of anthropogenic night light in Asia. Int. J. Appl. Earth Obs. Geoinf. 2013, 22, 40–52. [Google Scholar] [CrossRef]
- Xu, T.; Ma, T.; Zhou, C.H.; Zhou, Y.K. Characterizing spatio-temporal dynamics of urbanization in China using time series of DMSP/OLS night light data. Remote Sens. 2014, 6, 7708–7731. [Google Scholar] [CrossRef]
- Xiao, P.F.; Wang, X.H.; Feng, X.Z.; Yang, Y.K. Detecting China’s urban expansion over the past three decades using nighttime light data. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2014, 7, 4095–4106. [Google Scholar] [CrossRef]
- Huang, Q.X.; Yang, X.; Gao, B.; Yang, Y.; Zhao, Y.Y. Application of DMSP/OLS nighttime light images: A meta-analysis and a systematic literature review. Remote Sens. 2014, 6, 6844–6866. [Google Scholar] [CrossRef]
- China City Statistical Yearbook 1992–2011; National Bureau of Statistics of China, China Statistics Press: Beijing, China, 1993–2012.
- National Geomatics Center of China. Available online: http://ngcc.sbsm.gov.cn/article/khly/lyzx/ (accessed on 1 June 2015).
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Chan, K.W.; Zhang, L. The Hukou system and rural-urban migration in China: Processes and changes. China Q. 1999, 160, 818–855. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.W. The Chinese Hukou system at 50. Eurasian Geogr. Econ. 2009, 50, 197–221. [Google Scholar] [CrossRef]
- Gao, B.; Huang, Q.; He, C.; Sun, Z.; Zhang, D. How does sprawl differ across cities in China? A multi-scale investigation using nighttime light and census data. Landsc. Urban Plan. 2016, 148, 89–98. [Google Scholar] [CrossRef]
- Zhang, L.; Lei, J.; Li, X.; Gao, C.; Zeng, W. The features and influencing factors of urban expansion in China during 1997–2007. Prog. Geog. 2011, 30, 607–614. (In Chinese) [Google Scholar]
- Letu, H.; Hara, M.; Tana, G.; Nishio, F. A Saturated Light Correction Method for DMSP/OLS Nighttime Satellite Imagery. IEEE Trans. Geosci. Remot. Sen. 2012, 50, 389–396. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J. Evaluating the Ability of NPP-VIIRS Nighttime Light Data to Estimate the Gross Domestic Product and the Electric Power Consumption of China at Multiple Scales: A Comparison with DMSP-OLS Data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef]
Equation/Year | Linear | Power | Exponential | ||||||
---|---|---|---|---|---|---|---|---|---|
1990 | 2000 | 2010 | 1990 | 2000 | 2010 | 1990 | 2000 | 2010 | |
n | 339 | 339 | 339 | 339 | 339 | 339 | 339 | 339 | 339 |
R2 | 0.562 | 0.616 | 0.563 | 0.696 | 0.711 | 0.674 | 0.353 | 0.430 | 0.508 |
Sig. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Region | Optimal Regression Model | n | R2 | ||
---|---|---|---|---|---|
1990 | 2000 | 2010 | |||
Fujian | Linear | 9 | 0.618 * | 0.827 *** | 0.700 ** |
Gansu | Linear | 14 | 0.941 *** | 0.950 *** | 0.786 *** |
Guangdong | Linear | 21 | 0.516 *** | 0.694 *** | 0.514 *** |
Guangxi | Linear | 14 | 0.778 *** | 0.684 *** | 0.570 ** |
Guizhou | Linear | 9 | 0.761 ** | 0.714 ** | 0.569 * |
Henan | Linear | 17 | 0.481 ** | 0.682 *** | 0.850 *** |
Hubei | Linear | 14 | 0.927 *** | 0.961 *** | 0.935 *** |
Hunan | Linear | 14 | 0.506 ** | 0.745 *** | 0.842 *** |
Jilin | Linear | 9 | 0.884 *** | 0.949 *** | 0.920 *** |
Jiangxi | Linear | 11 | 0.840 *** | 0.895 *** | 0.881 *** |
Liaoning | Linear | 14 | 0.778 *** | 0.810 *** | 0.827 *** |
Neimenggu | Linear | 12 | 0.638 ** | 0.734 *** | 0.522 * |
Shandong | Linear | 17 | 0.386 * | 0.690 *** | 0.744 *** |
Tibet | Linear | 7 | 0.870 ** | 0.936 *** | 0.726 * |
Yunnan | Linear | 16 | 0.920 *** | 0.934 *** | 0.822 *** |
Chongqing & Sichuan | Linear | 22 | 0.701 *** | 0.891 *** | 0.953 *** |
Anhui | Power | 16 | 0.768 *** | 0.799 *** | 0.781 *** |
Heilongjiang | Power | 13 | 0.728 *** | 0.789 *** | 0.833 *** |
Qinghai | Power | 8 | 0.789 ** | 0.878 *** | 0.762 ** |
Shaanxi | Power | 10 | 0.769 *** | 0.627 * | 0.517 * |
Xinjiang | Power | 15 | 0.453 * | 0.589 *** | 0.411 * |
Shanxi | Exponential | 11 | 0.737 *** | 0.574 * | 0.682 ** |
Zhejiang | Exponential | 11 | 0.639 ** | 0.816 *** | 0.812 *** |
Beijing, Tianjin &Hebei | Exponential | 13 | 0.865 *** | 0.899 *** | 0.919 *** |
Shanghai & Jiangsu | Exponential | 14 | 0.720 *** | 0.880 *** | 0.772 *** |
Ningxia 1 | N/A | 4 | N/A | N/A | N/A |
Hainan 1 | N/A | 3 | N/A | N/A | N/A |
City | Statistical Data | Simulated Result | Relative Error (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
UP | NAP | UP | NAP | UP | NAP | |||||||
2000 | 2010 | 2000 | 2010 | 2000 | 2010 | 2000 | 2010 | 2000 | 2010 | 2000 | 2010 | |
Shanghai | 14,489,919 | 20,555,098 | 9,672,867 | 12,549,457 | 12,999,474 | 10,477,475 | 8,333,140 | 6,993,519 | −10.29 | −49.03 | −13.85 | −44.27 |
Beijing | 10,522,464 | 16,858,692 | 7,628,441 | 9,931,140 | 9,023,602 | 12,554,614 | 6,267,903 | 7,594,441 | −14.24 | −25.53 | −17.84 | −23.53 |
Chongqing | 10,095,512 | 15,295,803 | 6,350,940 | 11,069,952 | 8,065,198 | 14,306,374 | 4,921,309 | 10,254,142 | −20.11 | −6.47 | −22.51 | −7.37 |
Guangzhou | 8,090,976 | 10,641,408 | 4,361,055 | 7,240,465 | 6,448,506 | 8,819,402 | 1,799,823 | 4,636,348 | −20.30 | −17.12 | −58.73 | −35.97 |
Tianjin | 7,089,812 | 10,277,893 | 5,357,359 | 6,047,143 | 5,753,945 | 10,151,540 | 4,090,165 | 6,297,934 | −18.84 | −1.23 | −23.65 | 4.15 |
Chengdu | 5,967,819 | 9,237,015 | 3,458,970 | 6,509,118 | 7,459,475 | 9,814,294 | 4,561,005 | 7,042,435 | 24.99 | 6.25 | 31.86 | 8.19 |
Harbin | 5,370,174 | 6,501,848 | 5,984,813 | 4,757,729 | 3,836,400 | 3,838,318 | 3,701,889 | 3,058,296 | −28.56 | −40.97 | −38.15 | −35.72 |
Hangzhou | 4,033,397 | 6,372,650 | 2,269,946 | 3,544,784 | 4,348,305 | 6,489,276 | 1,864,825 | 2,700,392 | 7.81 | 1.83 | −17.85 | −23.82 |
Shenyang | 5,066,072 | 6,247,700 | 4,333,209 | 4,692,388 | 4,867,256 | 6,146,719 | 3,992,731 | 4,563,064 | −3.92 | −1.62 | −7.86 | −2.76 |
Nanjing | 4,355,280 | 6,238,186 | 3,095,203 | 5,421,980 | 3,139,684 | 4,256,668 | 2,267,173 | 3,271,116 | −27.91 | −31.76 | −26.75 | −39.67 |
Ningbo | 3,323,736 | 5,195,162 | 1,420,327 | 2,020,381 | 3,863,717 | 6,068,642 | 1,673,728 | 2,535,452 | 16.25 | 16.81 | 17.84 | 25.49 |
Changsha | 2,743,826 | 4,765,918 | 1,864,206 | 2,377,815 | 2,692,749 | 5,296,560 | 1,880,339 | 2,795,650 | −1.86 | 11.13 | 0.87 | 17.57 |
Xuzhou | 2,981,759 | 4,561,500 | 2,311,123 | 4,453,759 | 2,662,311 | 3,815,663 | 1,949,219 | 2,982,812 | −10.71 | −16.35 | −15.66 | −33.03 |
Fuzhou | 3,359,051 | 4,408,076 | 1,651,957 | 2,663,508 | 2,536,278 | 3,570,545 | 1,039,726 | 1,827,731 | −24.49 | −19.00 | −37.06 | −31.38 |
Jinan | 3,334,482 | 4,392,922 | 2,331,027 | 4,309,970 | 2,745,031 | 3,240,411 | 1,856,618 | 2,673,081 | −17.68 | −26.24 | −20.35 | −37.98 |
Kunming | 3,176,380 | 4,337,798 | 1,891,491 | 2,251,570 | 2,929,754 | 3,557,160 | 1,755,077 | 1,704,434 | −7.76 | −18.00 | −7.21 | −24.30 |
Tangshan | 2,265,605 | 3,850,975 | 1,907,110 | 2,397,964 | 2,222,904 | 5,993,640 | 1,659,212 | 3,958,881 | −1.88 | 55.64 | −13.00 | 65.09 |
Nanning | 2,104,617 | 3,578,333 | 1,554,706 | 1,919,790 | 1,842,185 | 2,649,556 | 1,323,022 | 1,287,782 | −12.47 | −25.96 | −14.90 | −32.92 |
Taiyuan | 2,755,726 | 3,467,987 | 2,039,238 | 2,630,159 | 2,119,664 | 2,149,781 | 1,418,734 | 1,486,624 | −23.08 | −38.01 | −30.43 | −43.48 |
Nanchang | 2,115,437 | 3,313,235 | 1,758,950 | 2,340,239 | 2,155,403 | 2,924,979 | 1,865,327 | 1,932,236 | 1.89 | −11.72 | 6.05 | −17.43 |
Luoyang | 1,870,406 | 2,888,355 | 1,468,523 | 1,912,413 | 1,699,607 | 2,927,984 | 1,250,806 | 1,828,237 | −9.13 | 1.37 | −14.83 | −4.40 |
Lanzhou | 2,070,949 | 2,758,558 | 1,597,481 | 2,029,221 | 1,968,707 | 2,306,056 | 1,496,757 | 1,657,460 | −4.94 | −16.40 | −6.31 | −18.32 |
Xiaogan | 1,548,589 | 2,214,781 | 844,567 | 1,416,124 | 1,741,585 | 2,459,204 | 1,199,517 | 1,939,139 | 12.46 | 11.04 | 42.03 | 36.93 |
Shangqiu | 1,023,886 | 2,171,557 | 1,024,097 | 1,731,242 | 1,021,530 | 2,354,475 | 877,274 | 1,513,271 | −0.23 | 8.42 | −14.34 | −12.59 |
HulunBuir | 1,750,292 | 1,722,795 | 1,630,192 | 1,796,552 | 1,587,301 | 1,940,984 | 1,316,459 | 1,452,134 | −9.31 | 12.66 | −19.25 | −19.17 |
Huaihua | 1,064,136 | 1,711,423 | 896,045 | 948,312 | 899,311 | 1,891,743 | 711,682 | 1,065,941 | −15.49 | 10.54 | −20.58 | 12.40 |
Yanbian | 1,485,818 | 1,597,452 | 1,363,727 | 1,457,818 | 1,158,304 | 1,180,314 | 1,014,665 | 1,028,003 | −22.04 | −26.11 | −25.60 | −29.48 |
Wuhu | 904,872 | 1,475,022 | 715,901 | 1,334,234 | 933,744 | 1,448,718 | 749,762 | 950,295 | 3.19 | −1.78 | 4.73 | −28.78 |
Tongren | 531,433 | 803,990 | 333,122 | 486,045 | 483,633 | 513,925 | 250,665 | 213,179 | −8.99 | −36.08 | −24.75 | −56.14 |
Haidong | 177,673 | 318,915 | 151,986 | 202,340 | 225,774 | 424,500 | 203,144 | 297,853 | 27.07 | 33.11 | 33.66 | 47.20 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Yang, Y.; Li, Y.; Gao, B. A Simulation Study on the Urban Population of China Based on Nighttime Light Data Acquired from DMSP/OLS. Sustainability 2016, 8, 521. https://doi.org/10.3390/su8060521
Huang Q, Yang Y, Li Y, Gao B. A Simulation Study on the Urban Population of China Based on Nighttime Light Data Acquired from DMSP/OLS. Sustainability. 2016; 8(6):521. https://doi.org/10.3390/su8060521
Chicago/Turabian StyleHuang, Qingxu, Yang Yang, Yajing Li, and Bin Gao. 2016. "A Simulation Study on the Urban Population of China Based on Nighttime Light Data Acquired from DMSP/OLS" Sustainability 8, no. 6: 521. https://doi.org/10.3390/su8060521
APA StyleHuang, Q., Yang, Y., Li, Y., & Gao, B. (2016). A Simulation Study on the Urban Population of China Based on Nighttime Light Data Acquired from DMSP/OLS. Sustainability, 8(6), 521. https://doi.org/10.3390/su8060521