Spatial and Temporal Variability of Soil Respiration between Soybean Crop Rows as Measured Continuously over a Growing Season
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Soil and CO2 Concentration Measurements
2.3. Estimation of Soil CO2 Concentration and Data Analysis
3. Results and Discussion
3.1. Seasonal Variation in Soil CO2 Efflux
3.2. Diurnal Variation in Soil CO2 Efflux
3.3. Spatial Heterogeneity of the Soil CO2 Efflux
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wan, S.; Norby, R.J.; Ledford, J.; Weltzin, J.F. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Glob. Chang. Biol. 2007, 13, 2411–2424. [Google Scholar] [CrossRef]
- Lundegårdh, H. Carbon dioxide evolution and crop growth. Soil Sci. 1927, 23, 417–453. [Google Scholar] [CrossRef]
- Fang, C.; Moncrieff, J.B. A model for soil CO2 production and transport: 1. Model development. Agric. For. Meteorol. 1999, 95, 225–236. [Google Scholar] [CrossRef]
- Hanson, P.J.; Edwards, N.T.; Garten, C.T.; Andrews, J.A. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 2000, 48, 115–146. [Google Scholar] [CrossRef]
- Saiz, G.; Black, K.; Reidy, B.; Lopez, S.; Farrell, E.P. Assessment of soil CO2 efflux and its components using a process-based model in a young temperate forest site. Geoderma 2007, 139, 79–89. [Google Scholar] [CrossRef]
- Ross, D.J.; Cairns, A. Influence of temperature on biochemical processes in some soils from tussock grasslands. N. Z. J. Sci. 1978, 21, 581–589. [Google Scholar]
- Howard, P.J.A.; Howard, D.M. Respiration of decomposing litter in relation to temperature and moisture: Microbial decomposition of tree and shrub leaf litter 2. OIikos 1979, 33, 457–465. [Google Scholar] [CrossRef]
- Rixon, A.J. Oxygen uptake and nitrification at various moisture levels by soils and mats from irrigated pastures. J. Soil Sci. 1968, 19, 56–66. [Google Scholar] [CrossRef]
- Rixon, A.J.; Bridge, B.J. Respiratory quotient arising from microbial activity in relation to matric suction and air filled pore space of soil. Nature 1968, 218, 961–962. [Google Scholar] [CrossRef] [PubMed]
- Hanson, P.J.; Wullschleger, S.D.; Bohlman, S.A.; Todd, D.E. Seasonal and topographic patterns of forest floor CO2 efflux from an upland oak forest. Tree Physiol. 1993, 13, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Davidson, E.A.; Belk, E.; Boone, R.D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob. Chang. Biol. 1998, 4, 217–227. [Google Scholar] [CrossRef]
- Janssens, I.A.; Crookshanks, M.; Taylor, G.; Ceulemans, R. Elevated atmospheric CO2 increases fine root production, respiration, rhizosphere respiration and soil CO2 efflux in scots pine seedlings. Glob. Chang. Biol. 2002, 4, 871–878. [Google Scholar] [CrossRef]
- Fang, C.; Moncrieff, J.B.; Gholz, H.L.; Clark, K.L. Soil CO2 efflux and its spatial variation in a florida slash pine plantation. Plant Soil 1998, 205, 135–146. [Google Scholar] [CrossRef]
- Stoyan, H.; De-Polli, H.; Böhm, S.; Robertson, G.P.; Paul, E.A. Spatial heterogeneity of soil respiration and related properties at the plant scale. Plant Soil 2000, 222, 203–214. [Google Scholar] [CrossRef]
- Xu, M.; Qi, Y. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in Northern California. Glob. Chang. Biol. 2001, 7, 667–677. [Google Scholar] [CrossRef]
- Pobertson, G.P.; Gross, K.L. Assessing the Heterogeneity of Belowground Resources: Quantifying Pattern and Scale; Academic Press: New York, NY, USA, 1994. [Google Scholar]
- Franklin, R.B.; Mills, A.L. Multi-scale variation in spatial heterogeneity for microbial community structure in an Eastern Virginia agricultural field. FEMS Microbiol. Ecol. 2003, 44, 335–346. [Google Scholar] [CrossRef]
- Lemon, E.R.; Wiegand, C.L. Soil aeration and plant root relations II. Root respiration. Agron. J. 1962, 54, 171–175. [Google Scholar] [CrossRef]
- Tardieu, F. Analysis of the spatial variability of maize root density. Plant Soil 1988, 107, 259–266. [Google Scholar] [CrossRef]
- Van Wesenbeeck, I.J.; Kachanoski, R.G. Spatial and temporal distribution of soil water in the tilled layer under a corn crop. Soil Sci. Soc. Am. J. 1988, 52, 363–368. [Google Scholar] [CrossRef]
- Rochette, P.; Desjardins, R.L.; Pattey, E. Spatial and temporal variability of soil respiration in agricultural fields. Can. J. Soil Sci. 1991, 71, 189–196. [Google Scholar] [CrossRef]
- Buyanovsky, G.A.; Wagner, G.H.; Gantzer, C.J. Soil respiration in a winter wheat ecosystem. Soil Sci. Soc. Am. J. 1986, 50, 338–344. [Google Scholar] [CrossRef]
- Lai, L.; Zhao, X.; Jiang, L.; Wang, Y.; Luo, L.; Zheng, Y.; Chen, X.; Rimmington, G.M. Soil respiration in different agricultural and natural ecosystems in an arid region. PLoS ONE 2012, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, Y.; Ren, T.; Tian, Z.; Wang, G.; He, X.; Tian, C. Short-term effect of tillage and crop rotation on microbial community structure and enzyme activities of a clay loam soil. Biol. Fertil. Soils 2014, 50, 1077–1085. [Google Scholar] [CrossRef]
- Gee, G.W.; Or, D. Particle-Size Analysis; Soil Science Society of America: Madison, WI, USA, 2002. [Google Scholar]
- Tang, J.; Baldocchi, D.D.; Qi, Y.; Xu, L. Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid-state sensors. Agric. For. Meteorol. 2003, 118, 207–220. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: Impacts, Adaptation and Vulnerability; Working Group II Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Millington, R.J.; Quirk, J.P. Permeability of porous solids. Trans. Faraday Soc. 1961, 57, 1200–1207. [Google Scholar] [CrossRef]
- Armstrong, W. Aeration in higher plants. Adv. Bot. Res. 1979, 7, 225–332. [Google Scholar]
- Schjønning, P.; McBride, R.A.; Keller, T.; Obour, P.B. Predicting soil particle density from clay and soil organic matter contents. Geoderma 2017, 286, 83–87. [Google Scholar] [CrossRef]
- Janssens, I.A.; Lankreijer, H.; Matteucci, G.; Kowalski, A.S.; Buchmann, N.; Epron, D.; Pilegaard, K.; Kutsch, W.; Longdoz, B.; Grünwald, T.; et al. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob. Chang. Biol. 2002, 7, 269–278. [Google Scholar] [CrossRef]
- Linn, D.M.; Doran, J.W. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci. Soc. Am. J. 1984, 48, 1267–1272. [Google Scholar] [CrossRef]
- Skopp, J.; Jawson, M.D.; Doran, J.W. Steady-state aerobic microbial activity as a function of soil water content. Soil Sci. Soc. Am. J. 1990, 54, 1619–1625. [Google Scholar] [CrossRef]
- Wiseman, P.E.; Seiler, J.R. Soil CO2 efflux across four age classes of plantation loblolly pine (Pinus taeda L.) on the virginia piedmont. For. Ecol. Manag. 2004, 192, 297–311. [Google Scholar] [CrossRef]
- Boone, R.D.; Nadelhoffer, K.J.; Canary, J.D.; Kaye, J.P. Roots exert a strong influence on the temperature sensitivityof soil respiration. Nature 1998, 396, 570–572. [Google Scholar] [CrossRef]
- Billings, W.D.; Peterson, K.M.; Shaver, G.R.; Trent, A.W. Root growth, respiration, and carbon dioxide evolution in an arctic tundra soil. Arct. Alp. Res. 1977, 9, 129–137. [Google Scholar] [CrossRef]
- Ryan, M.G.; Lavigne, M.G.; Gower, S.T. Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. J. Geophys. Res. 1997, 102, 28871–28883. [Google Scholar] [CrossRef]
- Rochette, P.; Flanagan, L.B. Quantifying rhizosphere respiration in a corn crop under field conditions. Soil Sci. Soc. Am. J. 1996, 61, 466–474. [Google Scholar] [CrossRef]
- Schüßler, W.; Neubert, R.; Levin, I.; Fischer, N.; Sonntag, C. Determination of microbial versus rootproduced CO2 in an agricultural ecosystem by means of δ13CO2 measurements in soil air. Tellus Ser. B Chem. Phys. Meteorol. 2000, 52, 909–918. [Google Scholar] [CrossRef]
- Zogg, G.; Zak, D.R.; Burton, A.; Pregitzer, K. Fineroot respiration in northern hardwood forests in relation to temperature and nitrogen availability. Tree Physiol. 1996, 16, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Parkin, T.B.; Kaspar, T. Temperature controls on diurnal carbon dioxide flux implications for estimating soil carbon loss. Soil Sci. Soc. Am. J. 2003, 67, 1763–1772. [Google Scholar] [CrossRef]
- Riveros-Iregui, D.; Emanuel, R.; Muth, D.J.; Wraith, J.M. Hysteresis between soil temperature and soil CO2 is controlled by soil water content. Geophys. Res. Lett. 2007, 34, 138. [Google Scholar] [CrossRef]
- Bouma, T.J.; Bryla, D.R. On the assessment of root and soil respiration for soils of different textures: Interactions with soil moisture contents and soil CO2 concentrations. Plant Soil 2000, 227, 215–221. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Cheng, W. Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol. Biochem. 2001, 33, 1915–1925. [Google Scholar] [CrossRef]
- Toland, D.E.; Zak, D.R. Seasonal patterns of soil respiration in intact and clear-cut northern hardwood forests. Can. J. For. Res. 1994, 24, 1711–1716. [Google Scholar] [CrossRef]
- Paustian, K.; Elliott, E.T.; Peterson, G.A.; Killian, K. Modelling climate, CO2 and management impacts on soil carbon in semi-arid agroecosystems. Plant Soil 1995, 187, 351–365. [Google Scholar] [CrossRef]
- Ouyang, Y.; Zheng, C. Surficial processes and CO2 flux in soil ecosystem. J. Hydrol. 2000, 234, 54–70. [Google Scholar] [CrossRef]
- Horton, R.; Aguirre-Luna, O.; Wierenga, P.J. Observed and pedicted two-dimensiona soil temperature distributions under a row crop. Soil Sci. Soc. Am. J. 1984, 48, 1147–1152. [Google Scholar] [CrossRef]
- Pangle, R.E.; Seiler, J. Influence of seedling roots environmental factors and soil characteristics on soil CO2 efflux rates in a 2-year-old loblolly pine (Pinus taeda L.) plantation on the virginia piedmont. Environ. Pollut. 2002, 116, S85–S96. [Google Scholar] [CrossRef]
- Epron, D.; Nouvellon, Y.; Roupsard, O.; Mouvondy, W.; Mabialab, A.; Laurent, S.A.; Joffre, R.; Jourdan, C.; Bonnefond, J.M.; Berbigier, P.; et al. Spatial and temporal variations of soil respiration in a Eucalyptus plantation in Congo. For. Ecol. Manag. 2004, 202, 149–160. [Google Scholar] [CrossRef]
- Han, G.; Zhou, G.; Xu, Z.; Yang, Y.; Liu, J.; Shi, K. Biotic and abiotic factors controlling the spatial and temporal variation of soil respiration in an agricultural ecosystem. Soil Biol. Biochem. 2007, 39, 418–425. [Google Scholar] [CrossRef]
- Maestre, F.T.; Cortina, J. Small-scale spatial variation in soil CO2 efflux in a mediterranean semiarid steppe. Appl. Soil Ecol. 2003, 23, 199–209. [Google Scholar] [CrossRef]
Crop Growth Stage | Coefficients of Correlation | |||
---|---|---|---|---|
0 cm | 12 cm | 24 cm | 35 cm | |
Seeding stage | 0.23 ** | 0.28 ** | 0.09 | 0.19 ** |
Flower bud differentiation stage | 0.68 ** | 0.54 ** | 0.37 ** | 0.18 ** |
Flowering and grain-filling stages | −0.16 ** | 0.60 ** | 0.37 ** | 0.36 ** |
Mature stage | 0.14 ** | 0.09 | 0.10 ** | 0.59 ** |
Crop Growth Stage | Coefficients of Correlation | |||
---|---|---|---|---|
0 cm | 12 cm | 24 cm | 35 cm | |
Seeding stage | −0.71 ** | −0.83 ** | −0.94 ** | −0.69 ** |
Flower bud differentiation stage | −0.76 ** | −0.76 ** | −0.94 ** | −0.57 ** |
Flowering and grain-filling stages | −0.65 ** | −0.68 ** | −0.92 ** | −0.54 ** |
Mature stage | −0.53 ** | −0.57 ** | −0.82 ** | −0.31 ** |
Distance to Plant Row | Soil Temperature | Soil Water Content | ||||||
---|---|---|---|---|---|---|---|---|
0 cm | 12 cm | 24 cm | 35 cm | 0 cm | 12 cm | 24 cm | 35 cm | |
DOY 175 | 0.87 ** | 0.90 ** | 0.65 ** | 0.77 ** | −0.96 ** | −0.97 ** | −0.97 ** | −0.88 ** |
DOY 219 | 0.73 ** | 0.41 ** | 0.32 ** | −0.05 | −0.98 ** | −0.93 ** | −0.97 ** | −0.96 ** |
DOY 249 | 0.71 ** | 0.24 | −0.02 | −0.23 | −0.63 ** | −0.80 ** | −0.92 ** | −0.94 ** |
Distance To Plant Row | 0–10 cm Soil Layer | 10–20 cm Soil Layer | ||||||
---|---|---|---|---|---|---|---|---|
0 cm | 12 cm | 24 cm | 35 cm | 0 cm | 12 cm | 24 cm | 35 cm | |
DOY 175 | 1128.96 ** | 65.35 | 29.34 | 11.68 | 20.93 | 23.99 | 13.16 | 13.89 |
DOY 219 | 2904.88 ** | 316.31 | 117.32 | 102.55 | 204.2 | 136.14 | 118.47 | 30.32 |
DOY 249 | 6492.44 ** | 159.28 | 123.31 | 69.28 | 115.58 * | 58.43 | 34.44 | 27.64 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Ren, T. Spatial and Temporal Variability of Soil Respiration between Soybean Crop Rows as Measured Continuously over a Growing Season. Sustainability 2017, 9, 436. https://doi.org/10.3390/su9030436
Wang X, Ren T. Spatial and Temporal Variability of Soil Respiration between Soybean Crop Rows as Measured Continuously over a Growing Season. Sustainability. 2017; 9(3):436. https://doi.org/10.3390/su9030436
Chicago/Turabian StyleWang, Xiaohan, and Tusheng Ren. 2017. "Spatial and Temporal Variability of Soil Respiration between Soybean Crop Rows as Measured Continuously over a Growing Season" Sustainability 9, no. 3: 436. https://doi.org/10.3390/su9030436
APA StyleWang, X., & Ren, T. (2017). Spatial and Temporal Variability of Soil Respiration between Soybean Crop Rows as Measured Continuously over a Growing Season. Sustainability, 9(3), 436. https://doi.org/10.3390/su9030436