Sustainable Management of Plant Quarantine Pests: The Case of Olive Quick Decline Syndrome
Abstract
:1. Olive Quick Decline Syndrome, an Agroecosystem Threat
2. Established and Emerging X. fastidiosa
2.1. Research on X. fastidiosa
2.2. Pathogen/Host Interaction
3. Environmental Impact of OQDS
3.1. Plant Hosts of CoDiRO Strain
3.2. The Role of Salento Agroecosystem in Plant Health Management
4. Pest Management Policy
4.1. Disease Monitoring and Widespread Distribution of Pathogens
4.2. Risk Analysis and Policy Formulations for X. fastidiosa Management
4.3. Eradication
5. Economic Impact of X. fastidiosa and the CoDiRO Strain
6. Social Sustainability of Plant Health Management Policies
6.1. The Role of Consensus for Building Scientific Opinion
6.2. The Role of a Cooperative Network in Plant Health Management
7. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Saponari, M.; Boscia, D.; Nigro, F.; Martelli, G.P. Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). J. Plant Pathol. 2013, 95, 3. [Google Scholar]
- Martelli, G.P. The current status of the quick decline syndrome of olive in southern Italy. Phytoparasitica 2016, 44, 1–10. [Google Scholar]
- EFSA. Statement of EFSA on host plants, entry and spread pathways and risk reduction options for Xylella fastidiosa Wells et al. EFSA J. 2013, 11, 3468. [Google Scholar]
- Yoshida, K.; Sasaki, E.; Kamoun, S. Computational analyses of ancient pathogen DNA from herbarium samples: Challenges and prospects. Front. Plant Sci. 2015, 6, 771. [Google Scholar] [PubMed]
- Bosso, L.; Russo, D.; Di Febbraro, M.; Cristinzio, G.; Zoina, A. Potential distribution of Xylella fastidiosa in Italy: A maximum entropy model. Phytopathol. Mediterr. 2016, 55, 62–72. [Google Scholar]
- Bosso, L.; Di Febbraro, M.; Cristinzio, G.; Zoina, A.; Russo, D. Shedding light on the effects of climate change on the potential distribution of Xylella fastidiosa in the Mediterranean basin. Biol. Invasions 2016, 18, 1759–1768. [Google Scholar]
- Almeida, R.P.P. Can Apulia’s olive trees be saved? Science 2016, 353, 346–348. [Google Scholar] [PubMed]
- Mills, P.; Dehnen-Schmutz, K.; Ilbery, B.; Jeger, M.; Jones, G.; Little, R.; MacLeod, A.; Parker, S.; Pautasso, M.; Pietravalle, S.; et al. Integrating natural and social science perspectives on plant disease risk, management and policy formulation. Phil. Trans. R. Soc. B 2011, 366, 2035–2044. [Google Scholar] [PubMed]
- EFSA. Update of a database of host plants of Xylella fastidiosa: 20 November 2015. EFSA J. 2016, 14, 4378. [Google Scholar]
- Potter, C.; Harwood, T.; Knight, J.; Tomlinson, I. Learning from history, predicting the future: The UK Dutch elm disease outbreak in relation to contemporary tree disease threats. Phil. Trans. R. Soc. 2011, 366, 1966–1974. [Google Scholar]
- Chatterjee, S.; Almeida, R.P.P.; Lindow, S. Living in two Worlds: The Plant and Insect Lifestyles of Xylella fastidiosa. Annu. Rev. Phytopathol. 2008, 46, 243–271. [Google Scholar] [CrossRef] [PubMed]
- Janse, J.D.; Obradovic, A. Xylella fastidiosa: Its biology, diagnosis, control and risks. J. Plant Pathol. 2010, 92, 35–48. [Google Scholar]
- Cariddi, C.; Saponari, M.; Boscia, D.; De Stradis, A.; Loconsole, G.; Nigro, F.; Porcelli, F.; Potere, O.; Martelli, G.P. Isolation of a Xylella fastidiosa strain infecting olive and oleander in Apulia, Italy. J Plant Pathol. 2014, 96, 425–429. [Google Scholar]
- Krugner, R.; Sisterson, M.S.; Chen, J.; Stenger, D.C.; Johnson, M.W. Evaluation of olive as a host of Xylella fastidiosa and associated sharpshooter vectors. Plant Dis. 2014, 98, 1186–1193. [Google Scholar] [CrossRef]
- Haelterman, R.M.; Tolocka, P.A.; Roca, M.E.; Guzmán, F.A.; Fernández, F.D.; Otero, M.L. First presumptive diagnosis of Xylella fastidiosa causing olive scorch in Argentina. J. Plant Pathol. 2015, 97, 393. [Google Scholar]
- Coletta-Filho, H.D.; Francisco, C.S.; Lopes, J.R.S.; De Oliveira, A.F.; Da Silva, L.F.D.O. First report of olive leaf scorch in Brazil, associated with Xylella fastidiosa subsp. pauca. Phytopathol. Mediterr. 2016, 55, 130–135. [Google Scholar]
- Fritschi, F.B.; Lin, H.; Walker, M.A. Xylella fastidiosa population dynamics in grapevine genotypes differing in susceptibility to Pierce’s disease. Am. J. Enol. Viticult. 2007, 58, 326–332. [Google Scholar]
- Krivanek, A.F.; Walker, M.A. Vitis resistance to Pierce’s disease is characterized by differential Xylella fastidiosa populations in stems and leaves. Phytopathology 2005, 95, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Chatelet, D.S.; Matthews, M.A.; Rost, T.L. Xylem structure and connectivity in grapevine (Vitis vinifera) shoots provides a passive mechanism for the spread of bacteria in grape plants. Ann Bot. 2006, 98, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Newman, K.L.; Almeida, R.P.P.; Purcell, A.H.; Lindow, S.E. Use of a green fluorescent strain for analysis of Xylella fastidiosa colonization of Vitis vinifera. Appl. Environ. Microbiol. 2003, 69, 7319–7327. [Google Scholar] [CrossRef] [PubMed]
- Giampetruzzi, A.; Morelli, M.; Saponari, M.; Loconsole, G.; Chiumenti, M.; Boscia, D.; Savino, V.N.; Martelli, G.P.; Saldarelli, P. Transcriptome profiling of two olive cultivars in response to infection by the CoDiRO strain of Xylella fastidiosa subsp. pauca. BMC Genom. 2016, 1, 475. [Google Scholar] [CrossRef] [PubMed]
- Rashed, A.; Daugherty, M.P.; Almeida, R.P.P. Grapevine Genotype Susceptibility to Xylella fastidiosa does not Predict Vector Transmission Success. Environ. Entomol. 2011, 40, 1192–1199. [Google Scholar] [CrossRef] [PubMed]
- Simpson, A.J.G.; Reinach, F.C.; Abreu, F.A.; Acencio, M.; Alvarenga, R.; Alves, L.M.; Araya, J.E.; Baia, G.S.; Baptista, C.S.; Barros, M.H.; et al. The genome sequence of the plant pathogen Xylella fastidiosa. Nature 2000, 406, 151–159. [Google Scholar] [PubMed]
- Van Sluys, M.A.; de Oliveira, M.C.; Monteiro-Vitorello, C.B.; Miyaki, C.Y.; Furlan, L.R.; Camargo, L.E.; da Silva, A.C.; Moon, D.H.; Takita, M.A.; Lemos, E.G.; et al. Comparative analysis of the complete genome sequences of Pierce’s disease and citrus variegated chlorosis strain of Xylella fastidiosa. J. Bacteriol. 2003, 185, 1018–1026. [Google Scholar] [CrossRef] [PubMed]
- Reddy, J.D.; Reddy, S.L.; Hopkins, D.L.; Gabriel, D.W. TolC is required for pathogenicity of Xylella fastidiosa in Vitis vinifera grapevines. Mol. Plant Microbe Interact. 2007, 20, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Feil, H.; Feil, W.S.; Lindow, S.E. Contribution of fimbrial and afimbrial adhesins of Xylella fastidiosa to attachment to surfaces and virulence to grape. Phytopathology 2007, 97, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Newman, K.L.; Almeida, R.P.P.; Purcell, A.H.; Lindow, S.E. Cell-cell signaling controls Xylella fastidiosa interactions with both insects and plants. Proc. Natl. Acad. Sci. 2004, 101, 1737–1742. [Google Scholar] [CrossRef] [PubMed]
- Simionato, A.V.C.; da Silva, D.S.; Lambais, M.R.; Carrilho, E. Characterization of a putative Xylella fastidiosa diffusible signal factor by HRGC-EI-MS. J. Mass. Spectrom. 2007, 42, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Newman, K.L.; Lindow, S.E. Cell-to-cell signaling in Xylella fastidiosa suppresses movement and xylem vessel colonization in grape. Mol. Plant Microbe Interact. 2008, 21, 1309–1315. [Google Scholar] [CrossRef] [PubMed]
- Almeida, R.P.P.; Killiny, N.; Newman, K.L.; Chatterjee, S.; Ionescu, M.; Lindow, S.E. Contribution of rpfB to cell-to-cell signal synthesis, virulence, and vector transmission of Xylella fastidiosa. Mol. Plant Microbe Interact. 2012, 25, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Lindow, S.; Newman, K.; Chatterjee, S.; Baccari, C.; Lavarone, A.T.; Ionescu, M. Production of Xylella fastidiosa diffusible signal factor in transgenic grape causes pathogen confusion and reduction in severity of pierce’s disease. Mol. Plant Microbe Interact. 2014, 27, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, M.; Yokota, K.; Antonova, E.; Garcia, A.; Beaulieu, E.; Hayes, T.; Iavarone, A.T.; Lindow, S.E. Promiscuous diffusible signal factor production and responsiveness of the Xylella fastidiosa Rpf system. MBio 2016, 7, e01054-16. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Killiny, N.; Almeida, R.P.P.; Lindow, S.E. Role of Cyclic di-GMP in Xylella fastidiosa Biofilm Formation, Plant Virulence, and Insect Transmission. Mol. Plant Microbe Interact. 2010, 23, 1356–1363. [Google Scholar] [CrossRef] [PubMed]
- De Souza, A.A.; Ionescu, M.; Baccari, C.; da Silva, A.M.; Lindow, S.E. Phenotype overlap in Xylella fastidiosa is controlled by the cyclic di-GMP phosphodiesterase eal in response to antibiotic exposure and diffusible signal factor-mediated cell-cell signaling. Appl. Environ. Microbiol. 2013, 79, 3444–3454. [Google Scholar] [CrossRef] [PubMed]
- Elbeaino, T.; Valentini, F.; Abou Kubaa, R.; Moubarak, P.; Yaseen, T.; Digiaro, M. Multilocus sequence typing of Xylella fastidiosa isolated from olive affected by “olive quick decline syndrome” in Italy. Phytopathol. Mediterr. 2014, 53, 533–542. [Google Scholar]
- Bleve, G.; Marchi, G.; Ranaldi, F.; Gallo, A.; Cimaglia, F.; Logrieco, A.F.; Mita, G.; Ristori, J.; Surico, G. Molecular characteristics of a strain (Salento-1) of Xylella fastidiosa isolated in Apulia (Italy) from an olive plant with the quick decline syndrome. Phytopathol. Mediterr. 2016, 55, 139–146. [Google Scholar]
- Mang, S.M.; Frisullo, S.; Elshafie, H.S.; Camele, I. Diversity evaluation of Xylella fastidiosa from infected olive trees in Apulia (Southern Italy). Plant Pathol. J. 2016, 32, 102–111. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Statement on diversity of Xylella fastidiosa subsp. pauca in Apulia. EFSA J. 2016, 14, 4542. [Google Scholar]
- Bull, C.T.; De Voer, S.H.; Denny, T.P.; Firrao, G.; Fischer-Le Saux, M.; Saddler, G.S.; Scortichini, M.; Stead, D.E.; Takikawa, Y. List of new names of plant pathogenic bacteria (2008–2010). J. Plant Pathol. 2012, 94, 21–27. [Google Scholar]
- Marceletti, S.; Scortichini, M. Genome-wide comparison and taxonomic relatedness of multiple Xylella fastidiosa strains reveal the occurrence of three subspecies and a new Xylella species. Arch. Microbiol. 2016, 198, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Doddapaneni, H.; Takahashi, Y.; Walker, M.A. Comparative analysis of ESTs involved in grape responses to Xylella fastidiosa infection. BMC Plant Biol. 2007, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Saponari, M.; Boscia, D.; Loconsole, G.; Palmisano, F.; Savino, V.; Potere, O.; Martelli, G.P. New hosts of Xylella Fastidiosa strain CoDiRO in Apulia. J. Plant Pathol. 2014, 96, 611. [Google Scholar]
- Susca, L.; Potere, D.; Marullo, S.; Savino, V.N.; Venerito, P.; Loconsole, G.; Saponari, M.; Boscia, D.; La Notte, P. Preliminary results of a survey of weeds as potential hosts of Xylella fastidiosa strain CoDiRO. J. Plant Pathol. 2014, 96, 111. [Google Scholar]
- Potere, O.; Susca, L.; Loconsole, G.; Saponari, M.; Boscia, D.; Savino, V.N.; Martelli, G.P. Survey for the presence of Xylella fastidiosa subsp. pauca strain CoDiRO in some forestry and ornamental species in the Salento peninsula. J. Plant Pathol. 2015, 97, 373–376. [Google Scholar]
- EFSA. Vitis sp. response to Xylella fastidiosa strain CoDiRO. EFSA J. 2015, 13, 4314. [Google Scholar]
- Presta, G. Degli Ulivi e delle Ulive, ed Della Maniera di Cavar l’Olio; Stamperia Reale: Napoli, Italy, 1794. [Google Scholar]
- Conway, G. The Doubly Green Revolution: Food for All in the Twenty-First Century; Penguin Books: London, UK, 1997. [Google Scholar]
- Vercesi, A.; Cravedi, P. Pest management and food safety. Ital. J. Agron. 2013, 6, 28–30. [Google Scholar]
- European Community. Directive 2009/128/EC Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticide. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:309:0071:0086:en:PDF (accessed on 17 February 2017).
- Wood, D. Ecological principles in agricultural policy: But which principles? Food Policy 1998, 23, 371–381. [Google Scholar] [CrossRef]
- Conway, G. Ecological principles in agricultural policy: But which principles? A response. Food Policy 1999, 24, 17–20. [Google Scholar]
- Weste, G.; Marks, G.C. The biology of Phytophthora cinnamomi in Australian forests. Annu. Rev. Phytopathol. 1987, 25, 207–229. [Google Scholar] [CrossRef]
- Dover, M.; Talbot, L.M. To Feed the Earth: Agro-Ecology for Sustainable Development; World Resources Institute: Washington, DC, USA, 1987. [Google Scholar]
- Sun, Q.; Greve, L.C.; Labavitch, J.M. Polysaccharide compositions of intervessel pit membranes contribute to Pierce’s disease resistance of grapevines. Plant Physiol. 1987, 155, 1976–1987. [Google Scholar] [CrossRef] [PubMed]
- Wallis, C.M.; Wallingford, A.K.; Chen, J. Grapevine rootstock effects on scion sap phenolic levels, resistance to Xylella fastidiosa infection, and progression of Pierce’s disease. Front. Plant Sci. 2013, 4, 502. [Google Scholar] [CrossRef] [PubMed]
- Mele, C.; Medagli, P.; Accogli, R.; Beccarisi, L.; Albano, A.; Marchiori, S. Flora of Salento (Apulia, Southeastern Italy): An annotated checklist. Fl. Medit. 2006, 16, 193–245. [Google Scholar]
- EPPO. PM 7/24 (2) Xylella fastidiosa. EPPO Bull. 2016, 46, 463–500. [Google Scholar]
- Hopkins, D.L. Seasonal concentration of Pierce’s disease bacterium in grapevine stems, petioles, and leaf veins. Am. Phytopathol. Soc. 1981, 71, 415–418. [Google Scholar] [CrossRef]
- Purcell, A.H.; Porcelli, F.; Cornara, D.; Bosco, D.; Picciau, L. Characteristics and Identification of Xylem-Sap Feeders. Available online: ftp://ftpfiler.to.cnr.it:21001/Xylella_symposium/Workshop%20manuals/WORKSHOP%20MANUAL%20INSECTS.pdf (accessed on 17 February 2017).
- Loconsole, G.; Potere, O.; Boscia, D.; Altamura, G.; Djelouah, K.; Elbeaino, T.; Frasheri, D.; Lorusso, D.; Palmisano, F.; Pollastro, P.; et al. Detection of Xylella fastidiosa in olive trees by molecular and serological methods. J. Plant Pathol. 2014, 96, 7–14. [Google Scholar]
- Minsavage, G.V.; Thompson, C.M.; Hopkins, D.L.; Leite, R.M.V.B.C.; Stall, R.E. Development of a polymerase chain reaction protocol for detection of Xylella fastidiosa in plant tissue. Phytopathology 1994, 84, 456–461. [Google Scholar] [CrossRef]
- Guan, W.; Shao, J.; Elbeaino, T.; Davis, R.E.; Zhao, T.; Huang, Q. Infecting and Italian Olive-Associated Strains of Xylella fastidiosa by Polymerase Chain Reaction. PLoS ONE 2015, 10, e0129330. [Google Scholar] [CrossRef] [PubMed]
- Djelouah, K.; Frasheri, D.; Valentini, F.; D’Onghia, A.M.; Digiaro, M. Direct tissue blot immunoassay for detection of Xylella fastidiosa in olive trees. Phytopathol. Mediterr. 2014, 53, 559–564. [Google Scholar]
- Harper, S.J.; Ward, L.I.; Clover, G.R.G. Development of LAMP and QPCR Methods for the Rapid Detection of Xylella fastidiosa for Quarantine and Field Applications. Phytopathology 2010, 100, 1282–1288. [Google Scholar] [CrossRef] [PubMed]
- Yaseen, T.; Drago, S.; Valentini, F.; Elbeaino, T.; Stampone, G.; Digiaro, M.; D’Onghia, A.M. On-site detection of Xylella fastidiosa in host plants and in “spy insects” using the real-time loop-mediated isothermal amplification method. Phytopathol. Mediterr. 2015, 54, 488–496. [Google Scholar]
- Francis, M.; Lin, H.; Cabrera-La Rosa, J.; Doddapaneni, H.; Civerolo, E.L. Genome-based PCR primers for specific and sensitive detection and quantification of Xylella fastidiosa. Eur. J. Plant Pathol. 2006, 115, 203–213. [Google Scholar] [CrossRef]
- Saponari, M.; Boscia, D.; Altamura, G.; D’Attoma, G.; Cavalieri, V.; Loconsole, G.; Zicca, S.; Dongiovanni, C.; Palmisano, F.; Susca, L.; et al. Pilot project on Xylella fastidiosa to reduce risk assessment uncertainties. EFSA Support. Publ. 2016, 13, 1013. [Google Scholar] [CrossRef]
- Almeida, R.P.P.; Purcell, A.H. Biological traits of Xylella fastidiosa strains from grapes and almonds. Appl. Environ. Microbiol. 2003, 69, 7447–7452. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.J.; Whitcomb, R.F.; Gillaspie, A.G. Fastidious bacteria of plant vascular tissue and invertebrates (including so called rickettsia-like bacteria). In The Prokaryotes: A Handbook on Habits, Isolation, and Identification of Bacteria; Starr, M.P., Stolp, H., Truper, H.G., Balows, A., Schlegel, H.G., Eds.; Springer: Heidelberg, Germany, 1981. [Google Scholar]
- Hoddle, M.S. The potential adventive geographic range of glassy-winged sharpshooter, Homalodisca coagulata and the grape pathogen Xylella fastidiosa: Implications for California and other grape growing regions of the world. Crop Prot. 2004, 23, 691–699. [Google Scholar] [CrossRef]
- Redak, R.A.; Purcell, A.H.; Lopes, J.R.S.; Blua, M.J.; Mizell, R.F.; Andersen, P.C. The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annu. Rev. Entomol. 2004, 49, 243–270. [Google Scholar] [CrossRef] [PubMed]
- Almeida, R.P.P.; Blua, M.J.; Lopes, J.R.S.; Purcell, A.H. Vector transmission of Xylella fastidiosa: Applying fundamental knowledge to generate disease management strategies. Ann. Entomol. Soc. Am. 2005, 98, 775–786. [Google Scholar] [CrossRef]
- Almeida, R.P.P.; Purcell, A.H. Patterns of Xylella fastidiosa colonization on the precibarium of sharpshooter vectors relative to transmission to plants. Ann. Entomol. Soc. Am. 2006, 99, 884–890. [Google Scholar] [CrossRef]
- Baccari, C.; Killiny, N.; Ionescu, M.; Almeida, R.P.P.; Lindow, S.E. Diffusible signal factor-repressed extracellular traits enable attachment of Xylella fastidiosa to insect vectors and transmission. Phytopathology 2014, 104, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Backus, E.A.; Shugart, H.J.; Rogers, E.E.; Morgan, J.K.; Shatters, R. Direct evidence of egestion and salivation of Xylella fastidiosa suggests sharpshooters can be “flying syringes”. Phytopathology 2016, 105, 608–620. [Google Scholar] [CrossRef] [PubMed]
- Saponari, M.; Loconsole, G.; Cornara, D.; Yokomi, R.K.; Stradis, A.D.; Boscia, D.; Bosco, D.; Martelli, G.P.; Krugner, R.; Porcelli, F. Infectivity and transmission of Xylella fastidiosa by Philaenus spumarius (Hemiptera: Aphrophoridae) in Apulia, Italy. J. Econ. Entomol. 2014, 107, 1316–1319. [Google Scholar] [CrossRef] [PubMed]
- Cornara, D.; Saponari, M.; Zeilinger, A.R.; de Stradis, A.; Boscia, D.; Loconsole, G.; Bosco, D.; Martelli, G.P.; Almeida, R.P.P.; Porcelli, F. Spittlebugs as vectors of Xylella fastidiosa in olive orchards in Italy. J. Pest. Sci. 2016. [Google Scholar] [CrossRef] [PubMed]
- Elbeaino, T.; Yaseen, T.; Valentini, F.; Ben Moussa, I.E.; Mazzoni, V.; D’Onghia, A.M. Identification of three potential insect vectors of Xylella fastidiosa in southern Italy. Phytopathol. Mediterr. 2014, 53, 328–332. [Google Scholar]
- Moussa, I.E.B.; Mazzoni, V.; Valentini, F.; Yaseen, T.; Lorusso, D.; Speranza, S.; Digiaro, M.; Varvaro, L.; Krugner, R.; D’Onghia, A.M. Seasonal fluctuations of sap-feeding insect species infected by Xylella fastidiosa in Apulian olive groves of southern Italy. J. Econ. Entomol. 2016, 109, 1512–1518. [Google Scholar] [CrossRef] [PubMed]
- Ancona, V.; Appel, D.N.; De Figueiredo, P. Xylella fastidiosa: A model for analyzing agricultural biosecurity. Biosecur. Bioterr. 2010, 8, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Casagrande, R. Biological terrorism targeted at agriculture: The threat to US national security. Nonprolif. Rev. 2000, 7, 98–99. [Google Scholar] [CrossRef]
- Wheelis, M.; Casagrande, R.; Madden, L.V. Biological attack on agriculture: Low tech, high impact bioterrorism. BioScience 2002, 52, 569–576. [Google Scholar] [CrossRef]
- Kleiner, K. Operation eradicate. New Sci. 1999, 163, 20. [Google Scholar]
- EFSA. Scientific Opinion on the risk to plant health posed by Xylella fastidiosa in the EU territory, with the identification and evaluation of risk reduction options. EFSA J. 2015, 13, 3989. [Google Scholar]
- MacLeod, A.; Pautasso, M.; Jeger, M.J.; Haines-Young, R. Evolution of the international regulation of plant pests and challenges for future plant health. Food Sec. 2010, 2, 49–70. [Google Scholar] [CrossRef]
- Brasier, C. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 2008, 57, 792–808. [Google Scholar] [CrossRef]
- Ministère de l’Agriculture, de l’Alimentation et de la Forêt. Xylella fastidiosa: State of Play on French Epidemiological Situation and Control Measures. Available online: http://www.anve.it/wp-content/uploads/2016/06/Xylella-state-of-play-in-France-May-2016.pdf (accessed on 17 February 2017).
- Dopson, R.N. The eradication of citrus canker. Plant Dis. Rep. 1964, 48, 30–31. [Google Scholar]
- Stall, R.E.; Civerolo, E.L. Research relating to the recent outbreak of citrus canker in Florida. Annu. Rev. Phytopathol. 1991, 29, 399–420. [Google Scholar] [CrossRef] [PubMed]
- Travis, J.; Gildow, F.; Halbrendt, J.; Welliver, R. Plum Pox Virus Update; Pennsylvania State University: State College, PA, USA, 2000. [Google Scholar]
- Gottwald, T.R.; Dixon, T. Florida Actions toward HLB Control. In Proceedings of the International Workshop on Citrus Greening, Ribeireo Preto, Brazil, 14–21 July 2006. [Google Scholar]
- Myers, J.H.; Simberloff, D.; Kuris, A.M.; Carey, J.R. Eradication revisited: Dealing with exotic species. Trends Ecol. Evol. 2000, 15, 316–320. [Google Scholar] [CrossRef]
- Tomlinson, I.; Potter, C. ‘Too little, too late’? Science, policy and Dutch elm disease in the UK. J. Hist. Geogr. 2010, 36, 121–131. [Google Scholar] [CrossRef]
- Tumber, K.P.; Alston, J.M.; Fuller, K.B. Pierce’s disease costs California $104 million per year. Calif. Agric. 2014, 68, 20–29. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Purcell, A.H. Xylella fastidiosa: Cause of Pierce’s disease of grapevine and other emergent diseases. Plant Dis. 2002, 86, 1056–1066. [Google Scholar] [CrossRef]
- USDA. Recovery Plan for Citrus Variegated Chlorosis Caused by Xylella fastidiosa (CVC Strain). Available online: https://www.ars.usda.gov/ARSUserFiles/opmp/Citrus%20CVC%20110408.pdf (accessed on 17 February 2017).
- Fundecitrus. CVC. Available online: http://www.fundecitrus.com.br/doencas/cvc/9 (accessed on 17 February 2017).
- Wittwer, G.; McKirdy, S.; Wilson, R. Analysing a Hypothetical Pierce's Disease Outbreak in South Australia Using a Dynamic CGE Approach; Monash University: Clayton, Australia, 2006. [Google Scholar]
- Luck, J.; Traicevski, V.; Mann, R.; Moran, J. The Potential for the Establishment of Pierce’s Disease in Australian Grapevines. Available online: http://research.wineaustralia.com/wp-content/uploads/2012/09/DNR-00-1-Final-Report.pdf (accessed on 17 February 2017).
- Blua, M.J.; Phillips, P.A.; Redak, R.A. A new sharpshooter threatens both crops and ornamentals. Calif. Agric. 1999, 53, 22–24. [Google Scholar] [CrossRef]
- Sardaro, R.; Acciani, C.; De Gennaro, B.C.; Fucilli, V.; Roselli, L. Economic and landscape impact assessment of the disease caused by Xylella fastidiosa to olive growing in the Salento area (southern Italy). In Il Danno. Elementi Giuridici, Urbanistici e Economico-Estimativi.; Castellini, A., Devenuto, L., Eds.; Universitas Studiorum: Mantova, Italy, 2015; pp. 345–372. [Google Scholar]
- EFSA. Treatment solutions to cure Xylella fastidiosa diseased plants. EFSA J. 2016, 14, 4456. [Google Scholar]
- Brunsson, N. The Irrational Organization: Irrationality as a Basis for Organizational Action and Change; J. Wiley & Sons: New York, NY, USA, 1985. [Google Scholar]
- Starbuck, W.H. The Production of Knowledge; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Abbott, A. Gridlock over Italy’s olive tree deaths starts to ease. Nature 2016, 533, 299–300. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A. Italian Scientists under Investigation after Olive-Tree Deaths. 2015. Available online: http://www.nature.com/news/italian-scientists-under-investigation-after-olive-tree-deaths-1.19078 (accessed on 17 February 2017).
- EFSA. Scientific opinion on four statements questioning the EU control strategy against Xylella fastidiosa. EFSA J. 2016, 14, 4450. [Google Scholar]
- Luvisi, A.; Panattoni, A.; Triolo, E. Electronic identification-based Web 2.0 application for plant pathology purposes. Comput. Electron. Agr. 2012, 84, 7–15. [Google Scholar] [CrossRef]
- Luvisi, A.; Ampatzidis, Y.; de Bellis, L. Plant pathology and Information Technology: Opportunity for management of disease outbreak and applications in regulation frameworks. Sustainability 2016, 8, 831. [Google Scholar] [CrossRef]
- Annerstedt, M. Transdisciplinarity as an inference technique to achieve a better understanding in the health and environmental sciences. Int. J. Environ. Res. Publ. Health 2010, 7, 2692–2707. [Google Scholar] [CrossRef] [PubMed]
- Renn, O. Risk Governance: Coping with Uncertainty in a Complex World; Earthscan: London, UK, 2008. [Google Scholar]
- Colunga-Garcia, M.; Magarey, R.A.; Haack, R.A.; Gage, S.H.; Qi, J. Enhancing early detection of exotic pests in agricultural and forest ecosystems using an urban-gradient framework. Ecol. Appl. 2010, 20, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Peace, T. The Status and Development of Elm Disease in Britain; Forestry Commission Bulletin: London, UK, 1960.
- Tinker, J. Elms: A phoney war. Comment. New Sci. 1971, 30, 719–720. [Google Scholar]
- Nisbet, M.C.; Scheufele, D.A. What’s next for science communication? Promising directions and lingering distractions. Am. J. Bot. 2009, 96, 1767–1778. [Google Scholar] [CrossRef] [PubMed]
- Nisbet, M.C.; Goidel, K. Understanding citizen perceptions of science controversy: Bridging the ethnographic-survey research divide. Publ. Underst. Sci. 2007, 16, 421–440. [Google Scholar] [CrossRef]
- Muggli, M.E.; Hurt, R.D.; Becker, L.B. Turning free speech into corporate speech: Philip Morris’ efforts to influence U.S. and European journalists regarding the U.S. EPA report on secondhand smoke. Prev. Med. 2004, 39, 568–580. [Google Scholar] [CrossRef] [PubMed]
- Van Eperen, L.; Marincola, F.M. How scientists use social media to communicate their research. J. Transl. Med. 2011, 9, 199. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, C. Social Media for Scientists Part 2: You Do Have Time. 2011. Available online: http://blogs.scientificamerican.com/science-sushi/social-media-for-scientists-part-2-you-do-have-time/ (accessed on 17 February 2017).
Likelihood of Introduction | Rating | |
Pathogen Acquisition | ||
CVC | Only 2% of cargo and baggage entering the US is examined by USDA and APHIS; the introduction of contaminated plant material or vectors could be successfully achieved by several means. | 1.5 |
CoDiRO | Plants and their packaging are examined on an official basis, either in their entirety or by representative sample (European Council Directive 2000/29/EC). The number of visual checks has to be defined in proportion to the existing risk identified by the Member State (European Commission, Guidelines for the survey of Xylella fastidiosa in the Union territory). While data about interception was published by EFSA, no data was retrieved about the number of tests of imported materials. More than 150 million individual plants potentially infected by X. fastidiosa were imported in 2000–2007 in seven EU countries [84]. | Very likely for plants for planting; moderately likely for vectors. |
Intentional Introduction | ||
CVC | Given the requirements of a successful acquisition and introduction of X. fastidiosa CVC strain, there is a moderate degree of risk that this pathogen could be intentionally introduced with the intent of harming the US citrus industry. | 2.0 |
CoDiRO | No data available | No data available from EFSA. |
Establishment Potential | ||
CVC | Citrus growing regions in the US match the climatic regions where CVC is already a problem. The likelihood of successful establishment by X. fastidiosa would also depend on the amount of initial inoculum present in a given region. | 3.0 |
CoDiRO | Plant/host combination is unprecedented outside Europe. Olive-growing regions in Europe match the climatic regions where the CoDiRO strain is already a problem (South Italy). The amount of inoculum in Italy is remarkable. | Very likely |
Consequence of Introduction | ||
Spread Potential | ||
CVC | Climatic conditions and native populations of Oncometopia nigricans and Homalodisca coagulate within the range of citrus production in the US are abundant and conducive to the establishment of CVC. The latent period—the period between infection and appearance of symptoms—will likely provide ample time for the pathogen to spread beyond the initial point of introduction into a nursery or orchard before it is detected. | 3.0 |
CoDiRO | Climatic conditions and native populations of Philaenus spumarius within the range of olive production in the EU are abundant and conducive to the establishment of CoDiRO. A latent period was also supposed in olive tree infections, especially in older plants | Very likely |
Environmental Damage Potential | ||
CVC | The need to change crop and production patterns that might result from a serious epidemic could also temporarily disrupt the balanced environment in regions of large-scale production. In citrus, significant changes in disease management would include patterns in the use of insecticides, fertilizers, and irrigation and the direct destruction of expansive acreages of infected trees. | 2.5 |
CoDiRO | Novel patterns in the use of insecticides, fertilizers, and irrigation and the direct destruction of expansive acreages of infected trees were carried out in Apulia. | Major |
Economic damage potential | ||
CVC | Annual crop loss due to diseases and pests is around 36%, regardless of whether pest controls are used. Prices would rise to cope with the cost of controlling the spread of the disease. The Brazilian citrus industry annual losses measured about US$100 million a year | 3.0 |
CoDiRO | In addition to loss due to disease (not yet specifically estimated for CoDiRO), olive trees are an essential part of the Mediterranean landscape and culture, and may lead to detrimental effects on tourism. | Major |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luvisi, A.; Nicolì, F.; De Bellis, L. Sustainable Management of Plant Quarantine Pests: The Case of Olive Quick Decline Syndrome. Sustainability 2017, 9, 659. https://doi.org/10.3390/su9040659
Luvisi A, Nicolì F, De Bellis L. Sustainable Management of Plant Quarantine Pests: The Case of Olive Quick Decline Syndrome. Sustainability. 2017; 9(4):659. https://doi.org/10.3390/su9040659
Chicago/Turabian StyleLuvisi, Andrea, Francesca Nicolì, and Luigi De Bellis. 2017. "Sustainable Management of Plant Quarantine Pests: The Case of Olive Quick Decline Syndrome" Sustainability 9, no. 4: 659. https://doi.org/10.3390/su9040659
APA StyleLuvisi, A., Nicolì, F., & De Bellis, L. (2017). Sustainable Management of Plant Quarantine Pests: The Case of Olive Quick Decline Syndrome. Sustainability, 9(4), 659. https://doi.org/10.3390/su9040659