Composite Building Materials: Thermal and Mechanical Performances of Samples Realized with Hay and Natural Resins
Abstract
:1. Introduction
2. Raw Materials
2.1. Hay
2.2. Rosin
3. Experimental Procedure
- the first letter, F, stands for hay (fieno in Italian);
- the number stands for the percentage in weight of hay;
- the final letter stands for parallelepiped (P) or cylinder (C).
4. Thermal Properties
5. Mechanical Properties
5.1. Compressive Tests
5.2. Three-Point Flexural Test
6. Discussions
- Hay (70% in weight) at 8 mm granulometry, 30% rosin, prepared applying an overpressure equal to 7.9 kPa (present work). Ultimate strength equal to 6.00 MPa;
- Flax fibres (34% in weight) at 2 mm granulometry, with acrylated epoxidized soybean oil (AESO) mixed with styrene and divinylbenzene in the ratio 100:45:5 by weight; furthermore, 1.5% in weight of an organic peroxide, USP-245, has been added to the resin. Samples realised by means of the resin transfer moulding (RTM) process (i.e., the closed mould containing the fibre mat has been filled with resin at 207 kPa, letting the resin in excess to flow out of the mould) [74]. Ultimate strength equal to 64 MPa;
- Flax, cellulose, or recycled paper with AESO mixed with styrene in 2:1 weight ratio, then added with cumyl peroxide (3% in weight) and cobalt naphthenate (0.8% in weight). Resin is infused in the fibre mat by means of the vacuum resin transfer moulding (VARTM) process [75]. Ultimate strength ranging from 27 MPa to 60 MPa;
- Pineapple leaf fibres at 1 mm granulometry (30% in weight), with poly (hydroxybutyrate-co-hydroxyvalerate), a biodegradable organic polymer commonly named PHBV. A 1 mm thickness laminate has been prepared by sandwiching three layers of fibres between four layers of PHBV films. The three fibre layers were arranged in 0°/90°/0° directions with 25% of the fibre weight in the top and bottom layers each, and the remaining 50% in the middle layer. The mould was then heated at 180 °C and the sample pressed at 140 MPa [76]. Ultimate strength equal to 86 MPa;
- Manila hemp fibres (70% in weight) with a starch-based emulsion-type biodegradable resin containing fine particles of approximately 4.6 μm in diameter, suspended in aqueous solution, with a mass content of 40%. Samples have been hot-pressed (130 °C) at 10 MPa for 10 min [77]. Ultimate strength equal to 223 MPa.
7. Conclusions
Author Contributions
Conflicts of Interest
References
- European Parliament and the Council. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings (Recast). Available online: https://www.me.government.bg/en/library/directive-2010-31-eu-of-the-european-parliament-and-of-the-council-of-19-may-2010-on-the-energy-perf-171-c80-m262-1.html (accessed on 22 February 2017).
- Korjenic, A.; Petránek, V.; Zach, J.; Hroudová, J. Development and performance evaluation of natural thermal-insulation materials composed of renewable resources. Energy Build. 2011, 43, 2518–2523. [Google Scholar] [CrossRef]
- Singh, B.; Gupta, M.; Tarannum, H. Jute sandwich composite panels for building applications. J. Biobased Mater. Bioenergy 2010, 4, 397–407. [Google Scholar] [CrossRef]
- Cosereanu, C.; Lazarescu, C.; Curtu, I.; Lica, D.; Sova, D.; Brenci, L.M.; Stanciu, M.D. Research on new structures to replace polystyrene used for thermal insulation of buildings. Mater. Plast. 2010, 47, 341–345. [Google Scholar]
- Silva, S.P.; Sabino, M.A.; Fernandas, E.M.; Correlo, V.M.; Boesel, L.F.; Reis, R.L. Cork. Properties, capabilities and applications. Int. Mater. Rev. 2005, 50, 345–365. [Google Scholar]
- Pinto, J.; Cruz, D.; Paiva, A.; Pereira, S.; Tavares, P.; Fernandes, L.; Varum, H. Characterization of corn cob as a possible raw building material. Constr. Build. Mater. 2012, 34, 28–33. [Google Scholar] [CrossRef]
- Paivaa, A.; Pereiraa, S.; Sá, A.; Cruz, D.; Varum, H.; Pinto, J. A contribution to the thermal insulation performance characterization of corn cob particleboards. Energy Build. 2012, 45, 274–279. [Google Scholar] [CrossRef] [Green Version]
- Kodah, Z.H.; Jarrah, M.A.; Shanshal, N.S. Thermal characterization of foam-cane (Quseab) as an insulant material. Energy Convers. Manag. 1999, 40, 349–367. [Google Scholar] [CrossRef]
- Manohar, K.; Ramroopsingh, J.; Yarbrough, D.W. Use of sugarcane fiber as building insulation. Am. Soc. Test. Mater. 2002, 1426, 299–313. [Google Scholar]
- Ren, Q.; Li, J.Z.; Lu, Z.Y. Studies on the wood fiber-rock wool composites. Beijing Linye Daxue Xuebao/J. Beijing For. Univ. 2007, 29, 161–164. [Google Scholar]
- Nicolajsen, A. Thermal transmittance of a cellulose loose-fill insulation material. Build. Environ. 2005, 40, 907–914. [Google Scholar] [CrossRef]
- Lazko, J.; Dupré, B.; Dheilly, R.M.; Quéneudec, M. Biocomposites based on flax short fibres and linseed oil. Ind. Crops Prod. 2011, 33, 317–324. [Google Scholar] [CrossRef]
- Dalmay, P.; Smith, A.; Chotard, T.; Sahay-Turner, P.; Gloaguen, V.; Krausz, P. Properties of cellulosic fibre reinforced plaster: Influence of hemp or flax fibres on the properties of set gypsum. J. Mater. Sci. 2010, 45, 793–803. [Google Scholar] [CrossRef]
- Svennerstedt, B. Advantages of recycled & renewable materials for structural and insulation applications. Nonwovens World Mag. 2005, 14, 39–48. [Google Scholar]
- Kymäläinen, H.R.; Sjöberg, A.M. Flax and hemp fibres as raw materials for thermal insulations. Build. Environ. 2008, 43, 1261–1269. [Google Scholar] [CrossRef]
- Ashour, T.; Georg, H.; Wu, W. Performance of straw bale wall: A case of study. Energy Build. 2011, 43, 1960–1967. [Google Scholar] [CrossRef]
- Ashour, T.; Wieland, H.; Georg, H.; Bockisch, F.J.; Wu, W. The influence of natural reinforcement fibres on insulation values of earth plaster for straw bale buildings. Mater. Des. 2010, 31, 4676–4685. [Google Scholar] [CrossRef]
- Goodhew, S.; Carfrae, J.; De Wilde, P. Briefing. Challenges related to straw bale construction. Proceedings of the Institution of Civil Engineers. Eng. Sustain. 2010, 163, 185–189. [Google Scholar]
- Khedari, J.; Charoenvai, S.; Hirunlabh, J. New insulating particleboards from durian peel and coconut coir. Build. Environ. 2003, 38, 435–441. [Google Scholar] [CrossRef]
- Asasutjarit, C.; Hirunlabh, J.; Khedari, J.; Charoenvai, S.; Zeghmati, B.; Shin, U.C. Development of coconut coir-based lightweight cement board. Constr. Build. Mater. 2007, 21, 277–288. [Google Scholar] [CrossRef]
- Etuk, S.E.; Akpabio, L.E.; Akpabio, K.E. Determination of thermal properties of Cocos Nucifera trunk for predicting temperature variation with its thickness. Arabian J. Sci. Eng. 2005, 30, 121–126. [Google Scholar]
- Kochhar, G.S.; Manohar, K. Use of coconut fiber as a low-cost thermal insulator. In Insulation Materials: Testing and Applications; Graves, Z., Ed.; ASTM: West Conshohocken, PA, USA, 1997; Volume 3, pp. 283–291. [Google Scholar]
- Elfordy, S.; Lucas, F.; Tancret, F.; Scudeller, Y.; Goudet, L. Mechanical and thermal properties of lime and hemp concrete (“hempcrete”) manufactured by a projection process. Constr. Build. Mater. 2008, 22, 2116–2123. [Google Scholar] [CrossRef]
- Arnaud, L.; Gourlay, E. Experimental study of parameters influencing mechanical properties of hemp concrete. Constr. Build. Mater. 2012, 28, 50–56. [Google Scholar] [CrossRef]
- Tran Le, A.D.; Maalouf, C.; Mai, T.H.; Wurtz, E.; Collet, F. Transient hygrothermal behaviour of a hemp concrete building envelope. Energy Build. 2010, 42, 1797–1806. [Google Scholar] [CrossRef]
- Colinart, T.; Glouannec, P.; Chauvelon, P. Influence of the setting process and the formulation on the drying of hemp concrete. Constr. Build. Mater. 2012, 30, 372–380. [Google Scholar] [CrossRef]
- Asprone, D.; Durante, M.; Prota, A.; Manfredi, G. Potential of structural pozzolanic matrix-hemp fiber grid composites. Constr. Build. Mater. 2011, 25, 2867–2874. [Google Scholar] [CrossRef]
- Benfratello, S.; Capitano, C.; Peri, G.; Rizzo, G.; Scaccianoce, G.; Sorrentino, G. Thermal and structural properties of a hemp–lime biocomposite. Constr. Build. Mater. 2013, 48, 745–754. [Google Scholar] [CrossRef]
- Pappu, A.; Patil, V.; Jain, S.; Mahindrakar, A.; Haque, R.; Thakur, V.K. Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: A review. Int. J. Biol. Macromol. 2015, 79, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Pappu, A.; Saxena, M.; Thakur, V.K.; Sharma, A.; Haque, R. Facile extraction, processing and characterization of biorenewable sisal fibers for multifunctional applications. J. Macromol. Sci. Part A 2016, 53, 424–432. [Google Scholar] [CrossRef]
- Thakur, V.K.; Thakur, M.K. Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr. Polym. 2014, 109, 102–117. [Google Scholar] [CrossRef] [PubMed]
- Thakur, V.K.; Thakur, M.K.; Gupta, R.K. Review: Raw Natural Fiber–Based Polymer Composites. Int. J. Polym. Anal. Charact. 2014, 19, 256–271. [Google Scholar] [CrossRef]
- Brahim, S.B.; Cheikh, R.B. Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Compos. Sci. Technol. 2007, 67, 140–147. [Google Scholar] [CrossRef]
- Felline, F.; Pappada, S.; Gennaro, R.; Passaro, A. Resin transfer moulding of composite panels with bio-based resins. SAMPE J. 2013, 49, 20–24. [Google Scholar]
- Feldmann, M.; Bledzki, A.K. Bio-based polyamides reinforced with cellulosic fibres—Processing and properties. Compos. Sci. Technol. 2014, 100, 113–120. [Google Scholar] [CrossRef]
- Fink, H.P.; Ganster, J. Novel thermoplastic composites from commodity polymers and man-made cellulose fibers. Macromol. Symp. 2006, 244, 107–118. [Google Scholar] [CrossRef]
- Oksman, K. High quality flax fibre composites manufactured by the resin transfer moulding process. J. Reinf. Plast. Compos. 2001, 20, 621–627. [Google Scholar] [CrossRef]
- Phillips, S.; Baets, J.; Lessard, L.; Hubert, P.; Verpoest, I. Characterization of flax/epoxy prepregs before and after cure. J. Reinf. Plast. Compos. 2013, 32, 777–785. [Google Scholar] [CrossRef]
- Graupner, N.; Mussig, J. A comparison of the mechanical characteristics of kenaf and lyocell fibre reinforced poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) composites. Compos. Part A 2011, 42, 2010–2019. [Google Scholar] [CrossRef]
- Newman, R.H.; Le Guen, M.J.; Battley, M.A.; Carpenter, J.E.P. Failure mechanisms in composites reinforced with unidirectional Phormium leaf fibre. Compos. Part A 2010, 41, 353–359. [Google Scholar] [CrossRef]
- Oksman, K.; Wallstrom, L.; Berglund, L.A.; Toledo, R.D. Morphology and mechanical properties of unidirectional sisal-epoxy composites. J. Appl. Polym. Sci. 2002, 84, 2358–2365. [Google Scholar] [CrossRef]
- Islam, M.S.; Pickering, K.L.; Foreman, N.J. Influence of alkali fiber treatment and fiber processing on the mechanical properties of hemp/epoxy composites. J. Appl. Polym. Sci. 2011, 119, 3696–3707. [Google Scholar] [CrossRef]
- Zhang, L.; Miao, M. Commingled natural fibre/polypropylene wrap spun yarns for structured thermoplastic composites. Compos. Sci. Technol. 2010, 70, 130–135. [Google Scholar] [CrossRef]
- Goutianos, S.; Peijs, T.; Nystrom, B.; Skrifvars, M. Development of flax fibre based textile reinforcements for composite applications. Appl. Compos. Mater. 2006, 13, 199–215. [Google Scholar] [CrossRef]
- Oksman, K. Mechanical properties of natural fibre mat reinforced thermoplastic. Appl. Compos. Mater. 2000, 7, 403–414. [Google Scholar] [CrossRef]
- Ochi, S. Mechanical properties of kenaf fibers and kenaf/PLA composites. Mech. Mater. 2008, 40, 446–452. [Google Scholar] [CrossRef]
- Baghaei, B.; Skrifvars, M.; Berglin, L. Manufacture and characterisation of thermoplastic composites made from PLA/hemp co-wrapped hybrid yarn prepregs. Compos. Part A 2013, 50, 93–101. [Google Scholar] [CrossRef]
- Van de Weyenberg, I.; Ivens, J.; De Coster, A.; Kino, B.; Baetens, E.; Verpoest, I. Influence of processing and chemical treatment of flax fibres on their composites. Compos. Sci. Technol. 2003, 63, 1241–1246. [Google Scholar] [CrossRef]
- Le Guen, M.J.; Newman, R.H. Pulped Phormium tenax leaf fibres as reinforcement for epoxy composites. Compos. Part A 2007, 38, 2109–2115. [Google Scholar] [CrossRef]
- Li, H.J.; Sain, M.M. High stiffness natural fiber-reinforced hybrid polypropylene composites. Polym. Plast. Technol. Eng. 2003, 42, 853–862. [Google Scholar] [CrossRef]
- Snijder, M.H.B.; Bos, H.L. Reinforcement of polypropylene by annual plant fibers: Optimisation of the coupling agent efficiency. Compos. Interfaces 2000, 7, 69–79. [Google Scholar] [CrossRef]
- Rana, A.K.; Mandal, A.; Mitra, B.C.; Jacobson, R.; Rowell, R.; Banerjee, A.N. Short jute fiber-reinforced polypropylene composites: Effect of compatibilizer. J. Appl. Polym. Sci. 1998, 69, 329–338. [Google Scholar] [CrossRef]
- Sain, M.; Suhara, P.; Law, S.; Bouilloux, A. Interface modification and mechanical properties of natural fiber-polyolefin composite products. J. Reinf. Plast. Compos. 2005, 24, 121–130. [Google Scholar] [CrossRef]
- Zampaloni, M.; Pourboghrat, F.; Yankovich, S.; Rodgers, B.; Moore, J.; Drzal, L.; Mohanty, A.K.; Misra, M. Kenaf natural fiber reinforced polypropylene composites: A discussion on manufacturing problems and solutions. Compos. Part A 2007, 38, 1569–1580. [Google Scholar] [CrossRef]
- Hu, R.; Lim, J.K. Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites. J. Compos. Mater. 2007, 41, 1655–1669. [Google Scholar] [CrossRef]
- Baghaei, B.; Skrifvars, M.; Salehi, M.; Bashir, T.; Rissanen, M.; Nousiainen, P. Novel aligned hemp fibre reinforcement for structural biocomposites: Porosity, water absorption, mechanical performances and viscoelastic behaviour. Compos. Part A 2014, 61, 1–12. [Google Scholar] [CrossRef]
- Hughes, M.; Carpenter, J.; Hill, C. Deformation and fracture behaviour of flax fibre reinforced thermosetting polymer matrix composites. J. Mater. Sci. 2007, 42, 2499–2511. [Google Scholar] [CrossRef]
- Angelov, I.; Wiedmer, S.; Evstatiev, M.; Friedrich, K.; Mennig, G. Pultrusion of a flax/polypropylene yarn. Compos. Part A 2007, 38, 1431–1438. [Google Scholar] [CrossRef]
- Rodriguez, E.; Petrucci, R.; Puglia, D.; Kenny, J.M.; Vazquez, A. Characterization of composites based on natural and glass fibers obtained by vacuum infusion. J. Compos. Mater. 2005, 39, 265–282. [Google Scholar] [CrossRef]
- Bodros, E.; Pillin, I.; Montrelay, N.; Baley, C. Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos. Sci. Technol. 2007, 67, 462–470. [Google Scholar] [CrossRef]
- Herrmann, A.S.; Nickel, J.; Riedel, U. Construction materials based upon biologically renewable resources – from components to finished parts. Polym. Degrad. Stab. 1998, 59, 251–261. [Google Scholar] [CrossRef]
- Van de Velde, K.; Kiekens, P. Effect of material and process parameters on the mechanical properties of unidirectional and multidirectional flax/polypropylene composites. Compos. Struct. 2003, 62, 443–448. [Google Scholar] [CrossRef]
- Carpenter, J.E.P.; Miao, M.; Brorens, P. Deformation behaviour of composites reinforced with four different linen flax yarn structures. In Advanced Materials and Processing IV; Trans Tech Publications: Stafa-Zurich, Switzerland, 2007; pp. 263–266. [Google Scholar]
- Bledzki, A.K.; Mamun, A.A.; Lucka, M.; Gutowsk, V.S. The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polym. Lett. 2008, 2, 413–422. [Google Scholar] [CrossRef] [Green Version]
- Le, M.T.; Pickering, K.L. The potential of harakeke fibre as reinforcement in polymer matrix composites including modelling of long harakeke fibre composite strength. Compos. Part A 2015, 76, 44–53. [Google Scholar] [CrossRef]
- Madsen, B.; Lilholt, H. Physical and mechanical properties of unidirectional plant fibre composites – an evaluation of the influence of porosity. Compos. Sci. Technol. 2003, 63, 1265–1272. [Google Scholar] [CrossRef]
- Islam, M.S.; Pickering, K.L.; Foreman, N.J. Influence of alkali treatment on the interfacial and physico-mechanical properties of industrial hemp fibre reinforced polylactic acid composites. Compos. Part A 2010, 41, 596–603. [Google Scholar] [CrossRef]
- Devi, L.U.; Bhagawan, S.S.; Thomas, S. Mechanical properties of pineapple leaf fiber-reinforced polyester composites. J. Appl. Polym. Sci. 1997, 64, 1739–1748. [Google Scholar] [CrossRef]
- Rong, M.Z.; Zhang, M.Q.; Liu, Y.; Yang, G.C.; Zeng, H.M. The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos. Sci. Technol. 2001, 61, 1437–1447. [Google Scholar] [CrossRef]
- Pickering, K.L.; Aruan Efendy, M.G.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A 2016, 83, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Giarratana, L. Materiali Naturali—Caratterizzazione Termica di Alcune fibre Naturali per L’isolamento Degli Edifici. Master’s Thesis, Università degli studi di Palermo, Palermo, Italy, July 2011. [Google Scholar]
- Petersen, J.M. Physical properties of wood rosin. Ind. Eng. Chem. 1932, 24, 168–173. [Google Scholar] [CrossRef]
- EN 12667. In Thermal Performance of Building Materials and Products—Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods—Products of High and Medium Thermal Resistance; British Standards Institution: London, UK, 2001.
- Williams, G.I.; Wool, R.P. Composites from Natural Fibers and Soy Oil Resins. Appl. Compos. Mater. 2000, 7, 421–432. [Google Scholar] [CrossRef]
- O’Donnell, A.; Dweib, M.A.; Wood, R. Natural fiber composites with plant oil-based resin. Compos. Sci. Technol. 2004, 64, 1135–1145. [Google Scholar]
- Luo, S.; Netravali, A.N. Interfacial and mechanical properties of environment-friendly “green” composites made from pineapple fibers and poly(hydroxybutyrate-co-valerate) resin. USA J. Mater. Sci. 1999, 34, 3709–3719. [Google Scholar] [CrossRef]
- Ochi, S. Development of high strength biodegradable composites using Manila hemp fiber and starch-based biodegradable resin. Compos. Part A 2006, 37, 1879–1883. [Google Scholar] [CrossRef]
Fibre | Orientation | Matrix | Fibre Content (%) | Tensile Strength (MPa) | Young’s Modulus (GPa) | Flexural Strength (MPa) | Flexural Modulus (GPa) | Reference |
---|---|---|---|---|---|---|---|---|
Hay | random | Rosin | 50/70 | 6/13 | 0.4/1 | 6 | [This study] | |
Alfa | aligned | UP | 48 | 149 | 12 | [33] | ||
Cellulose | continuous | Bio-Epoxy | 92 | 9 | 727 | 27 | [34] | |
Cordenka a | - | PA | 30 | 120 | 6 | [35] | ||
Cordenka a | - | PP | 42 | 90 | 4 | [36] | ||
Cordenka a | - | PLA | 25 | 108 | 4 | [36] | ||
Flax | - | PP | 30 | 74 b | [37] | |||
Flax | - | PP | 30 | 52 | 5 | 60 | 5 | [38] |
Flax | aligned | Epoxy | 46/54 | 280/279 | 35/39 | 223 | [39] | |
Flax | aligned | Epoxy | 37 | 132 | 15 | [40] | ||
Flax | aligned | PP | 50 | 40 | 7 | [41] | ||
Flax | aligned | PP | 39 | 212 | 23 | [42] | ||
Flax | random | UP | 39 | 61 | 6 | 91 | 5 | [43] |
Flax | random | PLA | 30 | 100 | 8 | [44] | ||
Flax | random | PLLA | 30 | 99 | 9 | [44] | ||
Flax | short-nonwoven | Shellac | 49 | 109 | 10 | [45] | ||
Flax | woven | Epoxy | 50 | 104 | 10 | [46] | ||
Flax hackled | aligned | Epoxy | 28 | 182 | 20 | [47] | ||
Flax sliver | aligned | UP | 58 | 304 | 30 | [48] | ||
Flax sliver | aligned | PP | 44 | 146 | 15 | [49] | ||
Flax sliver | biaxial/major axis | Epoxy | 46 | 200 | 17 | 194 | 13 | [50] |
Flax yarn | aligned | Epoxy | 45 | 311 | 25 | [51] | ||
Flax yarn | aligned | Epoxy | 31 | 160 | 15 | 190 | 15 | [47] |
Flax yarn | aligned | Epoxy | 45 | 133 | 28 | 218 | 18 | [51] |
Flax yarn | aligned | VE | 24 | 248 | 24 | [47] | ||
Flax yarn | aligned | UP | 34 | 143 | 14 | 198 | 17 | [47] |
Flax yarn | aligned | PP | 72 | 321 | 29 | [52] | ||
Flax yarn | aligned | PP | 30 | 89/70 | 7/6 | [53] | ||
Flax yarn | woven | VE | 35 | 111 | 10 | 128 | 10 | [47] |
Harakeke | aligned | Epoxy | 50/55 | 223 | 17 | 14 | [54] | |
Harakeke | aligned | Epoxy | 52 | 211 | 15 | [55] | ||
Harakeke | DSF | Epoxy | 45 | 136 | 11 | 155 | 10 | [56] |
Harakeke | DSF | PLA | 30 | 102 | 8 | [56] | ||
Harakeke | random | Epoxy | 45 | 188 | 9 | [57] | ||
Hemp | - | PP | 40 | 52 | 4 | 86 | 4 | [58] |
Hemp | aligned | Epoxy | 65 | 165 | 17 | 180 | 9 | [59] |
Hemp | aligned | PP | 46 | 127 | 11 | [49] | ||
Hemp | aligned | PLA | 30 | 77 | 10 | 101 | 7 | [60] |
Hemp | biaxial | PLA | 45 | 62 | 7 | 124 | 9 | [61] |
Hemp | carded | PLA | 30 | 83 | 11 | 143 | 7 | [62] |
Hemp | DSF | Epoxy | 50 | 105 | 9 | 126 | 8 | [56] |
Hemp | DSF | Epoxy | 65 | 113 | 18 | 145 | 10 | [59] |
Hemp | DSF | PLA | 25 | 87 | 9 | [56] | ||
Hemp | random | PLA | 47 | 55 | 9 | 113 | [63] | |
Jute | - | PP | 60 | 74 | 11 | 112 | 12 | [64] |
Jute | woven | UP | 35 | 50 | 8 | 103 | 7 | [43] |
Kenaf | aligned | PLA | 40 | 82 | 8 | 126 | 7 | [65] |
Kenaf | aligned | PHB | 40 | 70 | 6 | 101 | 7 | [65] |
Kenaf | random | PP | 30 | 46 | 5 | 58 | 4 | [66] |
Kenaf | aligned | PLA | 80 | 223 | 23 | 254 | 22 | [67] |
Kraft | - | PP | 40 | 52 | 3 | 90 | 4 | [58] |
Lyocella | carded | PLA | 30 | 89 | 9 | 148 | 6 | [65] |
Lyocella | carded | PHB | 30 | 66 | 5 | 105 | 5 | [65] |
Newsprint | - | PP | 40 | 53 | 3 | 94 | 4 | [58] |
PALF | random | UP | 30 | 53 | 2 | 80 | 3 | [68] |
Sisal | aligned | Epoxy | 73 | 410 | 6 | 320 | 27 | [69] |
Sisal | aligned | Epoxy | 77 | 330 | 10 | 290 | 22 | [69] |
Sisal | aligned | Epoxy | 48 | 211 | 20 | [40] | ||
Sisal | aligned | Epoxy | 37 | 183 | 15 | [40] | ||
Wood BKP | - | PP | 40 | 50 | 3 | 78 | 3 | [70] |
Property | Values |
---|---|
Density | 1.04–1.10 g/cm3 |
Thermal conductivity λ | 0.128 W/mK |
Acid number | >150 |
Softening point | 70 °C–80 °C |
Melting point | 60–135 °C |
Dropping point | 80–95 °C |
Ashes | <0.031% |
Saponification number | 170–185 |
Insaponifiable matter | 3%–8% |
Sample ID | % Hay | Hay Granulometry (mm) | Dimensions (L × P × H) (mm × mm × mm) | Weight (g) | Volume (cm3) | Bulk Density (kg/m3) |
---|---|---|---|---|---|---|
F50P | 50 | 8 | 159 × 139 × 28 | 612.3 | 619 | 989 |
F60P | 60 | 8 | 160 × 139 × 29 | 613.0 | 656 | 934 |
F70P | 70 | 8 | 158 × 140 × 29 | 511.5 | 647 | 791 |
Sample ID | % Hay | Hay Granulometry (mm) | Dimensions (D/H) (mm/mm) | Weight (g) | Volume (cm3) | Bulk Density (kg/m3) |
---|---|---|---|---|---|---|
F50C | 50 | 8 | 100/157 | 1239.5 | 120 | 1005 |
F60C | 60 | 8 | 100/130 | 996 | 102 | 976 |
F70C | 70 | 8 | 100/112 | 707 | 90 | 804 |
Sample ID | Mass(g) | Volume (cm3) | Bulk Density (kg/m3) | Thermal Conductivity λ (W/mK) |
---|---|---|---|---|
F50P | 612.3 | 619 | 989 | 0.1079 |
F60P | 613.0 | 656 | 934 | 0.1029 |
F70P | 511.5 | 647 | 791 | 0.0938 |
Sample ID | Dimension (D/H) (mm/mm) | Mass (g) | Volume (cm3) | Bulk Density (kg/m3) | Young Modulus E (MPa) | Ultimate Strength (MPa) |
---|---|---|---|---|---|---|
F70C | 100/100 | 635 | 785 | 809 | 413 | 5.82 |
F60C | 100/100 | 755 | 785 | 962 | 959.1 | 10.53 |
F50C | 100/100 | 765 | 785 | 974 | 1003 | 12.91 |
Sample ID | Dimensions (L × P × H) (mm × mm × mm) | Mass (g) | Volume (cm3) | Bulk Density (kg/m3) | Ultimate Load (kg) | Ultimate Strength (MPa) | Average Ultimate Strength (MPa) |
---|---|---|---|---|---|---|---|
F50P.A | 159 × 41 × 28 | 180 | 182 | 986 | 84.0 | 6.11 | 6.00 |
F50P.B | 159 × 41 × 28 | 180 | 182 | 986 | 72.5 | 5.28 | |
F50P.C | 159 × 41 × 28 | 180 | 182 | 986 | 91.0 | 6.62 | |
F60P.A | 160 × 40 × 29 | 180 | 186 | 969 | 87.0 | 6.09 | 6.04 |
F60P.B | 160 × 40 × 29 | 180 | 186 | 969 | 89.0 | 6.23 | |
F60P.C | 160 × 40 × 29 | 180 | 186 | 969 | 83.0 | 5.81 | |
F70P.A | 158 × 41 × 29 | 150 | 189 | 790 | 80.0 | 5.28 | 6.11 |
F70P.B | 158 × 40 × 29 | 145 | 185 | 783 | 104.0 | 7.04 | |
F70P.C | 158 × 41 × 29 | 150 | 189 | 790 | 91.0 | 6.01 |
Biocomposite | Fibres (%) | Ultimate Strength (MPa) |
---|---|---|
Hay/Lime | 16.6 | 0.25 |
F50C | 50.0 | 12.91 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gennusa, M.L.; Llorach-Massana, P.; Montero, J.I.; Peña, F.J.; Rieradevall, J.; Ferrante, P.; Scaccianoce, G.; Sorrentino, G. Composite Building Materials: Thermal and Mechanical Performances of Samples Realized with Hay and Natural Resins. Sustainability 2017, 9, 373. https://doi.org/10.3390/su9030373
Gennusa ML, Llorach-Massana P, Montero JI, Peña FJ, Rieradevall J, Ferrante P, Scaccianoce G, Sorrentino G. Composite Building Materials: Thermal and Mechanical Performances of Samples Realized with Hay and Natural Resins. Sustainability. 2017; 9(3):373. https://doi.org/10.3390/su9030373
Chicago/Turabian StyleGennusa, Maria La, Pere Llorach-Massana, Juan Ignacio Montero, Francisco Javier Peña, Joan Rieradevall, Patrizia Ferrante, Gianluca Scaccianoce, and Giancarlo Sorrentino. 2017. "Composite Building Materials: Thermal and Mechanical Performances of Samples Realized with Hay and Natural Resins" Sustainability 9, no. 3: 373. https://doi.org/10.3390/su9030373
APA StyleGennusa, M. L., Llorach-Massana, P., Montero, J. I., Peña, F. J., Rieradevall, J., Ferrante, P., Scaccianoce, G., & Sorrentino, G. (2017). Composite Building Materials: Thermal and Mechanical Performances of Samples Realized with Hay and Natural Resins. Sustainability, 9(3), 373. https://doi.org/10.3390/su9030373