An Ex-Post Evaluation of Agricultural Extension Programs for Reducing Fertilizer Input in Shaanxi, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Introduction of Agricultural Extension Program
2.2. Data Description
2.3. Methodology
3. Results
3.1. Outcome and Independent Variables
3.2 Covariates
3.3. Estimation Results of Propensity Score Model
3.4. Estimation Results of Average Treatment Effect on the Treated (ATET)
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Appendix A. Balance Test, Probit Model Estimation and Robustness Check
Appendix A.1. Balance Test for Covariates
Covariates | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Raw | Weighted | Raw | Weighted | Raw | Weighted | Raw | Weighted | Raw | Weighted | |
Personal Characteristics | ||||||||||
Gender | −0.0180 | −0.0401 | −0.0180 | −0.0355 | 0.0146 | −0.0341 | −0.0464 | 0.0075 | −0.0179 | −0.0148 |
Age | 0.0290 | 0.0084 | 0.0170 | −0.0039 | −0.0502 | −0.0067 | −0.0449 | 0.0235 | −0.0558 | 0.0609 |
Education | 0.1221 | 0.0245 | −0.0454 | 0.0068 | −0.0319 | −0.0179 | 0.0277 | 0.0110 | 0.0714 | −0.0275 |
Years for farming | 0.0094 | 0.0017 | 0.0747 | 0.0063 | −0.0620 | 0.0093 | −0.0051 | −0.0095 | 0.1483 | 0.0146 |
Farm Characteristics | ||||||||||
Using machine | 0.5950 | 0.0529 | 0.6845 | 0.0485 | 0.5779 | 0.0418 | 0.6971 | −0.0045 | 0.7525 | 0.0293 |
Land area | 0.0150 | −0.0537 | 0.1534 | −0.0392 | 0.1063 | −0.0223 | 0.1347 | 0.0004 | 0.2205 | −0.0313 |
Labor ratio | 0.0902 | 0.0195 | 0.1482 | 0.0242 | 0.0383 | 0.0165 | −0.0848 | 0.0359 | 0.0819 | 0.0581 |
Farming income ratio | 0.5528 | −0.0712 | 0.7404 | −0.0489 | 0.6375 | −0.0594 | 0.6063 | −0.0689 | 0.7637 | −0.0586 |
Planting other crops | 0.2086 | −0.0317 | 0.1140 | −0.0378 | 0.2215 | −0.0437 | 0.1037 | −0.0217 | 0.1377 | −0.0223 |
Planting kiwi | −0.2821 | 0.0658 | −0.2821 | 0.0555 | −0.2698 | 0.0637 | −0.3920 | 0.0658 | −0.3618 | 0.0353 |
Planting corn | 0.1175 | −0.0522 | 0.1175 | −0.0482 | 0.1073 | −0.0531 | 0.1264 | −0.0485 | 0.2190 | −0.0375 |
Planting wheat | 0.1097 | −0.0369 | 0.1097 | −0.0336 | 0.0995 | −0.0296 | 0.1186 | −0.0444 | 0.2114 | −0.0245 |
Policies | ||||||||||
Village has program | 0.5256 | −0.0031 | 0.3246 | −0.0118 | 0.3536 | −0.0063 | 0.3574 | −0.0596 | 0.3145 | −0.0348 |
Communication with friends | −0.1955 | 0.0592 | −0.2666 | 0.0251 | −0.2463 | 0.0463 | −0.4388 | −0.0301 | −0.2250 | 0.0403 |
Accessible training class | 0.4617 | 0.0010 | 0.4617 | 0.0037 | 0.4804 | −0.0045 | 0.2843 | −0.0152 | 0.4209 | 0.0374 |
Covariates | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Raw | Weighted | Raw | Weighted | Raw | Weighted | Raw | Weighted | Raw | Weighted | |
Personal Characteristics | ||||||||||
Gender | 1.0280 | 1.0017 | 1.0280 | 1.0013 | 1.0279 | 1.0034 | 1.0262 | 1.0007 | 1.0299 | 1.0004 |
Age | 0.5697 | 0.4890 | 0.6546 | 0.5779 | 0.6062 | 0.5545 | 0.5491 | 0.4668 | 0.5784 | 0.4417 |
Education | 1.2600 | 1.0374 | 0.9418 | 1.0138 | 0.9682 | 0.9665 | 1.0794 | 1.0198 | 1.1658 | 0.9582 |
Years for farming | 0.6665 | 0.7627 | 0.6895 | 0.7702 | 0.6726 | 0.7919 | 0.6744 | 0.7464 | 0.5516 | 0.5974 |
Farm Characteristics | ||||||||||
Using machine | 0.6056 | 0.9183 | 0.5221 | 0.9118 | 0.6209 | 0.9360 | 0.5092 | 1.0095 | 1.1603 | 0.7459 |
Land area | 1.0779 | 1.0445 | 1.1682 | 0.8358 | 1.1136 | 0.8996 | 1.1416 | 0.8450 | 0.7157 | 0.7110 |
Labor ratio | 0.8498 | 0.7817 | 0.7609 | 0.6848 | 0.8333 | 0.7870 | 0.6538 | 0.7124 | 0.8779 | 0.9030 |
Farming income ratio | 0.9475 | 0.9062 | 0.8166 | 0.8082 | 1.0664 | 1.0260 | 1.0077 | 0.9926 | 1.4847 | 0.9519 |
Planting other crops | 1.7410 | 0.9406 | 1.3998 | 0.9172 | 1.7903 | 0.9218 | 1.3638 | 0.9500 | 0.5020 | 1.1082 |
Planting kiwi | 0.6149 | 1.1828 | 0.6149 | 1.1502 | 0.6327 | 1.1718 | 0.4600 | 1.2341 | 0.5455 | 1.1531 |
Planting corn | 0.7575 | 1.1746 | 0.7575 | 1.1594 | 0.7807 | 1.1744 | 0.7373 | 1.1643 | 0.5553 | 1.0960 |
Planting wheat | 0.7714 | 1.1186 | 0.7714 | 1.1067 | 0.7949 | 1.0912 | 0.7508 | 1.1488 | 1.1603 | 0.7459 |
Policies | ||||||||||
Village has program | 1.2757 | 1.0005 | 1.2414 | 0.9974 | 1.2515 | 0.9990 | 1.2485 | 0.9935 | 1.2387 | 0.9926 |
Communication with friends | 0.8993 | 1.0598 | 0.8411 | 1.0281 | 0.8587 | 1.0515 | 0.6860 | 0.9573 | 0.8768 | 1.0423 |
Accessible training class | 2.4202 | 1.0012 | 2.4202 | 1.0041 | 2.4744 | 0.9956 | 1.8467 | 0.9780 | 2.2881 | 1.0464 |
Appendix A.2. Probit Model Results
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
---|---|---|---|---|---|---|
Personal Characteristics | ||||||
Gender | −0.0325 | −0.0301 | −0.0295 | 0.0473 | −0.0561 | −0.0167 |
Age | 0.0085 | 0.0095 | 0.0079 | 0.0075 | 0.0039 | −0.0084 |
Education | 0.1436 | 0.2144 | 0.0084 | −0.0294 | 0.0692 | 0.1691 |
Years for farming | −0.0013 | −0.0018 | 0.0003 | −0.007 | 0.0017 | 0.0184 |
Farm Characteristics | ||||||
Using machine | 0.7682 *** | 0.7294 *** | 0.7696 *** | 0.6652 ** | 0.7920 *** | 0.8628 *** |
Land area | 0.0290 | −0.0211 | 0.0086 | −0.0286 | 0.0216 | 0.0876 |
Labor ratio | −0.3718 | −0.2535 | −0.1600 | −0.3884 | −0.6664 | −0.4338 |
Farming income ratio | 1.3862 *** | 1.2773 *** | 1.4542 *** | 1.4390 *** | 1.2786 *** | 1.4850 *** |
Planting other crops | 0.4406 | 0.5494 * | 0.3343 | 0.5259 | 0.3130 | 0.3879 |
Planting kiwi | −0.3292 | −0.3108 | −0.2167 | −0.1891 | −0.7562 | −0.2939 |
Planting corn | −0.1755 | −0.1949 | −0.1696 | −0.1789 | −0.3941 | −0.1355 |
Planting wheat | 0.3558 | 0.3801 | 0.3559 | 0.4186 | 0.0367 | 0.5520 |
Policies | ||||||
Village has program | 0.8302 *** | 0.9209 *** | 0.7202 *** | 0.7612 *** | 0.8079 *** | 0.7677 *** |
Communication with friends | −0.3566 | −0.2872 | −0.3367 | −0.3071 | −0.5152 ** | −0.2875 |
Accessible training class | 0.8442 *** | 0.9226 *** | 0.906 *** | 0.9144 *** | 0.6097 ** | 0.9084 *** |
constant | −3.4653 *** | −3.6311 *** | −3.6603 *** | −3.3625 *** | −2.5018 *** | −3.6797 *** |
Appendix A.3. Robustness Checks
Appendix A.3.1. Variable List 2
Covariates | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw | Weighted | Raw | Weighted | Raw | Weighted | Raw | Weighted | Raw | Weighted | Raw | Weighted | |
Personal Characteristics | ||||||||||||
Gender | 0.0446 | −0.0397 | 0.0583 | −0.0221 | 0.0516 | −0.0361 | 0.0883 | −0.0283 | 0.0196 | −0.0071 | 0.0190 | −0.0292 |
Age | −0.0101 | −0.0061 | 0.0023 | 0.0258 | 0.0043 | −0.0179 | −0.0674 | −0.0247 | −0.0607 | 0.0081 | −0.0461 | 0.0269 |
Education | 0.0190 | 0.0122 | 0.1078 | 0.0331 | −0.1080 | 0.0024 | −0.0948 | −0.0240 | −0.0246 | 0.0144 | 0.0032 | −0.0183 |
Years for farming | −0.0114 | −0.0228 | −0.0200 | −0.0032 | 0.0508 | −0.0097 | −0.0948 | −0.0133 | −0.0306 | −0.0240 | 0.1536 | −0.0125 |
Farm Characteristics | ||||||||||||
Using machine | 0.7210 | 0.0529 | 0.6255 | −0.0024 | 0.7590 | 0.0666 | 0.6415 | 0.0630 | 0.7712 | 0.0057 | 0.7436 | 0.0339 |
Land area | 0.1634 | −0.0373 | 0.1177 | −0.0430 | 0.2106 | −0.0387 | 0.1631 | −0.0270 | 0.1827 | −0.0441 | 0.2439 | −0.0246 |
Labor ratio | 0.1048 | 0.0413 | 0.0605 | 0.0066 | 0.2174 | 0.0463 | 0.0997 | 0.0386 | −0.0305 | 0.0452 | 0.0990 | 0.0614 |
Farming income ratio | 0.6165 | −0.0585 | 0.5286 | −0.0449 | 0.7272 | −0.0297 | 0.6190 | −0.0429 | 0.5915 | −0.0422 | 0.7219 | −0.0637 |
Planting others crops | 0.1058 | −0.0500 | 0.1746 | −0.0479 | 0.0427 | −0.0405 | 0.1637 | −0.0411 | 0.0330 | −0.0400 | 0.0536 | −0.0483 |
Planting kiwi | −0.4068 | 0.0437 | −0.3461 | 0.0606 | −0.3654 | 0.0407 | −0.3539 | 0.0515 | −0.4904 | 0.0344 | −0.3539 | 0.0448 |
Planting corn | 0.2506 | −0.0341 | 0.2026 | −0.0483 | 0.2182 | −0.0363 | 0.2091 | −0.0490 | 0.2258 | −0.0214 | 0.2091 | −0.0551 |
Planting wheat | 0.2349 | −0.0383 | 0.1869 | −0.0520 | 0.2025 | −0.0391 | 0.1935 | −0.0544 | 0.2102 | −0.0211 | 0.1935 | −0.0454 |
Policies | ||||||||||||
Village has program | 0.3911 | −0.0132 | 0.4591 | −0.0053 | 0.3086 | −0.0258 | 0.3390 | −0.0199 | 0.3435 | −0.0496 | 0.3390 | −0.0334 |
Communication with friends | −0.2454 | 0.0273 | −0.2637 | −0.0144 | −0.2343 | 0.0088 | −0.2120 | 0.0251 | −0.4079 | 0.0260 | −0.2120 | 0.0202 |
Accessible training class | 0.3565 | −0.0191 | 0.3136 | −0.0184 | 0.4240 | −0.0082 | 0.4430 | −0.0246 | 0.2344 | −0.0206 | 0.4430 | 0.0151 |
Experience of training classes | 0.2182 | −0.0242 | 0.2292 | −0.0079 | 0.2748 | −0.0047 | 0.2906 | −0.0253 | 0.0671 | −0.0535 | 0.2906 | 0.0175 |
Support laws to limit fertilizer use | 0.6066 | 0.0242 | 0.6665 | 0.0133 | 0.5634 | 0.0308 | 0.6709 | 0.0112 | 0.6877 | 0.0048 | 0.5514 | 0.0453 |
Covariates | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw | Weighted | Raw | Weighted | Raw | Weighted | Raw | Weighted | Raw | Weighted | Raw | Weighted | |
Personal Characteristics | ||||||||||||
Gender | 1.0228 | 1.0062 | 1.0272 | 1.0036 | 1.0256 | 1.0059 | 1.0210 | 1.0065 | 1.0277 | 1.0007 | 1.0297 | 1.0029 |
Age | 0.6226 | 0.5131 | 0.5916 | 0.4807 | 0.6894 | 0.6046 | 0.6363 | 0.5712 | 0.5733 | 0.4450 | 0.6024 | 0.4567 |
Education | 1.0624 | 1.0224 | 1.2389 | 1.0530 | 0.8247 | 1.0056 | 0.8501 | 0.9495 | 0.9812 | 1.0291 | 1.0368 | 0.9676 |
Years for farming | 0.7096 | 0.7933 | 0.7075 | 0.7805 | 0.7274 | 0.8158 | 0.7032 | 0.8243 | 0.7058 | 0.7180 | 0.5776 | 0.6173 |
Farm Characteristics | ||||||||||||
Using machine | 0.4958 | 0.9004 | 0.5807 | 1.0045 | 0.4555 | 0.8679 | 0.5649 | 0.8967 | 0.4431 | 0.9870 | 0.4687 | 0.9300 |
Land area | 1.0611 | 0.7399 | 1.1074 | 0.8953 | 1.1640 | 0.7418 | 1.1130 | 0.7592 | 1.1279 | 0.7703 | 1.1589 | 0.7217 |
Labor ratio | 0.8002 | 0.8273 | 0.7681 | 0.7502 | 0.7680 | 0.7377 | 0.8557 | 0.8730 | 0.6684 | 0.7579 | 0.7586 | 0.8061 |
Farming income ratio | 0.9223 | 0.8646 | 1.0057 | 0.9168 | 0.8005 | 0.7549 | 1.0631 | 0.9778 | 1.0087 | 1.0200 | 0.8594 | 0.8339 |
Planting others crops | 1.3799 | 0.8888 | 1.6357 | 0.9061 | 1.1675 | 0.8972 | 1.5967 | 0.9163 | 1.1345 | 0.8965 | 1.2052 | 0.8820 |
Planting kiwi | 0.4442 | 1.1488 | 0.5293 | 1.1890 | 0.4996 | 1.1262 | 0.5154 | 1.1607 | 0.3317 | 1.1417 | 0.5154 | 1.1373 |
Planting corn | 0.4833 | 1.1485 | 0.5804 | 1.1954 | 0.5466 | 1.1476 | 0.5649 | 1.2033 | 0.5306 | 1.0847 | 0.5649 | 1.2335 |
Planting wheat | 0.5013 | 1.1695 | 0.6020 | 1.2129 | 0.5670 | 1.1601 | 0.5859 | 1.2298 | 0.5504 | 1.0832 | 0.5859 | 1.1863 |
Policies | ||||||||||||
Village has program | 1.2558 | 0.9988 | 1.2803 | 1.0002 | 1.2318 | 0.9942 | 1.2429 | 0.9967 | 1.2398 | 0.9936 | 1.2429 | 0.9948 |
Communication with friends | 0.8622 | 1.0287 | 0.8477 | 0.9853 | 0.8731 | 1.0088 | 0.8917 | 1.0245 | 0.7178 | 1.0387 | 0.8917 | 1.0195 |
Accessible training class | 2.1003 | 0.9753 | 2.0215 | 0.9733 | 2.3085 | 0.9906 | 2.3654 | 0.9740 | 1.7001 | 0.9674 | 2.3654 | 1.0173 |
Experience of training classes | 1.6877 | 0.9586 | 1.7548 | 0.9861 | 1.8756 | 0.9925 | 1.9283 | 0.9625 | 1.2173 | 0.8888 | 1.9283 | 1.0282 |
Support laws to limit fertilizer use | 0.3622 | 0.9312 | 0.2967 | 0.9556 | 0.4067 | 0.9200 | 0.2883 | 0.9617 | 0.2710 | 0.9827 | 0.4194 | 0.8887 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
---|---|---|---|---|---|---|
Personal Characteristics | ||||||
Gender | −0.0127 | −0.0141 | 0.0004 | 0.0738 | −0.0180 | −0.0348 |
Age | 0.0091 | 0.0104 | 0.0081 | 0.0079 | 0.0059 | −0.0064 |
Education | 0.0732 | 0.1436 | −0.0969 | −0.1337 | 0.0009 | 0.0936 |
Years for farming | −0.0015 | −0.0027 | −0.0002 | −0.0079 | 0.0026 | 0.0181 |
Farm Characteristics | ||||||
Using machine | 0.766 *** | 0.7206** | 0.7730 *** | 0.6532 ** | 0.8083 *** | 0.8000 *** |
Land area | 0.0944 | 0.0550 | 0.0862 | 0.0537 | 0.0774 | 0.1456 |
Labor ratio | −0.2690 | −0.1428 | −0.0241 | −0.3052 | −0.6202 | −0.3991 |
Farming income ratio | 1.3351 *** | 1.2534 ** | 1.3800 *** | 1.4002 *** | 1.2345 ** | 1.4048 *** |
Planting other crops | 0.4772 | 0.5968 * | 0.3552 | 0.5728 * | 0.2927 | 0.3457 |
Planting kiwi | −0.4097 | −0.3987 | −0.2774 | −0.2660 | −1.0292 | −0.3479 |
Planting corn | 0.1839 | 0.2054 | 0.2106 | 0.2461 | −0.2057 | 0.0401 |
Planting wheat | 0.1261 | 0.1113 | 0.1192 | 0.1211 | −0.2582 | 0.2829 |
Policies | ||||||
Village has program | 0.8079 *** | 0.9115 *** | 0.6926 *** | 0.7395 *** | 0.8112 *** | 0.7420 *** |
Communication with friends | −0.2970 | −0.2109 | −0.2762 | −0.2231 | −0.4831* | −0.2549 |
Accessible training class | 0.8625 ** | 0.9536 ** | 0.8700 ** | 0.9266 ** | 0.7486 * | 0.8894 ** |
Experience of training classes | −0.0913 | −0.0901 | −0.0003 | −0.0519 | −0.3951 | 0.0587 |
Support laws to limit fertilizer use | 0.7348 ** | 0.8809 *** | 0.6423 ** | 0.8596 ** | 0.9342 *** | 0.6292 ** |
constant | −4.2554 *** | −4.5832 *** | −4.3733 *** | −4.2467 *** | −3.3189 *** | −4.0923 *** |
Treatment Model | Outcome | ||
---|---|---|---|
Total Fertilizer Use (kg/ha) | |||
ATET | Std. Err | t-Stat | |
1.Full China-UK program | 32.9442 | 36.5417 | 0.9000 |
2. all except farm field school | 45.6514 | 41.0305 | 1.1100 |
3. all except demonstration zone | 35.2685 | 40.2823 | 0.8800 |
4. all except farmer meeting | 47.0027 | 41.3226 | 1.1400 |
5. all except Farmer to farmer training | 15.8429 | 37.9373 | 0.4200 |
6. all except poster | 41.0705 | 38.7154 | 1.0600 |
Appendix A.3.2. Variable List #3
Covariates | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw | Weighted | Raw | Weighted | Raw | Weighted | Raw | Weighted | Raw | Weighted | Raw | Weighted | |
Personal Characteristics | ||||||||||||
Gender | 0.0285 | 0.0194 | 0.0283 | 0.0277 | −0.0028 | 0.0206 | 0.0430 | 0.0756 | 0.0285 | 0.0248 | −0.0084 | −0.0143 |
Age | −0.0561 | 0.0282 | −0.0484 | 0.0948 | −0.0971 | −0.0235 | −0.1924 | 0.0364 | −0.0575 | 0.0579 | −0.0840 | 0.0104 |
Education | −0.0717 | 0.0218 | −0.0077 | 0.0317 | −0.2556 | 0.0211 | −0.2416 | −0.0468 | −0.0691 | 0.0015 | −0.0207 | 0.0469 |
Years for farming | 0.0029 | −0.0260 | 0.0002 | 0.0293 | 0.0493 | −0.0418 | −0.1527 | −0.0298 | 0.0459 | −0.0103 | 0.0858 | −0.0126 |
Farm Characteristics | ||||||||||||
Using machine | 0.8445 | −0.0165 | 0.7830 | −0.0238 | 0.9125 | 0.0061 | 0.7437 | −0.0317 | 0.9775 | 0.0556 | 0.7959 | 0.0151 |
Land area | 0.2390 | −0.0608 | 0.2173 | −0.0747 | 0.3476 | −0.0253 | 0.2126 | −0.0530 | 0.1918 | −0.0627 | 0.2830 | −0.0282 |
Labor ratio | 0.0256 | −0.0144 | 0.0072 | −0.0374 | 0.0744 | −0.0230 | 0.0327 | 0.0012 | 0.0033 | 0.0274 | 0.0146 | −0.0112 |
Farming income ratio | 0.6948 | −0.0662 | 0.6454 | −0.0669 | 0.8728 | −0.0410 | 0.7297 | −0.0771 | 0.6772 | −0.1028 | 0.7075 | −0.0891 |
Planting others crops | −0.0221 | −0.0486 | 0.0212 | −0.0385 | −0.1484 | −0.0502 | 0.0476 | −0.0048 | −0.1854 | −0.0393 | 0.0123 | −0.0774 |
Planting kiwi | −0.4674 | 0.0818 | −0.4240 | 0.0931 | −0.4107 | 0.0989 | −0.3965 | 0.1151 | −0.4643 | 0.0504 | −0.4304 | 0.0690 |
Planting corn | 0.2015 | −0.0685 | 0.1580 | −0.0800 | 0.1449 | −0.0898 | 0.1310 | −0.1050 | 0.1993 | −0.0545 | 0.1661 | −0.0696 |
Planting wheat | 0.1930 | −0.0744 | 0.1495 | −0.0881 | 0.1365 | −0.0856 | 0.1226 | −0.1109 | 0.1909 | −0.0431 | 0.1577 | −0.0625 |
Awareness | ||||||||||||
of agricultural NPS | 0.1416 | −0.0104 | 0.1765 | −0.0397 | 0.0210 | 0.0164 | 0.2506 | 0.0748 | 0.2167 | −0.0272 | −0.0435 | −0.0095 |
of eco-agriculture policies | 0.1531 | 0.0057 | 0.1231 | −0.0225 | 0.1528 | 0.0059 | 0.2907 | 0.0888 | 0.2268 | −0.0539 | 0.0802 | 0.0069 |
of environmental protection policies | 0.2080 | 0.0262 | 0.2007 | 0.0238 | 0.0647 | 0.0229 | 0.3895 | 0.0799 | 0.2066 | −0.0361 | 0.0705 | 0.0350 |
Policies | ||||||||||||
Village has program | 0.3414 | 0.0227 | 0.4160 | 0.0285 | 0.1839 | 0.0357 | 0.3013 | 0.0683 | 0.3387 | 0.0185 | 0.3581 | 0.0439 |
Communication with friends | −0.4250 | −0.0065 | −0.4311 | −0.0240 | −0.5290 | −0.0543 | −0.3944 | −0.0493 | −0.5225 | 0.0382 | −0.2643 | −0.0022 |
Accessible training class | 0.3227 | −0.0062 | 0.3167 | −0.0276 | 0.3375 | −0.0321 | 0.3598 | 0.0483 | 0.2964 | 0.0525 | 0.4619 | −0.0300 |
Experience of training classes | 0.1627 | 0.0076 | 0.2247 | 0.0084 | 0.1374 | 0.0117 | 0.2624 | 0.0149 | 0.1351 | 0.0399 | 0.3005 | 0.0355 |
Expectation of subsidy amount | 0.0509 | −0.0677 | −0.0198 | −0.0707 | 0.1107 | −0.0813 | 0.0156 | −0.1205 | 0.1162 | −0.0288 | 0.0679 | −0.0579 |
Support laws to limit fertilizer use | 0.5313 | 0.0405 | 0.6123 | 0.0484 | 0.4576 | 0.0571 | 0.5839 | 0.0444 | 0.6526 | 0.0297 | 0.4833 | 0.0455 |
Support tax on pollution | −0.0174 | −0.0073 | −0.0744 | −0.0332 | 0.0714 | 0.0266 | −0.0686 | 0.0022 | 0.0536 | −0.0497 | 0.0415 | 0.0398 |
Covariates | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw | Weighted | Raw | Weighted | Raw | Weighted | Raw | Weighted | Raw | Weighted | Raw | Weighted | |
Personal Characteristics | ||||||||||||
Gender | 1.0315 | 0.9992 | 1.0372 | 0.9986 | 1.0405 | 1.0005 | 1.0405 | 0.9990 | 1.0316 | 0.9989 | 1.0371 | 1.0003 |
Age | 0.6386 | 0.5106 | 0.6217 | 0.4898 | 0.6998 | 0.6037 | 0.6332 | 0.5727 | 0.6039 | 0.4777 | 0.6193 | 0.5458 |
Education | 0.8966 | 1.0482 | 1.0240 | 1.0629 | 0.5684 | 1.0674 | 0.5932 | 0.8770 | 0.9007 | 1.0032 | 0.9971 | 1.0993 |
Years for farming | 0.6294 | 0.6352 | 0.5905 | 0.6051 | 0.6391 | 0.6267 | 0.5917 | 0.6884 | 0.6336 | 0.7092 | 0.5945 | 0.6328 |
Farm Characteristics | ||||||||||||
Using machine | 0.3864 | 1.0449 | 0.4429 | 1.0590 | 0.3208 | 0.9820 | 0.4780 | 1.0746 | 0.2672 | 0.8367 | 0.4276 | 0.9649 |
Land area | 1.0992 | 0.6910 | 1.1829 | 0.7036 | 1.2269 | 0.6608 | 1.1953 | 0.9475 | 1.1500 | 0.7602 | 1.1962 | 0.6720 |
Labor ratio | 0.7871 | 0.8921 | 0.8672 | 1.0637 | 0.6234 | 0.7115 | 0.8638 | 0.9779 | 0.7701 | 0.9627 | 0.6690 | 0.7391 |
Farming income ratio | 0.8112 | 0.8002 | 0.8840 | 0.8279 | 0.6370 | 0.6512 | 0.9910 | 0.9339 | 0.8715 | 0.8394 | 0.7970 | 0.7952 |
Planting others crops | 0.9592 | 0.8548 | 1.1117 | 0.8918 | 0.5851 | 0.8053 | 1.2099 | 0.9859 | 0.4830 | 0.8268 | 1.0793 | 0.7969 |
Planting kiwi | 0.3713 | 1.3618 | 0.4298 | 1.3811 | 0.4478 | 1.3993 | 0.4672 | 1.4729 | 0.3728 | 1.2002 | 0.4165 | 1.2694 |
Planting corn | 0.5890 | 1.2895 | 0.6823 | 1.3136 | 0.7111 | 1.3520 | 0.7423 | 1.4173 | 0.5919 | 1.2194 | 0.6620 | 1.2719 |
Planting wheat | 0.6004 | 1.3208 | 0.6955 | 1.3545 | 0.7249 | 1.3309 | 0.7567 | 1.4491 | 0.6033 | 1.1675 | 0.6749 | 1.2390 |
Awareness | ||||||||||||
of agricultural NPS | 1.1605 | 0.9935 | 1.1605 | 1.1946 | 0.9788 | 1.0616 | 1.0155 | 1.2519 | 1.0400 | 1.2137 | 0.9873 | 0.9931 |
of eco-agriculture policies | 1.1178 | 1.0021 | 1.1178 | 1.1109 | 0.9914 | 1.1240 | 1.0021 | 1.1673 | 1.0157 | 1.1430 | 0.9917 | 1.0853 |
of environmental protection policies | 1.0953 | 1.0026 | 1.0953 | 1.1004 | 1.0026 | 1.0685 | 1.0084 | 1.0964 | 0.9854 | 1.0946 | 0.9988 | 1.0659 |
Policies | ||||||||||||
Village has program | 1.2548 | 1.0054 | 1.2860 | 1.0032 | 1.1899 | 1.0201 | 1.2448 | 1.0229 | 1.2516 | 1.0042 | 1.2544 | 1.0089 |
Communication with friends | 0.7064 | 0.9908 | 0.6959 | 0.9655 | 0.6027 | 0.9120 | 0.7404 | 0.9376 | 0.6126 | 1.0714 | 0.8547 | 0.9978 |
Accessible training class | 2.0295 | 0.9912 | 2.0587 | 0.9606 | 2.1313 | 0.9563 | 2.2084 | 1.0722 | 1.8829 | 1.0839 | 2.4076 | 0.9704 |
Experience of training classes | 1.5589 | 1.0165 | 1.7814 | 1.0159 | 1.5015 | 1.0273 | 1.9210 | 1.0264 | 1.4380 | 1.0914 | 2.0108 | 1.0595 |
Expectation of subsidy amount | 0.6936 | 0.9053 | 0.7829 | 0.8446 | 0.6906 | 1.1480 | 0.7815 | 1.1354 | 0.6420 | 0.9213 | 0.7087 | 0.9956 |
Support laws to limit fertilizer use | 0.4453 | 0.9036 | 0.3547 | 0.8671 | 0.5315 | 0.8847 | 0.3852 | 0.8827 | 0.3077 | 0.9068 | 0.4959 | 0.9006 |
Support tax on pollution | 1.0394 | 1.0027 | 1.0639 | 1.0093 | 1.0079 | 0.9871 | 1.0669 | 0.9993 | 1.0084 | 1.0278 | 1.0185 | 0.9830 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
---|---|---|---|---|---|---|
Personal Characteristics | ||||||
Gender | −0.2474 | −0.327 | −0.2099 | −0.2583 | −0.2437 | −0.1441 |
Age | 0.0040 | 0.0059 | 0.0020 | −0.0019 | 0.0023 | −0.0004 |
Education | −0.1713 | −0.115 | −0.4783 | −0.6339 | −0.0851 | 0.0691 |
Years for farming | 0.0053 | 0.0038 | 0.0048 | 0.0013 | 0.0114 | 0.0124 |
Farm Characteristics | ||||||
Using machine | 1.268 *** | 1.2066 *** | 1.6154 *** | 1.18 *** | 1.3499 *** | 1.2554 *** |
Land area | −0.0317 | 0.0091 | −0.0863 | −0.1353 | −0.1430 | 0.2207 |
Labor ratio | −0.5433 | −0.4966 | −0.1982 | −0.7989 | −0.7340 | −0.7480 |
Farming income ratio | 1.5471 *** | 1.5417 *** | 1.7802 *** | 1.6773 *** | 1.6947 *** | 1.5959 *** |
Area planted in other crops | 0.3708 | 0.4647 | −0.0185 | 0.4923 | −0.1968 | 0.5253 |
Area planted in kiwi | −0.9219 | −0.9254 | −0.8282 | −0.8089 | −0.9854 | −1.0236 |
Area planted in corn | −0.1892 | −0.1649 | −0.2721 | −0.2087 | −0.4725 | −0.3692 |
Area planted in wheat | 0.0358 | −0.0206 | 0.1059 | 0.0236 | −0.0617 | 0.1221 |
Awareness | ||||||
of agricultural NPS | −0.0917 | 0.0342 | −0.3664 | 0.0327 | 0.1021 | −0.4655 |
of eco-agriculture policies | 0.3042 | 0.3133 | 0.4133 | 0.3108 | 0.3644 | 0.3148 |
of environmental protection policies | −0.0306 | −0.0674 | −0.1330 | 0.2627 | −0.1855 | −0.1299 |
Policies | ||||||
Village has program | 0.6900 ** | 0.7899 *** | 0.5994 * | 0.5175 * | 0.7169 ** | 0.7608 ** |
Communication with friends | −0.6134 ** | −0.5192 * | −0.7442 ** | −0.5546 * | −0.8865 *** | −0.4839 |
Accessible training class | 1.0512 ** | 1.0985 ** | 1.2120 *** | 1.0821 ** | 0.8519 * | 1.3027 *** |
Experience of training classes | 0.4348 | 0.4592 | 0.6120 | 0.6888 | 0.0928 | 0.3595 |
Expectation of subsidy amount | 0.1721 | 0.1235 | 0.2010 | 0.2017 | 0.2016 | 0.1305 |
Support laws to limit fertilizer use | 0.8599 ** | 1.0994 *** | 0.5150 | 1.0742 ** | 1.1393 *** | 0.7746 ** |
Support tax on pollution | −0.3155 | −0.4195 | −0.0366 | −0.5865* | −0.3541 | −0.2158 |
constant | −4.5728 *** | −4.7002 *** | −5.044 *** | −4.3914** | −4.5972 *** | −4.4662 *** |
Treatment Model | Outcome | ||
---|---|---|---|
Total Fertilizer Use (kg/ha) | |||
ATET | Std. Err | t-Stat | |
1. Full China-UK program | 4.2921 | 37.1441 | 0.1200 |
2. all except farm field school | 17.3501 | 43.0302 | 0.4000 |
3. all except demonstration zone | −10.2748 | 40.7848 | −0.2500 |
4. all except farmer meeting | 5.0707 | 44.6389 | 0.1100 |
5. all except Farmer to farmer training | 10.8829 | 39.3275 | 0.2800 |
6. all except poster | 28.6500 | 39.5673 | 0.7200 |
Appendix A.3.3. Changing Matching Algorithm
Covariates | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw | Weighted | Raw | Weighted | Raw | Weighted | Raw | Weighted | Raw | Weighted | Raw | Weighted | |
Personal Characteristics | ||||||||||||
Gender | 0.0098 | 0.4317 | −0.0155 | 0.4439 | −0.0180 | 0.5405 | 0.0455 | 0.5337 | 0.0060 | 0.3459 | 0.0121 | 0.4913 |
Age | 0.0536 | −0.0631 | 0.0164 | −0.1617 | 0.0539 | 0.1967 | 0.0102 | 0.0624 | −0.0187 | 0.2320 | 0.0034 | 0.0664 |
Education | 0.0501 | −0.3063 | 0.1520 | −0.3855 | −0.0524 | 0.2302 | −0.0454 | −0.1470 | 0.0843 | 0.2807 | 0.0569 | −0.2298 |
Years for farming | −0.0050 | 0.1884 | 0.0096 | 0.2505 | 0.0226 | −0.1590 | −0.0812 | 0.2216 | −0.0841 | −0.1985 | 0.1195 | 0.5075 |
Farm Characteristics | ||||||||||||
Using machine | 0.6663 | −0.1779 | 0.5618 | −0.0775 | 0.6788 | −0.1343 | 0.5894 | −0.0578 | 0.7285 | −0.2113 | 0.7646 | −0.4134 |
Land area | 0.1064 | 0.0804 | 0.0615 | 0.1642 | 0.1703 | 0.0031 | 0.0980 | −0.0237 | 0.1013 | 0.0260 | 0.2105 | 0.0571 |
Labor ratio | 0.0117 | 0.1236 | −0.0007 | 0.0827 | 0.0497 | 0.0867 | −0.0028 | 0.0353 | −0.1672 | −0.1029 | 0.0356 | 0.0718 |
Farming income ratio | 0.6413 | −0.1481 | 0.5526 | 0.0036 | 0.7148 | −0.2328 | 0.6441 | −0.2771 | 0.6019 | −0.2480 | 0.7620 | −0.1393 |
Planting other crops | 0.1513 | 0.0000 | 0.2328 | 0.0086 | 0.1140 | 0.3728 | 0.2086 | −0.0839 | 0.0820 | 0.4536 | 0.1264 | 0.2559 |
Planting kiwi | −0.3368 | −0.5877 | −0.2612 | −0.6183 | −0.2821 | −0.3940 | −0.2821 | −0.4084 | −0.4124 | −0.5289 | −0.3714 | −0.4898 |
Planting corn | 0.1631 | 0.4093 | 0.0995 | 0.4106 | 0.1175 | 0.3763 | 0.1175 | 0.3831 | 0.1536 | 0.2931 | 0.2267 | 0.4724 |
Planting wheat | 0.1552 | 0.4026 | 0.0916 | 0.4040 | 0.1097 | 0.3763 | 0.1097 | 0.3897 | 0.1380 | 0.2861 | 0.2191 | 0.4661 |
Policies | ||||||||||||
Village has program | 0.4351 | 0.6089 | 0.4678 | 0.4972 | 0.3849 | 0.6711 | 0.3908 | 0.6335 | 0.4308 | 0.6386 | 0.3494 | 0.7493 |
Communication with friends | −0.2911 | 0.3253 | −0.2971 | 0.3368 | −0.2720 | 0.4089 | −0.2666 | 0.2424 | −0.4047 | 0.3246 | −0.2442 | 0.5055 |
Accessible training class | 0.3890 | −0.0592 | 0.3630 | −0.1149 | 0.3943 | −0.1035 | 0.4704 | −0.1441 | 0.3213 | −0.1478 | 0.4037 | −0.1362 |
Covariates | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw | Weighted | Raw | Weighted | Raw | Weighted | Raw | Weighted | Raw | Weighted | Raw | Weighted | |
Personal Characteristics | ||||||||||||
Gender | 1.0232 | 0.8058 | 1.0298 | 0.8129 | 1.0280 | 0.7174 | 1.0242 | 0.7273 | 1.0248 | 0.8643 | 1.0280 | 0.7645 |
Age | 0.6536 | 0.4363 | 0.5628 | 0.6436 | 0.7299 | 0.7162 | 0.6774 | 0.4197 | 0.6064 | 0.5517 | 0.6518 | 0.4486 |
Education | 1.1187 | 0.4630 | 1.3168 | 0.3226 | 0.9300 | 1.3987 | 0.9418 | 0.7275 | 1.1877 | 1.5266 | 1.1373 | 0.6069 |
Years for farming | 0.6729 | 0.6595 | 0.6724 | 0.5529 | 0.6623 | 1.1492 | 0.6645 | 0.7507 | 0.7497 | 1.3289 | 0.5553 | 0.3758 |
Farm Characteristics | ||||||||||||
Using machine | 0.5396 | 1.0349 | 0.6365 | 1.0198 | 0.5227 | 1.0242 | 0.6064 | 1.0160 | 0.4845 | 1.0237 | 0.4437 | 0.9586 |
Land area | 1.0371 | 0.4814 | 1.1030 | 0.4359 | 1.1473 | 0.4345 | 1.0798 | 0.3651 | 1.0956 | 0.3933 | 1.1287 | 0.3681 |
Labor ratio | 0.8083 | 0.3557 | 0.7495 | 0.3861 | 0.7072 | 0.3669 | 0.8615 | 0.3952 | 0.7089 | 0.2645 | 0.7530 | 0.2623 |
Farming income ratio | 0.9145 | 1.1846 | 1.0144 | 1.3312 | 0.7856 | 0.9864 | 1.0410 | 0.9980 | 0.9790 | 1.0887 | 0.8520 | 1.3533 |
Planting other crops | 1.5270 | 1.0000 | 1.8290 | 1.0259 | 1.3998 | 2.1101 | 1.7410 | 0.7525 | 1.2878 | 2.3620 | 1.4445 | 1.7875 |
Planting kiwi | 0.5381 | 0.1663 | 0.6479 | 0.1384 | 0.6149 | 0.4217 | 0.6149 | 0.4062 | 0.4343 | 0.2346 | 0.4878 | 0.2948 |
Planting corn | 0.6586 | 0.1591 | 0.7998 | 0.1753 | 0.7575 | 0.2217 | 0.7575 | 0.2179 | 0.6830 | 0.3704 | 0.5296 | 0.0676 |
Planting wheat | 0.6706 | 0.1619 | 0.8143 | 0.1784 | 0.7714 | 0.2217 | 0.7714 | 0.2143 | 0.7079 | 0.3769 | 0.5390 | 0.0688 |
Policies | ||||||||||||
Village has program | 1.2715 | 1.1956 | 1.2880 | 1.1950 | 1.2545 | 1.1225 | 1.2614 | 1.1474 | 1.2700 | 1.1376 | 1.2467 | 1.1436 |
Communication with friends | 0.8188 | 1.0688 | 0.8130 | 1.0490 | 0.8391 | 1.0181 | 0.8411 | 1.0695 | 0.7235 | 1.0517 | 0.8595 | 0.9730 |
Accessible training class | 2.2304 | 0.8402 | 2.1803 | 0.6983 | 2.2373 | 0.7298 | 2.4843 | 0.6505 | 1.9392 | 0.6320 | 2.2390 | 0.6634 |
ATE for Different Treatment for Variable List 1 | |||
Treatment Model | Outcome | ||
Total Fertilizer Use (kg/ha) | |||
ATE | Std. Err | t-Stat | |
1. Full China-UK program | 3.9091 | 33.8472 | 0.1200 |
2. all except farm field school | −4.0544 | 28.2785 | −0.1400 |
3. all except demonstration zone | 60.2093 | 84.5708 | 0.7100 |
4. all except farmer meeting | −1.3979 | 5.1474 | −0.2700 |
5. all except Farmer to farmer training | 54.2590 | 88.2877 | 0.6100 |
6. all except poster | 25.2195 ** | 11.7674 | 2.1400 |
ATE for Different Treatment for Variable List 2 | |||
Treatment Model | Outcome | ||
Total Fertilizer Use (kg/ha) | |||
ATE | Std. Err | t-stat | |
1. Full China-UK program | 22.6128 | 53.6846 | 0.4200 |
2. all except farm field school | −3.7655 | 49.2815 | −0.0800 |
3. all except demonstration zone | 49.8504 | 97.2741 | 0.5100 |
4. all except farmer meeting | −15.3255 | 73.4077 | −0.2100 |
5. all except Farmer to farmer training | −7.0724 | 71.2823 | −0.1000 |
6. all except poster | 9.1890 | 54.8979 | 0.1700 |
ATE for Different Treatment for Variable List 3 | |||
Treatment Model | Outcome | ||
Total Fertilizer Use (kg/ha) | |||
ATE | Std. Err | t-Stat | |
1. Full China-UK program | 64.6919 | 120.7016 | 0.5400 |
2. all except farm field school | −66.2028 | 118.5715 | −0.5600 |
3. all except demonstration zone | 55.7821 | 140.5542 | 0.4000 |
4. all except farmer meeting | −119.484 *** | 6.4874 | −18.4200 |
5. all except Farmer to farmer training | 15.1519 | 88.6090 | 0.1700 |
6. all except poster | 30.4629 | 92.0740 | 0.3300 |
References
- Brett, B.A.; Kandulu, M.J. Designing a policy mix and sequence for mitigating agricultural non-point source pollution in a water supply catchment. Water Resour. Manag. 2011, 25, 875–892. [Google Scholar]
- Stuarta, D.; Benvenisteb, E.; Harrisc, L.M. Evaluating the use of an environmental assurance program to addresspollution from United States cropland. Land Use Policy 2014, 39, 34–43. [Google Scholar] [CrossRef]
- Reidsma, P.; Feng, S.Y.; van Loon, M.; Luo, X.J.; Kang, C.; Lubbers, M.; Kanellopoulos, A.; Wolf, J.; van Ittersum, M.K.; Qu, F.T. Integrated assessment of agricultural land use policies on nutrient pollution and sustainable development in Taihu Basin, China. Environ. Sci. Policy 2012, 8, 66–76. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of the People’s Republic of China. Environment Report of China in 2014. 2015. Available online: http://jcs.mep.gov.cn/hjzl/zkgb/2014zkgb/201506/t20150605_303007.htm (accessed on 5 June 2015).
- Rao, J.; Xu, X.Y.; Ji, X.T. Current situation, happen mechanism and policies of agricultural non-point source pollution in China. J. Agrotech. Econ. 2011, 8, 81–87. [Google Scholar]
- He, H.R.; Zhang, L.X.; Li, Q. Rational fertilization and reduction of large-scale farmland pollution by rationalized fertilizer usage. J. Agrotech. Econ. 2006, 6, 2–10. [Google Scholar]
- Gong, Q.W.; Zhang, J.B.; Li, J. Empirical research on factors affected farmers’ decision on fertilizer use: Based on the survey in Hubei Province. Issues Agric. Econ. 2008, 10, 63–68. [Google Scholar]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Godtland, E.M.; Sadoulet, E.; Janvry, A.D.; Murgai, R.; Ortiz, O. The impact of farmer field schools on knowledge and productivity: A study of potato farmers in the Peruvian Andes. Econ. Dev. Cult. Chang. 2004, 53, 63–92. [Google Scholar] [CrossRef]
- Mezzatesta, M.; Newburn, D.A.; Woodward, R.T. Additionality and the adoption of farm conservation practices. Land Use 2012, 89, 722–742. [Google Scholar] [CrossRef]
- Woodward, R.T.; Newburn, D.A.; Mezzatesta, M. Additionality and reverse crowding out for pollution offsets in water quality trading. Ecol. Econ. 2016, 128, 224–231. [Google Scholar] [CrossRef]
- Tucker, W.J. Selection Bias and Econometric Remedies in Accounting and Finance Research. J. Account. Lit. 2010, 29, 31–57. [Google Scholar]
- Wu, H.T.; Ding, S.J.; Pandey, S.; Tao, D.Y. Assessing the impact of agricultural technology adoption on farmers’ well-being using propensity-score matching analysis in rural China. Asian Econ. J. 2010, 24, 141–160. [Google Scholar] [CrossRef]
- Wang, H.G.; Huang, S.A.; Li, Q.; Luo, F.J. The effect of vocational training on non-farming incomes. Econ. Res. J. 2009, 9, 128–139. [Google Scholar]
- Zhang, S.W.; Wang, G.H. Income effects of training on rural labors. Popul. Econ. 2010, 1, 34–38. [Google Scholar]
- Zhang, S.L. PPT Report in Conference of China-UK Program; Northwest A&F University: Yangling, China, 2010. [Google Scholar]
- Heckman, J.J.; Ichimura, H.; Todd, P. Matching as an econometric evaluation estimator. Rev. Econ. Stud. 1998, 65, 261–294. [Google Scholar] [CrossRef]
- StataCorp. Stata Statistical Software: Release 14; StataCorp LP: College Station, TX, USA, 2015. [Google Scholar]
- Adesina, A.A.; Zinnah, M.M. Technology characteristics, farmers’ perceptions and adoption decisions: A Tobit model application in Sierra Leone. Agric. Econ. 1993, 9, 297–311. [Google Scholar] [CrossRef]
- Mauceri, M.; Roger, A.J.; Norton, G.; Barrera, V. Adoption of integrated pest management technologies: A case study of potato farmers in Carchi, Ecuador. In Proceedings of the AAEA Annual Meeting, Providence, RI, USA, 24–27 July 2005. [Google Scholar]
- Ge, J.H.; Zhou, S.D.; Zhu, H.G.; Yin, G.D. Farmers’ adoption of environmental friendly technology: Soil testing and formulated fertilization. J. Agrotech. Econ. 2010, 9, 57–63. [Google Scholar]
- Imai, K.; Ratkovic, M. Covariate balancing propensity score. J. R. Stat. Soc. 2014, 76, 243–263. [Google Scholar] [CrossRef]
- Pino, G.; Toma, P.; Rizzo, C.; Miglietta, P.P.; Peluso, A.M.; Guido, G. Determinants of Farmers’ Intention to Adopt Water Saving Measures: Evidence from Italy. Sustainability 2017, 9, 77. [Google Scholar] [CrossRef]
Village | Fertilizer Changes | Yield Changes | Input Cost Changes * | Revenue Change * | Total Profit Changes * | |
---|---|---|---|---|---|---|
Unit | Kg/ha | Kg/ha | Dollars/ha | Dollars/ha | Dollars/ha | |
wheat | Village 1 | −70 | +185 | −43.4 | +47.1 | +90.6 |
Village 2 | −18 | +117 | −11.2 | +31.3 | +42.5 | |
Village 3 | −22 | −39 | −13.6 | −9.9 | +3.7 | |
Average | −37 | +88 | −22.7 | +22.8 | +45.6 | |
maize | Village 1 | −167 | +208 | −103.3 | +44.3 | +147.6 |
Village 2 | −155 | +298 | −95.6 | +63.4 | +159.0 | |
Village 3 | −160 | +261 | −98.4 | +55.6 | +154.0 | |
Average | −161 | +256 | −99.1 | +54.4 | +153.5 |
Program | Participation Number % of Sample |
---|---|
Components of China-UK program | |
Farmer Field School | 16 3.5% |
Demonstration zone and Farmers Viewing | 12 2.6% |
Farmer Meeting | 11 2.4% |
Farmer to Farmer training | 17 3.7% |
Poster, leaflet for reducing fertilizer use | 12 2.6% |
Participation rates | |
Participation in one or more components | 45 10.0% |
Participation in two or more components | 17 3.7% |
Participation in three or more components | 4 0.8% |
Participation Component | Treated Group (kg/ha) | Untreated Group (kg/ha) | |||
---|---|---|---|---|---|
Fertilizer Input | Std. Dev. | Fertilizer Input | Std. Dev. | ||
Any one or more components of China-UK program | 318.82 | 196.80 | 293.93 | 215.08 | |
Any component | except farm field school | 336.14 | 197.82 | 292.70 | 214.61 |
except demonstration zone | 322.67 | 204.76 | 293.85 | 214.26 | |
except farmer meeting | 332.89 | 203.37 | 293.08 | 214.22 | |
except farmer to farmer training | 303.95 | 198.14 | 295.42 | 214.96 | |
except poster | 321.75 | 198.21 | 294.06 | 214.71 |
Covariates | Standardized Difference * | Variance Ratio * | ||
---|---|---|---|---|
Raw | Weighted | Raw | Weighted | |
Personal Characteristics | ||||
Gender | −0.0182 | −0.0374 | 1.0247 | 1.0016 |
Age | 0.0023 | 0.0023 | 0.5952 | 0.5084 |
Education | 0.0634 | 0.0076 | 1.1447 | 1.0127 |
Years for farming | 0.0130 | −0.0019 | 0.6780 | 0.7660 |
Farm Characteristics | ||||
Using machine | 0.6577 | 0.0409 | 0.5512 | 0.9290 |
Land area | 0.1140 | −0.0342 | 1.0654 | 0.8346 |
Labor ratio | 0.0481 | 0.0331 | 0.7823 | 0.7619 |
Farming income ratio | 0.6342 | −0.0605 | 0.9332 | 0.9155 |
Planting others crops | 0.1619 | −0.0340 | 1.5659 | 0.9308 |
Planting kiwi | −0.3267 | 0.0587 | 0.5520 | 1.1751 |
Planting corn | 0.1546 | −0.0485 | 0.6764 | 1.1743 |
Planting wheat | 0.1468 | −0.0355 | 0.6888 | 1.1228 |
Policies | ||||
Village has program | 0.4027 | −0.0176 | 1.2644 | 0.9986 |
Communication with friends | −0.2734 | 0.0450 | 0.8341 | 1.0527 |
Accessible training class | 0.3951 | 0.0036 | 2.2193 | 1.0046 |
Treatment Model | Outcome | ||
---|---|---|---|
Total Fertilizer Use (kg/ha) | |||
ATET | Std. Err | t-Stat | |
1. Full China-UK program | 19.54 | 34.12 | 0.57 |
2. all components except farm field school | 36.43 | 36.64 | 0.99 |
3. all components except demonstration zone | 24.01 | 36.75 | 0.65 |
4. all components except farmer meeting | 29.63 | 37.87 | 0.78 |
5. all components except Farmer to farmer training | −2.85 | 34.93 | -0.08 |
6. all components except poster | 36.58 | 35.94 | 1.02 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, C.; Woodward, R.T.; You, L. An Ex-Post Evaluation of Agricultural Extension Programs for Reducing Fertilizer Input in Shaanxi, China. Sustainability 2017, 9, 566. https://doi.org/10.3390/su9040566
Hua C, Woodward RT, You L. An Ex-Post Evaluation of Agricultural Extension Programs for Reducing Fertilizer Input in Shaanxi, China. Sustainability. 2017; 9(4):566. https://doi.org/10.3390/su9040566
Chicago/Turabian StyleHua, Chunlin, Richard T. Woodward, and Liangzhi You. 2017. "An Ex-Post Evaluation of Agricultural Extension Programs for Reducing Fertilizer Input in Shaanxi, China" Sustainability 9, no. 4: 566. https://doi.org/10.3390/su9040566
APA StyleHua, C., Woodward, R. T., & You, L. (2017). An Ex-Post Evaluation of Agricultural Extension Programs for Reducing Fertilizer Input in Shaanxi, China. Sustainability, 9(4), 566. https://doi.org/10.3390/su9040566