On-Grid Solar PV versus Diesel Electricity Generation in Sub-Saharan Africa: Economics and GHG Emissions
Abstract
:1. Introduction
2. Methodology
2.1. Data Specifications of the Solar PV Plant
2.2. Diesel Power Plant Data Specifications
- The maximum plant availability will be 91% of the installed capacity.
- The average availability of the plant will be 89% of the available capacity after degradation.
- The fuel requirement is 0.21 L per kWh.
- The annual increase in fuel requirement is 1%.
- The capacity degradation factor (annual deterioration) will be 1% of the maximum available capacity.
2.3. Other Technical Specifications
2.4. Economic Benefit Calculation
3. Results
3.1. Economic Evaluation of Solar PV Technology
3.2. Economic Evaluation of Diesel Technology
3.3. Sensitivity Analysis
3.4. Scenario Analysis: Reductions in the Cost of Solar PV Technology over Time
4. Conclusions and Discussion
Author Contributions
Conflicts of Interest
References
- World Bank. Africa Development Indicators 2012/13; International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2013. [Google Scholar]
- Tallapragada, V.S.N.P.; Shkaratan, M.; Izaguirre, A.K.; Helleranta, J.; Rahman, S.; Bergman, S. Monitoring Performance of Electric Utilities Indicators and Benchmarking in Sub-Saharan Africa; The World Bank: Washington, DC, USA, 2009. [Google Scholar]
- Eberhard, A.; Foster, V.; Briceño-Garmendia, C.; Shkaratan, M. Power: Catching up. In Africa’s Infrastructure: A Time for Transformation; Foster, V., Briceño-Garmendia, C., Eds.; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2010; pp. 181–202. [Google Scholar]
- The African Development Bank. South Sudan: An Infrastructure Action Plan, A Program for Sustained Strong Economic Growth; The African Development Bank (AfDB) Group: Tunis-Belvedere, Tunisia, 2013. [Google Scholar]
- Foster, V.; Steinbuks, J. Paying the Price for Unreliable Power Supplies: In-House Generation of Electricity by Firms in Africa; Policy Research Working Paper WPS4913; The World Bank: Washington, DC, USA, 2009. [Google Scholar]
- Karakezi, S.; Kimani, J. Status of power sector reform in Africa: Impact on the poor. Energy Policy 2002, 30, 923–945. [Google Scholar] [CrossRef]
- Foster, V.; Steinbuks, J. When do firms generate? Evidence on in-house electricity supply in Africa. Energy Econ. 2010, 32, 505–514. [Google Scholar]
- UNEP. Prospects for Investment in Large-Scale, Grid-Connected Solar Power in Africa; United Nations Environment Programme (UNEP), RISO Centre: Copenhagen, Denmark, 2014. [Google Scholar]
- Eberhard, A.; Foster, V.; Briceño-Garmendia, C.; Ouedraogo, F.; Camos, D.; Shkaratan, M. Underpowered: The State of the Power Sector in Sub-Saharan Africa; Africa Infrastructure Country Diagnostic Background Paper No. 6; World Bank: Washington, DC, USA, 2008. [Google Scholar]
- Eberhard, A.; Shkaratan, M. Powering Africa: Meeting the financing and reform challenges. Energy Policy 2012, 42, 9–18. [Google Scholar] [CrossRef]
- Foster, V. Overhauling the Engine of Growth: Infrastructure in Africa; Africa Infrastructure Country Diagnostic, World Bank: Washington, DC, USA, 2008. [Google Scholar]
- MAN Diesel & Turbo. Power Plants: Energy Wherever You Need It. Available online: http://mandieselturbo.com/files/news/filesof11510/Brochure_Power%20Plants.pdf (accessed on 26 June 2015).
- Wärtsilä. Oil Power Plants, 2013. Wärtsilä Corporation. Available online: http://www.wartsila.com/en_CN/power-plants/smart-power-generation/oil-power-plants (accessed on 29 May 2014).
- Wärtsilä. Improving Efficiency. 2016. Available online: http://www.wartsila.com/sustainability/environmental-responsibility/products-and-environmental-aspects/improving-efficiency (accessed on 5 April 2016).
- The United Nations Environment Programme (UNEP). Financing Renewable Energy in Developing Countries, Drivers and Barriers for Private Finance in Sub-Saharan Africa; Instaprint: Geneva, Switzerland, 2012. [Google Scholar]
- Frank, C.R. The Net Benefits of Low and No-Carbon Electricity Technologies; Working Paper 73; Global Economy & Development at Brookings, The Brookings Institution: Washington, DC, USA, 2014. [Google Scholar]
- EIA. International Energy Statistics. US Energy Information Administration (EIA). Available online: http://www.eia.gov/ (accessed on 14 February 2017).
- IMF. Energy Subsidy Reform in Sub-Saharan Africa, Experiences and Lessons; International Monetary Fund, African Department: Washington, DC, USA, 2013. [Google Scholar]
- African Review. Scatec Solar to Build 50MW Solar Power Plant in Ghana. Available online: http://www.africanreview.com/energy-a-power/renewables/scatec-solar-to-build-50mw-solar-power-plant-in-ghana (accessed on 26 June 2015).
- EC. Commissioner Piebalgs to Announce Concrete Projects in Africa to Provide Access to Clean Energy. Available online: http://ec.europa.eu/commission_2010-2014/piebalgs/headlines/news/2012/09/20120924_2_en.htm (accessed on 26 June 2015).
- Electric Light & Power. Masdar Launches Solar Photovoltaic Plant in Mauritania. Available online: http://www.elp.com/articles/2013/04/masdar-launches-solar-photovoltaic-plant-in-mauritania.html (accessed on 26 June 2015).
- Energiyaglobal. Construction Begins on East Africa’s First Utility-Scale Solar Field. Available online: http://energiyaglobal.com/rwanda-field-reaches-financial-close-begins-construction/ (accessed on 26 June 2015).
- Mugisha, I.R. Investors Plan 10 mw Solar Plant in Kayonza. Available online: http://www.newtimes.co.rw/section/article/2014-05-15/75311/ (accessed on 26 June 2015).
- OPIC. Spotlight on OPIC Impact Award Winners: SunEdison, The Overseas Private Investment Corporation (OPIC) Blog. Available online: http://www.opic.gov/blog/events/spotlight-on-opic-impact-award-winners-sunedison (accessed on 26 June 2015).
- Pincent Masons LLP. European Investment Bank Backs Construction of New Solar Plant in Burkina Faso. Available online: http://www.out-law.com/en/articles/2014/september/european-investment-bank-backs-construction-of-new-solar-plant-in-burkina-faso/ (accessed on 26 June 2015).
- PVTech. MoU Agreed for 50MW Kenya PV Project. Available online: http://www.pv-tech.org/news/kenya_signs_mou_for_50mw_with_canadian_consortium (accessed on 26 June 2015).
- Renewable-Technology, Terra Sola to Drive Solar Power Growth in Egypt for 2GW. Available online: http://www.renewable-technology.com/news/newsterra-sola-to-drive-solar-power-growth-in-egypt-for-2gw-4537552 (accessed on 26 June 2015).
- Scatec. Scatec Solar Is Selected as Preferred Bidder for 75 MW Solar PV Plant in South Africa. Available online: http://www.scatec.no/no/News/20111209_SSO_project_SA.aspx (accessed on 26 June 2015).
- SeeNews (2015). Scatec Completes 40-MW Solar Farm in South Africa. Available online: http://renewables.seenews.com/news/scatec-completes-40-mw-solar-farm-in-south-africa-429164# (accessed on 26 June 2015).
- The Financial Times. Blue Energy to Build Solar Site in Ghana. Available online: http://www.ft.com/intl/cms/s/0/da1e73d0-3d6f-11e2-9f35-00144feabdc0.html#axzz3dUuNKdWz (accessed on 26 June 2015).
- Wikipedia. Jasper Solar Energy Project. Available online: https://en.wikipedia.org/wiki/Jasper_Solar_Energy_Project (accessed on 26 June 2015).
- Jäger-Waldau, A. PV Status Report 2013; European Commission, DG Joint Research Centre, Institute for Energy and Transport, Renewable Energy Unit: Ispra, Italy, 2013. [Google Scholar]
- Pudjianto, D.; Djapic, P.; Dragovic, J.; Strbac, G. Grid Integration Cost of Photovoltaic Power Generation: Direct Costs Analysis related to Grid Impacts of Photovoltaics; Imperial College: London, UK, 2013. [Google Scholar]
- OECD. Environmental Indicators for Agriculture—Volume 3: Methods and Results; OECD: Paris, France, 2001; pp. 389–391. [Google Scholar]
- Fthenakis, M.V.; Kim, C.H.; Alsema, E. Emissions from Photovoltaic life cycles. Env. Sci. Technol. 2008, 42, 2168–2174. [Google Scholar] [CrossRef]
- Deichmann, U.; Meisner, C.; Murray, S.; Wheeler, D. The Economics of Renewable Energy Expansion in Rural Sub-Saharan Africa; Policy Research Working Paper No. 5193; World Bank: Washington, DC, USA, 2010. [Google Scholar]
- Lazard. Levelized Cost of Energy Analysis, version 9.0. 2015. Available online: https://www.lazard.com/media/2390/lazards-levelized-cost-of-energy-analysis-90.pdf (accessed on 26 October 2016).
- Pauschert, D. Study of Equipment Prices in the Power Sector; Energy Sector Management Assistance Program (ESMAP) Technical Paper 122/09; International Bank for Reconstruction and Development/World Bank Group: Washington, DC, USA, 2009. [Google Scholar]
- FICHTNER. Power Systems Interconnection between KIBTEK and TEIAS, Final Study Report, Pre-Feasibility Study. Available online: http://www.kibrispostasi.com/Belgeler/Final_Study_Report_Northern_Cyprus_Turkey.pdf (accessed on 18 Febraury 2017).
- MEM. Power System Master Plan 2012 Update; Ministry of Energy and Minerals (MEM): Dar es Salaam, United Republic of Tanzania, 2013.
- Insee. International Prices of Imported Raw Materials—Heavy Fuel Oil (Rotterdam)—Prices in US dollars per tonne—FOB—1% of sulphur. National Institute of Statistics and Economic Studies (Insee). Available online: http://www.insee.fr/en/bases-de-donnees/bsweb/serie.asp?idbank=001642883 (accessed on 28 February 2016).
- Gagnon, L.; Belanger, C.; Uchiyama, Y. Life-cycle assessment of electricity generation options: The status of research in year 2001. Energy Policy 2002, 30, 1267–1278. [Google Scholar] [CrossRef]
- EPA. Direct Emissions from Stationary Combustion Sources; Climate Leaders Greenhouse Gas Inventory Protocol Core Module Guidance, May 2008; US Environmental Protection Agency (EPA): Washington, DC, USA, 2008.
- CAPP. Calculating Greenhouse Gas Emissions Guide; Canadian Association of Petroleum Producers (CAPP): Calgary, Alberta, Canada, 2003. [Google Scholar]
- The Australian Institute of Energy. Energy Value and Greenhouse Emission Factor of Selected Fuels. Available online: http://aie.org.au/Content/NavigationMenu/Resources/EnergyData/Energy_Value_Greenh.htm (accessed on 29 May 2014).
- EPA. Fact Sheet: Social Cost of Carbon; United States Environmental Protection Agency (EPA): Washington, DC, USA, 2013.
- Suri, M.; Huld, T.A.; Dunlop, E.D.; Ossenbrink, H.A. Potential of solar electricity generation in the European Union member states and candidate countries. Sol. Energy 2007, 81, 1295–1305. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Jenkins, G.P.; Mphanlele, B. The Economic Opportunity cost of Capital in South Africa. S. Afr. J. Econ. 2003, 71, 523–543. [Google Scholar] [CrossRef]
- Ghanbariamin, R. Estimating the Economic Opportunity Cost of Capital for Kenya. Master of Science Thesis in Economics, Eastern Mediterranean University. Available online: http://i-rep.emu.edu.tr:8080/xmlui/bitstream/handle/11129/1775/GhanbariaminRoksana.pdf?sequence=1 (accessed on 17 February 2017).
- Ministry of Finance and Economic Planning/Rwanda. National Parameters. Available online: http://rwanda-cscf.cri-world.com/NationalParameters.php (accessed on 17 February 2017).
- Goodrich, A.; James, T.; Woodhouse, M. Residential, Commercial, and Utility-Scale Photovoltaic (PV) System Prices in the United States: Current Drivers and Cost-Reduction Opportunities; Technical Report; National Renewable Energy Laboratory: Springfield, VA, USA, 2012. [Google Scholar]
- Naam, R. Smaller, cheaper, faster: Does Moore’s law apply to solar cells? Available online: https://blogs.scientificamerican.com/guest-blog/smaller-cheaper-faster-does-moores-law-apply-to-solar-cells/ (accessed on 29 May 2014).
- Chase, J. PV markets: Status and prospects, geographical segmentation and growth dynamics. In Proceedings of the Global Solar Summit, Shaping the Future of Solar, Milano, Italy, 8–9 May 2013.
Year | 0 | 1 | 2 | 3 | … | 25 |
---|---|---|---|---|---|---|
Total electricity production (MWh) | 0 | 45,518 | 45,244 | 44,973 | … | 39,396 |
Total fuel savings in (litres 000) | 0 | 11,197 | 11,241 | 11,286 | … | 12,306 |
Financial value of total fuel savings (US$000) | 0 | 8713 | 8747 | 8781 | … | 9575 |
GHG emissions avoided (tonnes) | 0 | 33,956 | 33,752 | 33,550 | … | 29,389 |
Year | 0 | 1 | 2 | 3 | … | 25 |
---|---|---|---|---|---|---|
Economic value of fuel savings | 0 | 8598 | 8632 | 8666 | … | 9449 |
Savings on O&M costs of old diesel and thermal plants | 0 | 182 | 181 | 180 | … | 158 |
Total inflows | 0 | 8780 | 8813 | 8846 | … | 9607 |
O&M cost | 0 | 1272 | 1272 | 1272 | … | 1272 |
Capital cost | 84,780 | 0 | 0 | 0 | … | 0 |
Grid-level system cost | 0 | 542 | 539 | 536 | … | 469 |
Total outflows | 84,780 | 1814 | 1811 | 1807 | … | 1741 |
Net resource flow | −84,780 | 6966 | 7002 | 7039 | … | 7866 |
ENPV (country, US$000) @ 12% = −28,191 |
Year | 0 | 1 | 2 | 3 | … | 25 |
---|---|---|---|---|---|---|
Economic value of fuel savings | 0 | 8598 | 8632 | 8666 | … | 9449 |
Savings on O&M costs of old diesel and thermal plants | 0 | 182 | 181 | 180 | … | 158 |
Economic value of GHG emission reductions | 0 | 1376 | 1394 | 1412 | … | 1879 |
Total inflow | 0 | 10,156 | 10,207 | 10,258 | … | 11,486 |
O&M cost | 0 | 1272 | 1272 | 1272 | … | 1272 |
Capital cost | 84,780 | 0 | 0 | 0 | … | 0 |
Grid-level system cost | 0 | 542 | 539 | 536 | … | 469 |
Total outflows | 84,780 | 1814 | 1811 | 1807 | … | 1741 |
Net resource flow | −84,780 | 8342 | 8396 | 8450 | … | 9745 |
ENPV (global, US$000) @ 12% = −16,372 |
Year | 0 | 1 | 2 | 3 | … | 25 |
---|---|---|---|---|---|---|
Total electricity production (MWh) | 0 | 749,550 | 742,054 | 734,634 | … | 588,905 |
Total fuel savings (litres 000) | 0 | 30,430 | 30,427 | 30,424 | … | 30,357 |
Financial value of fuel savings (US$000) | 0 | 23,677 | 23,675 | 23,673 | … | 23,621 |
GHG emissions avoided (tonnes) | 0 | 95,117 | 95,108 | 95,098 | … | 94,889 |
Year | 0 | 1 | 2 | 3 | … | 25 |
---|---|---|---|---|---|---|
Economic value of fuel savings | 0 | 23,367 | 23,365 | 23,362 | … | 23,311 |
Total inflow | 0 | 23,367 | 23,365 | 23,362 | … | 23,311 |
Operating cost | 0 | 1956 | 1956 | 1956 | … | 1956 |
Capital cost | 84,780 | 0 | 0 | 0 | 0 | |
Grid-level system cost | 0 | 420 | 416 | 411 | … | 330 |
Total outflow | 84,780 | 2376 | 2372 | 2368 | … | 2286 |
Net resource flow | −84,780 | 20,991 | 20,993 | 20,994 | … | 21,025 |
ENPV (country, US$000) @ 12% = 79,940 |
Year | 0 | 1 | 2 | 3 | … | 25 |
---|---|---|---|---|---|---|
Economic value of fuel savings | 0 | 23,367 | 23,365 | 23,362 | … | 23,311 |
Economic value of GHG emission reductions | 0 | 3853 | 3927 | 4002 | … | 6068 |
Total inflow | 0 | 27,220 | 27,292 | 27,364 | … | 29,379 |
Operating cost | 0 | 1956 | 1956 | 1956 | … | 1956 |
Capital cost | 84,780 | 0 | 0 | 0 | … | 0 |
Grid- level system cost | 0 | 420 | 416 | 411 | … | 330 |
Total outflows | 84,780 | 2376 | 2372 | 2368 | … | 2286 |
Net resource flow | −84,780 | 24,844 | 24,920 | 24,996 | … | 27,092 |
ENPV (global, US$000) @ 12% = 114,525 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baurzhan, S.; Jenkins, G.P. On-Grid Solar PV versus Diesel Electricity Generation in Sub-Saharan Africa: Economics and GHG Emissions. Sustainability 2017, 9, 372. https://doi.org/10.3390/su9030372
Baurzhan S, Jenkins GP. On-Grid Solar PV versus Diesel Electricity Generation in Sub-Saharan Africa: Economics and GHG Emissions. Sustainability. 2017; 9(3):372. https://doi.org/10.3390/su9030372
Chicago/Turabian StyleBaurzhan, Saule, and Glenn P. Jenkins. 2017. "On-Grid Solar PV versus Diesel Electricity Generation in Sub-Saharan Africa: Economics and GHG Emissions" Sustainability 9, no. 3: 372. https://doi.org/10.3390/su9030372
APA StyleBaurzhan, S., & Jenkins, G. P. (2017). On-Grid Solar PV versus Diesel Electricity Generation in Sub-Saharan Africa: Economics and GHG Emissions. Sustainability, 9(3), 372. https://doi.org/10.3390/su9030372