Measuring Crowdedness between Adjacent Stations in an Urban Metro System: a Chinese Case Study
Abstract
:1. Introduction
2. Model Development
2.1. Development of Measurement Model of Crowdedness
2.2. Development of the Thresholds of Crowdedness Level
3. Case Study
3.1. Data Collection
3.2. Calculation Results
- (a)
- when 0 < θi-j ≤ 0.32, it indicates a situation of no crowdedness.
- (b)
- when 0.32 < θi-j ≤ 1, it indicates a low level of crowdedness.
- (c)
- when 1 < θi-j ≤ 1.1, it indicates a medium level of crowdedness.
- (d)
- when 1.1 < θi-j, it indicates a high level of crowdedness.
3.3. Discussion
4. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Loo, B.P.; Cheng, A.H. Are there useful yardsticks of population size and income level for building metro systems? Some worldwide evidence. Cities 2010, 27, 299–306. [Google Scholar] [CrossRef]
- Andrade, C.E.S.; D’Agosto, M.A. The Role of Rail Transit Systems in Reducing Energy and Carbon Dioxide Emissions: The Case of the City of Rio de Janeiro. Sustainability 2016, 8, 150. [Google Scholar] [CrossRef]
- Sun, D.J.; Zhao, Y.; Lu, Q.C. Vulnerability analysis of urban rail transit networks: A case study of Shanghai, China. Sustainability 2015, 7, 6919–6936. [Google Scholar] [CrossRef]
- Shen, L.Y.; Jiao, L.D.; Zhou, J.Y.; Ren, W.J. Evaluation indicators for the efficiency of metro systems from a socio-economic-technical perspective. In Proceedings of the 18th International Symposium on Advancement of Construction Management and Real Estate, Xi’an, China, 22 May 2014. [Google Scholar]
- Chen, F.; Shen, X.; Wang, Z.; Yang, Y. An Evaluation of the Low-Carbon Effects of Urban Rail Based on Mode Shifts. Sustainability 2017, 9, 401. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Hang, J.; Yao, D.; Shi, G. Do Urban Rail Transit Facilities Affect Housing Prices? Evidence from China. Sustainability 2016, 8, 380. [Google Scholar] [CrossRef]
- Litman, T. Evaluating rail transit benefits: A comment. Transp. Policy 2007, 14, 94–97. [Google Scholar] [CrossRef]
- Metrobits. Available online: http://mic-ro.com/metro/ (accessed on 22 May 2015).
- Observer. Available online: http://www.guancha.cn/Project/2013_03_14_131915.shtml (accessed on 14 March 2013).
- Shen, L.Y.; Jiao, L.D.; He, B.; Li, L.C. Evaluation on the utility efficiency of metro infrastructure projects in China from sustainable development perspective. Int. J. Proj. Manag. 2015, 33, 528–536. [Google Scholar] [CrossRef]
- Jiang, S.; Sun, Y.; Du, Y. Influence of in-vehicle congestion degree on choice of public transit mode. J. Tongji Univ. Nat. Sci. 2012, 40, 1831–1835. [Google Scholar]
- Tirachini, A.; Hensher, D.A.; Rose, J.M. Crowding in public transport systems: Effects on users, operation and implications for the estimation of demand. Transp. Res. Part A Policy Pract. 2013, 53, 36–52. [Google Scholar] [CrossRef]
- Cox, T.; Houdmont, J.; Griffiths, A. Rail passenger crowding, stress, health and safety in Britain. Transp. Res. Part A Policy Pract. 2006, 40, 244–258. [Google Scholar] [CrossRef]
- Kim, H.; Kwon, S.; Wu, S.K.; Sohn, K. Why do passengers choose a specific car of a metro train during the morning peak hours? Transp. Res. Part A Policy Pract. 2014, 61, 249–258. [Google Scholar] [CrossRef]
- Li, Z.; Hensher, D.A. Crowding and public transport: A review of willingness to pay evidence and its relevance in project appraisal. Transp. Policy 2011, 18, 880–887. [Google Scholar] [CrossRef]
- Raveau, S.; Guo, Z.; Muñoz, J.C.; Wilson, N.H. A behavioural comparison of route choice on metro networks: Time, transfers, crowding, topology and socio-demographics. Transp. Res. Part A Policy Pract. 2014, 66, 185–195. [Google Scholar] [CrossRef]
- Kim, K.M.; Hong, S.P.; Ko, S.J.; Kim, D. Does crowding affect the path choice of metro passengers? Transp. Res. Part A Policy Pract. 2015, 77, 292–304. [Google Scholar] [CrossRef]
- Kuby, M.; Barranda, A.; Upchurch, C. Factors influencing light-rail station boardings in the United States. Transp. Res. Part A Policy Pract. 2004, 38, 223–247. [Google Scholar] [CrossRef]
- Currie, G. Quick and effective solution to rail overcrowding: Free early bird ticket experience in Melbourne, Australia. Transp. Res. Rec. J. Transp. Res. Board 2010, 2146, 35–42. [Google Scholar] [CrossRef]
- Wardman, M.; Whelan, G. Twenty years of rail crowding valuation studies: Evidence and lessons from British experience. Transp. Rev. 2011, 31, 379–398. [Google Scholar] [CrossRef]
- Evans, G.W.; Wener, R.E. Crowding and personal space invasion on the train: Please don’t make me sit in the middle. J. Environ. Psychol. 2007, 27, 90–94. [Google Scholar] [CrossRef]
- Yook, D.; Heaslip, K. The effect of crowding on public transit user travel behavior in a large-scale public transportation system through modeling daily variations. Transp. Plan. Technol. 2015, 38, 935–953. [Google Scholar] [CrossRef]
- Mahudin, N.D.M.; Cox, T.; Griffiths, A. Measuring rail passenger crowding: Scale development and psychometric properties. Transp. Res. Part F Traffic Psychol. Behav. 2012, 15, 38–51. [Google Scholar] [CrossRef]
- Wu, J.; Ma, S. Crowdedness classification method for island platform in metro station. J. Transp. Eng. 2012, 139, 612–662. [Google Scholar] [CrossRef]
- Chow, W.K. ‘Waiting time’ for evacuation in crowded areas. Build. Environ. 2007, 42, 3757–3761. [Google Scholar] [CrossRef]
- Tirachini, A.; Sun, L.; Erath, A.; Chakirov, A. Valuation of sitting and standing in metro trains using revealed preferences. Transp. Policy 2016, 47, 94–104. [Google Scholar] [CrossRef]
- Qin, F. Investigating the in-vehicle crowding cost functions for public transit modes. Math. Prob. Eng. 2014, 2014, 502708. [Google Scholar] [CrossRef]
- Whelan, G.; Crockett, J. An investigation of the willingness to pay to reduce rail overcrowding. In Proceedings of the First International Conference on Choice Modelling, Harrogate, UK, 24 March 2009. [Google Scholar]
- Li, M.; Wang, Y.H.; Jia, L.M. Passenger flow modes and control strategies in urban rail transit station. J. Southeast Univ. 2015, 1203–1208. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Meng, L.; Yin, Q. Classification of Urban Rail Transit Stations based on SAX. J. GEO-Inf. Sci. 2016, 18, 1597–1607. [Google Scholar]
- Yin, Q.; Zhang, L.Y.; Meng, L. Classification of subway stations in Beijing based on passenger flow characteristics. Prog. Geogr. 2016, 35, 126–134. [Google Scholar]
- Zhao, J.; Deng, W.; Song, Y.; Zhu, Y. What influences Metro station ridership in China? Insights from Nanjing. Cities 2013, 35, 114–124. [Google Scholar] [CrossRef]
- Li, L.; Ren, H.; Zhao, S.; Duan, Z.; Zhang, Y.; Zhang, A. Two dimensional accessibility analysis of metro stations in Xi’an, China. Transp. Res. Part A Policy Pract. 2017, 106, 414–426. [Google Scholar] [CrossRef]
- Wei, J.L.; Liang, P.; Yan, Y.; Jiao, Y. A Study of Optimization of Station Distribution in Urban Rail Transit. J. Qingdao Technol. Univ. 2008, 29, 88–93. [Google Scholar]
- Wikipedia. 2015a. Available online: https://en.wikipedia.org/wiki/Crowd (accessed on 26 June 2015).
- Wikipedia. 2015b. Available online: https://en.wikipedia.org/wiki/Crowd_counting (accessed on 26 June 2015).
- Jiao, L.D.; Shuai, C.Y.; Shen, L.Y.; Luo, X.C. The level of crowdedness in operating metro systems in the selected cities in China. In Proceedings of the 20th International Symposium on Advancement of Construction Management and Real Estate, Hangzhou, China, 23–25 October 2016. [Google Scholar]
- Li, Z.; Hensher, D.A. Crowding in public transport: A review of objective and subjective measures. J. Public Transp. 2013, 16, 107–134. [Google Scholar] [CrossRef]
- Wikipedia. 2015c. Available online: https://en.wikipedia.org/wiki/Line_3,_Chongqing_Rail_Transit (accessed on 26 June 2015).
- Zhou, X.; Zhang, X.; Yang, X.; Lao, Y. Travel mode choice-based prediction of public transit demand. J.-Tongji Univ. 2007, 35, 1627–1631. [Google Scholar]
- Zhu, Y.; Wang, Y.; Ding, C. Investigating the influential factors in the metro choice behavior: Evidences from Beijing, China. KSCE J. Civ. Eng. 2016, 20, 2947–2954. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Tseng, W.C. Exploring the effects of perceived values, free bus transfer, and penalties on intermodal metro–bus transfer users’ intention. Transp. Policy 2016, 47, 127–138. [Google Scholar] [CrossRef]
- Qiao, Y.F. Research on Differential Pricing Issue of China’s Metro Tickets. Prices Mon. 2015, 2, 42–45. [Google Scholar]
Load Factor (Passengers/Seat) | Situation of Crowding | |
---|---|---|
A | 0–0.5 | No passenger needs to sit next to another |
B | 0.51–0.75 | Passengers can choose where to sit |
C | 0.76–1 | All passengers can sit |
D | 1.01–1.25 | Comfortable standee load for design |
E | 1.26–1.5 | Maximum schedule load |
F | >1.5 | Crush load |
Station Number | Station Name | Station Number | Station Name | Station Number | Station Name |
---|---|---|---|---|---|
1 | Yudong | 14 | Sigongli | 27 | Chongqingbei Railway Station |
2 | Jinzhu | 15 | Nanping | 28 | Longtousi |
3 | Yuhulu | 16 | Gongmao | 29 | Tongjiayuanzi |
4 | Xuetangwan | 17 | Tongyuanju | 30 | Jinyu |
5 | Dashancun | 18 | Lianglukou | 31 | Jintonglu |
6 | Huaxi | 19 | Niujiaotuo | 32 | Yuanyang |
7 | Chalukou | 20 | Huaxinjie | 33 | The EXPO Garden |
8 | Jiugongli | 21 | Guanyinqiao | 34 | Cuiyun |
9 | Qilong | 22 | Hongqihegou | 35 | Changfulu |
10 | Bagongli | 23 | Jiazhoulu | 36 | huixing |
11 | Ertang | 24 | Zhengjiayuanzi | 37 | Shuanglong |
12 | Liugongli | 25 | Tangjiayuanzi | 38 | Bijin |
13 | Wugongli | 26 | Shiziping | 39 | Jiangbei Airport |
Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday | |
---|---|---|---|---|---|---|---|
BF1–2 | 82 | 75 | 78 | 76 | 88 | 93 | 88 |
BF1–3 | 136 | 123 | 130 | 133 | 158 | 175 | 159 |
BF1–4 | 74 | 68 | 69 | 68 | 75 | 72 | 70 |
BF1–5 | 26 | 24 | 24 | 24 | 27 | 28 | 27 |
BF1–6 | 115 | 101 | 105 | 107 | 126 | 134 | 141 |
BF1–7 | 70 | 65 | 66 | 66 | 76 | 83 | 90 |
BF1–8 | 108 | 99 | 101 | 102 | 120 | 138 | 139 |
BF1–9 | 144 | 130 | 134 | 131 | 149 | 142 | 143 |
BF1–10 | 80 | 76 | 74 | 74 | 80 | 85 | 88 |
BF1–11 | 120 | 112 | 115 | 123 | 138 | 155 | 154 |
BF1–12 | 149 | 136 | 147 | 143 | 160 | 167 | 164 |
BF1–13 | 256 | 236 | 245 | 256 | 316 | 342 | 335 |
BF1–14 | 280 | 251 | 253 | 261 | 304 | 314 | 328 |
BF1–15 | 1087 | 997 | 1022 | 1049 | 1256 | 1359 | 1262 |
BF1–16 | 475 | 429 | 447 | 423 | 508 | 468 | 426 |
BF1–17 | 73 | 70 | 71 | 70 | 80 | 78 | 77 |
BF1–18 | 939 | 875 | 887 | 859 | 964 | 825 | 811 |
BF1–19 | 267 | 249 | 251 | 244 | 265 | 209 | 200 |
BF1–20 | 183 | 171 | 174 | 167 | 191 | 196 | 182 |
BF1–21 | 1469 | 1359 | 1393 | 1355 | 1603 | 1779 | 1656 |
BF1–22 | 777 | 704 | 719 | 715 | 831 | 732 | 721 |
BF1–23 | 505 | 467 | 474 | 457 | 504 | 391 | 379 |
BF1–24 | 185 | 171 | 176 | 169 | 188 | 154 | 147 |
BF1–25 | 110 | 101 | 103 | 100 | 112 | 96 | 94 |
BF1–26 | 286 | 288 | 270 | 274 | 305 | 314 | 279 |
BF1–27 | 677 | 595 | 596 | 640 | 761 | 788 | 854 |
BF1–28 | 295 | 242 | 247 | 270 | 355 | 353 | 387 |
BF1–29 | 184 | 171 | 173 | 170 | 190 | 187 | 196 |
BF1–30 | 183 | 167 | 167 | 167 | 187 | 192 | 184 |
BF1–31 | 306 | 284 | 283 | 276 | 304 | 248 | 245 |
BF1–32 | 185 | 175 | 178 | 177 | 198 | 207 | 210 |
BF1–33 | 105 | 96 | 95 | 102 | 111 | 144 | 146 |
BF1–34 | 60 | 57 | 57 | 57 | 62 | 62 | 64 |
BF1–35 | 85 | 73 | 73 | 69 | 76 | 65 | 66 |
BF1–36 | 299 | 283 | 286 | 294 | 341 | 382 | 399 |
BF1–37 | 202 | 181 | 184 | 184 | 211 | 219 | 254 |
BF1–38 | 191 | 169 | 168 | 170 | 199 | 227 | 258 |
BF1–39 | 318 | 289 | 299 | 287 | 308 | 342 | 350 |
Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
θi-j | Crowdedness Results | θi-j | Crowdedness Results | θi-j | Crowdedness Results | θi-j | Crowdedness Results | θi-j | Crowdedness Results | θi-j | Crowdedness Results | θi-j | Crowdedness Results | |
station1–2 | 0.08 | Not | 0.08 | Not | 0.08 | Not | 0.08 | Not | 0.09 | Not | 0.09 | Not | 0.09 | Not |
station2–3 | 0.11 | Not | 0.1 | Not | 0.1 | Not | 0.1 | Not | 0.12 | Not | 0.12 | Not | 0.12 | Not |
station3–4 | 0.15 | Not | 0.14 | Not | 0.14 | Not | 0.14 | Not | 0.16 | Not | 0.16 | Not | 0.17 | Not |
station4–5 | 0.18 | Not | 0.17 | Not | 0.17 | Not | 0.17 | Not | 0.18 | Not | 0.19 | Not | 0.19 | Not |
station5–6 | 0.19 | Not | 0.18 | Not | 0.18 | Not | 0.18 | Not | 0.2 | Not | 0.2 | Not | 0.2 | Not |
station6–7 | 0.23 | Not | 0.22 | Not | 0.22 | Not | 0.22 | Not | 0.25 | Not | 0.24 | Not | 0.24 | Not |
station7–8 | 0.25 | Not | 0.24 | Not | 0.24 | Not | 0.24 | Not | 0.27 | Not | 0.26 | Not | 0.27 | Not |
station8–9 | 0.31 | Not | 0.29 | Not | 0.29 | Not | 0.3 | Not | 0.34 | Low | 0.32 | Not | 0.32 | Not |
station9–10 | 0.35 | Low | 0.33 | Low | 0.33 | Low | 0.33 | Low | 0.37 | Low | 0.35 | Low | 0.35 | Low |
station10–11 | 0.37 | Low | 0.35 | Low | 0.35 | Low | 0.36 | Low | 0.4 | Low | 0.37 | Low | 0.38 | Low |
station11–12 | 0.41 | Low | 0.39 | Low | 0.39 | Low | 0.4 | Low | 0.45 | Low | 0.42 | Low | 0.41 | Low |
station12–13 | 0.46 | Low | 0.44 | Low | 0.44 | Low | 0.45 | Low | 0.5 | Low | 0.47 | Low | 0.46 | Low |
station13–14 | 0.55 | Low | 0.51 | Low | 0.51 | Low | 0.53 | Low | 0.6 | Low | 0.56 | Low | 0.55 | Low |
station14–15 | 0.71 | Low | 0.67 | Low | 0.67 | Low | 0.69 | Low | 0.77 | Low | 0.72 | Low | 0.71 | Low |
station15–16 | 0.98 | Low | 0.96 | Low | 0.98 | Low | 0.99 | Low | 1 | Low | 0.96 | Low | 0.94 | Low |
station16–17 | 1.04 | Medium | 1.02 | Medium | 1.04 | Medium | 1.03 | Medium | 1.07 | Medium | 1.01 | Medium | 1.03 | Medium |
station17–18 | 1.06 | Medium | 1.04 | Medium | 1.05 | Medium | 1.04 | Medium | 1.08 | Medium | 1.02 | Medium | 1.05 | Medium |
station18–19 | 1.17 | High | 1.15 | High | 1.12 | High | 1.15 | High | 1.19 | High | 1.13 | High | 1.08 | Medium |
station19–20 | 1.2 | High | 1.18 | High | 1.13 | High | 1.16 | High | 1.21 | High | 1.14 | High | 1.11 | High |
station20–21 | 1.22 | High | 1.2 | High | 1.14 | High | 1.18 | High | 1.22 | High | 1.16 | High | 1.14 | High |
station21–22 | 1.26 | High | 1.27 | High | 1.16 | High | 1.22 | High | 1.3 | High | 1.21 | High | 1.18 | High |
station22–23 | 1.23 | High | 1.24 | High | 1.15 | High | 1.21 | High | 1.31 | High | 1.21 | High | 1.14 | High |
station23–24 | 1.15 | High | 1.16 | High | 1.11 | High | 1.17 | High | 1.25 | High | 1.18 | High | 1.17 | High |
station24–25 | 1.13 | High | 1.13 | High | 1.12 | High | 1.15 | High | 1.23 | High | 1.16 | High | 1.18 | High |
station25–26 | 1.11 | High | 1.12 | High | 1.1 | High | 1.14 | High | 1.21 | High | 1.15 | High | 1.17 | High |
station26–27 | 1.04 | Medium | 1.08 | Medium | 1.05 | Medium | 1.03 | Medium | 1.09 | Medium | 1.1 | High | 1.14 | High |
station27–28 | 0.82 | Low | 0.81 | Low | 0.75 | Low | 0.73 | Low | 0.79 | Low | 0.79 | Low | 0.83 | Low |
station28–29 | 0.73 | Low | 0.69 | Low | 0.69 | Low | 0.66 | Low | 0.7 | Low | 0.72 | Low | 0.73 | Low |
station29–30 | 0.68 | Low | 0.65 | Low | 0.65 | Low | 0.62 | Low | 0.66 | Low | 0.67 | Low | 0.69 | Low |
station30–31 | 0.63 | Low | 0.61 | Low | 0.61 | Low | 0.58 | Low | 0.61 | Low | 0.63 | Low | 0.65 | Low |
station31–32 | 0.54 | Low | 0.53 | Low | 0.53 | Low | 0.5 | Low | 0.51 | Low | 0.53 | Low | 0.55 | Low |
station32–33 | 0.48 | Low | 0.47 | Low | 0.47 | Low | 0.45 | Low | 0.45 | Low | 0.48 | Low | 0.48 | Low |
station33–34 | 0.45 | Low | 0.45 | Low | 0.45 | Low | 0.41 | Low | 0.42 | Low | 0.44 | Low | 0.44 | Low |
station34–35 | 0.44 | Low | 0.43 | Low | 0.43 | Low | 0.4 | Low | 0.4 | Low | 0.42 | Low | 0.42 | Low |
station35–36 | 0.41 | Low | 0.4 | Low | 0.4 | Low | 0.37 | Low | 0.38 | Low | 0.4 | Low | 0.39 | Low |
station36–37 | 0.24 | Not | 0.23 | Not | 0.23 | Not | 0.23 | Not | 0.25 | Not | 0.28 | Not | 0.28 | Not |
station37–38 | 0.18 | Not | 0.17 | Not | 0.17 | Not | 0.17 | Not | 0.18 | Not | 0.19 | Not | 0.19 | Not |
station38–39 | 0.11 | Not | 0.11 | Not | 0.11 | Not | 0.11 | Not | 0.11 | Not | 0.11 | Not | 0.11 | Not |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, L.; Shen, L.; Shuai, C.; Tan, Y.; He, B. Measuring Crowdedness between Adjacent Stations in an Urban Metro System: a Chinese Case Study. Sustainability 2017, 9, 2325. https://doi.org/10.3390/su9122325
Jiao L, Shen L, Shuai C, Tan Y, He B. Measuring Crowdedness between Adjacent Stations in an Urban Metro System: a Chinese Case Study. Sustainability. 2017; 9(12):2325. https://doi.org/10.3390/su9122325
Chicago/Turabian StyleJiao, Liudan, Liyin Shen, Chenyang Shuai, Yongtao Tan, and Bei He. 2017. "Measuring Crowdedness between Adjacent Stations in an Urban Metro System: a Chinese Case Study" Sustainability 9, no. 12: 2325. https://doi.org/10.3390/su9122325
APA StyleJiao, L., Shen, L., Shuai, C., Tan, Y., & He, B. (2017). Measuring Crowdedness between Adjacent Stations in an Urban Metro System: a Chinese Case Study. Sustainability, 9(12), 2325. https://doi.org/10.3390/su9122325