Simulation on the Future Change of Soil Organic Carbon from Phaeozems under Different Management Practices in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. DAYCENT Model
2.2. Study Area
2.3. Experiment Design
2.3.1. Agricultural Management Practices Adopted in Each Site
2.3.2. Meteorological Data and Basic Soil Datasets
2.4. Model Performance Evaluation
3. Results
3.1. Evaluation of Model Calibration
3.2. Analysis of Model Validation
3.3. The Future Changing Trend of SOC under Different Management Practices
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, Y.; Wang, L.G.; Li, H.; Qiu, J.J.; Liu, H.Y. Impacts of fertilization alternatives and crop straw incorporation on N2O emissions from a spring maize field in Northeastern China. J. Integr. Agric. 2014, 13, 881–892. [Google Scholar]
- Campbell, C.A.; Zentner, P.; Bowren, K.E. Effect of crop rotations and fertilization on soil organic matter and some biochemical properties of a thick Black Chernozem. Can. J. Soil Sci. 1991, 71, 377–387. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Carter, M.R. Soil Quality for Crop Production and Ecosystem Health. Developments in Soil Science; Elsevier Science Publication: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Lal, R. Sequestering carbon and increasing productivity by conservation agriculture. J. Soil Water Conserv. 2015, 70, 55A–62A. [Google Scholar] [CrossRef]
- Zhu, M.J.; Yan, P.; Song, Y. Estimation of soil carbon loss under wind erosion. Soil Water Conserv. Res. 2007, 14, 398–400. [Google Scholar]
- Pan, G.X. Estimates of soil organic and inorganic carbon pools of China. Sci. Technol. Bull. 1999, 15, 330–332. [Google Scholar]
- Zhang, Z.D.; Brown, R.; Bauer, J.; Bedard-Haughn, A. Nutrient dynamics within drainage ditches under recent, medium, and long-term drainage in the Black soil zone of southeastern Saskatchewan. Geoderma 2017, 289, 66–71. [Google Scholar] [CrossRef]
- Xie, Z.B.; Zhu, J.G.; Liu, G. Soil organic carbon stocks in China and changes from 1980s to 2000s. Glob. Chang. Biol. 2007, 13, 1989–2007. [Google Scholar] [CrossRef]
- Zhang, S.X.; Chen, X.W.; Jia, S.X.; Liang, A.Z.; Zhang, X.P.; Yang, X.M.; Wei, S.C.; Sun, B.J.; Huang, D.D.; Zhou, G.Y. The potential mechanism of long-term conservation tillage effects on maize yield in the black soil of Northeast China. Soil Tillage Res. 2015, 154, 84–90. [Google Scholar] [CrossRef]
- Zha, Y.; Wu, X.P.; He, X.H.; Zhang, H.M.; Gong, F.F.; Cai, D.X.; Zhu, P.; Gao, H.J. Basic soil productivity of spring maize in black soil under long-term fertilization based on DSSAT model. J. Integr. Agric. 2014, 13, 577–587. [Google Scholar] [CrossRef]
- Niu, L.A.; Hao, J.M.; Zhang, B.Z.; Niu, X.S. Influences of long-term fertilizer and tillage management on soil fertility of the North China Plain. Pedosphere 2011, 21, 813–820. [Google Scholar] [CrossRef]
- Lu, F.; Wang, X.K.; Han, B.; Ouyang, Z.Y.; Duan, X.N.; Zheng, H.; Miao, H. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland. Glob. Chang. Biol. 2009, 15, 281–305. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, K.L.; Li, K.J.; Zheng, C.L.; Li, B.G. Simulating the effects of long-term discontinuous and continuous fertilization with straw return on crop yields and soil organic carbon dynamics using the DNDC model. Soil Tillage Res. 2017, 165, 302–314. [Google Scholar] [CrossRef]
- Yang, X.M.; Zhang, X.P.; Fang, J.H. Effects of long term fertilization on organic carbon in black soil under continuous cropping of Maize under RothC-26.3 model. Chin. Agric. Sci. 2003, 36, 1318–1324. [Google Scholar]
- Ouyang, W.; Wei, X.F.; Hao, F.H. Long-term soil nutrient dynamics comparison under smallholding land and farmland policy in northeast of China. Sci. Total Environ. 2013, 450–451, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.R.; Zhang, W.J.; Xu, M.G.; Li, S.Y.; An, T.T.; Pei, J.B.; Xiao, J.; Xie, H.T.; Wang, J.K. Characteristics of differently stabilized soil organic carbon fractions in relation to long-term fertilization in Brown Earth of Northeast China. Sci. Total Environ. 2016, 572, 1101–1110. [Google Scholar] [CrossRef] [PubMed]
- Ai, C.; Liang, G.Q.; Sun, J.W.; Wang, X.B.; He, P.; Zhou, W. Different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soil. Soil Biol. Biochem. 2013, 57, 30–42. [Google Scholar] [CrossRef]
- Xie, H.T.; Li, J.W.; Zhu, P.; Peng, C.; Wang, J.K.; He, H.B.; Zhang, X.D. Long-termmanure amendments enhance neutral sugar accumulation in bulk soil and particulate organic matter in a Mollisol. Soil Biol. Biochem. 2014, 78, 45–53. [Google Scholar] [CrossRef]
- Falloon, P.; Betts, R. Climate impacts on European agriculture and water management in the context of adaptation and mitigation—The importance of an integrated approach. Sci. Total Environ. 2010, 408, 5667–5687. [Google Scholar] [CrossRef] [PubMed]
- Fuhrer, J.; Smith, P.; Gobiet, A. Implications of climate change scenarios for agriculture in alpine regions—A case study in the Swiss Rhone catchment. Sci. Total Environ. 2014, 493, 1232–1241. [Google Scholar] [CrossRef] [PubMed]
- Parton, W.J. The CENTURY model. In Evaluation of Soil Organic Matter Models Using Existing Long-term Datasets, NATO ASI Series I; Powlson, D.S., Smith, P., Smith, J.U., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; Volume 38. [Google Scholar]
- Jenkinson, D.S.; Rayner, J.H. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci. 1997, 123, 298–305. [Google Scholar] [CrossRef]
- Li, C.S. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. J. Geophys. Res. 1992, 97, 9759–9776. [Google Scholar] [CrossRef]
- Williams, J.R. The erosion productivity impact calculator (EPIC) model: A case history. Philos. Trans. Biol. Sci. R. Soc. 1990, 329, 421–428. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Kelly, R.; Paton, W.J.; Crocker, G.J. Simulating trends in soil organic carbon in long-term experiments using the CENTURY model. Geoderma 1997, 81, 75–90. [Google Scholar] [CrossRef]
- Parton, W.J.; Rasmussen, P.E. Long-term effects of crop management in wheat-fallow: II. CENTURY model simulations. Soil Sci. Soc. Am. J. 1994, 58, 530–536. [Google Scholar] [CrossRef]
- Del Grosso, S.J.; Ojima, D.S.; Parton, W.J.; Mosier, G.A.; Peterson, A.R.; Schimel, D.S. Simulated effects of dryland cropping intensification on soil organic matter and greenhouse gas exchanges using the DAYCENT ecosystem model. Environ. Pollut. 2002, 116, S75–S83. [Google Scholar] [CrossRef]
- Del Grosso, S.J.; Ojima, D.S.; Parton, W.J.; Stehfest, E.; Heistemann, M.; DeAngelo, B.; Rose, S. Global scale DAYCENT model analysis of greenhouse gas emissions and mitigation strategies for cropped soils. Glob. Planet. Chang. 2009, 67, 44–50. [Google Scholar] [CrossRef]
- Del Grosso, S.J.; Parton, W.J.; Keough, C.A.; Reyes-Fox, M. Special features of the DAYCENT modeling package and additional procedures for parameterization, calibration, validation, and applications. In Methods of Introducing System Models into Agricultural Research; Ahuja, L.R., Ma, L., Eds.; ASA: Madison, WI, USA, 2011; pp. 155–176. [Google Scholar]
- Li, Y.; Guo, L.P.; Xie, L.Y.; Huang, S.Q.; Xu, Y.X.; Zhao, X. Modeling the future changes of soil organic carbon under different management practices in upland soils of Northeast China. Sci. Agric. Sin. 2015, 48, 501–513. [Google Scholar]
- Sui, Y.; Zhang, X.; Qiao, X.; Jiao, X.; Wang, Q.; Zhao, J. Effect of long-term different fertilizer applications on on organic matter and nitrogen of black farmland. J. Soil Water Conserv. 2005, 19, 190–192. [Google Scholar]
- Zhang, X.; Yang, X.; Fang, H.; Liang, A. Effects of tillage on corn and soybean yields in middle layer black soil of Northeast China. J. Jilin Agric. Univ. 2005, 27, 429–433. [Google Scholar]
- Liang, A.; Yang, X.; Zhang, X.; Shen, Y.; Shi, X.; Fan, R.; Fang, H. Short-term impacts of no tillage on soil organic carbon associated with water-stable aggregates in black soil of northeast China. Chin. Agric. Sci. 2009, 42, 2801–2808. [Google Scholar]
- Li, W.; Liang, A.; Zhang, X.; Zhang, X. Effects of short duration no tillage on organic carbon, total nitrogen and available nutrients in black soil. Soil Sci. 2011, 42, 664–669. [Google Scholar]
- Chen, X.; Wang, N.; Shi, X.H.; Zhang, X.P.; Liang, A.Z.; Jia, S.X.; Fan, R.Q.; Wei, S.C. Evaluating tillage practices impacts on soil organic carbon based on least limiting water range. J. Acta Ecol. Sin. 2013, 9, 2676–2683. [Google Scholar] [CrossRef]
- Sun, B. Effects of Soil Microorganisms on Organic Carbon Fixation in Black Soil under Different Tillage Methods. Ph.D. Thesis, Chinese Academy of Sciences, Beijing, China, 2016. [Google Scholar]
- Huang, D.; Liu, S.; Zhang, X.; Xu, J.; Wu, L.; Lou, Y. Constitute and organic carbon distribution of soil aggregates under conservation tillage. J. Agro-Environ. Sci. 2012, 31, 1560–1565. [Google Scholar]
- Fan, R.; Liang, A.; Yang, X.; Yang, X.; Zhang, X.; Shen, Y.; Shi, X. Effects of Tillage on soil aggregates in black soils in Northeast China. Chin. Agric. Sci. 2010, 43, 3767–3775. [Google Scholar]
- Dong, Z.; Xie, H.; Zhang, L.; Bai, Z.; He, H.; Wang, G.; Zhang, X. Effects of no-tillage practice with corn stalk mulching on soil properties in the northeast of China. J. Maize Sci. 2013, 21, 100–103. [Google Scholar]
- Liu, H.Y.; Guo, J.H.; Yu., F.L.; Hao, Y.J.; Zhou, D. Status and effect of soil moisture content detection in Lishu County. Resour. Environ. Sci. 2013, 15, 250. [Google Scholar]
- Sun, Y.; Zhang, Q.; Li, S.; Chen, Z. Temporal variation characteristics of soil nutrient in Lishu County of Jilin Province. Guangdong Agric. Sci. 2013, 12, 60–62. [Google Scholar]
- Zhang, L.; Liu, J.; Chen, Z. Spatial variability of soil nutrients in conservation tillage in Lishu County of Jilin Province. Jilin Agric. Sci. 2014, 39, 36–41. [Google Scholar]
- Yang, L.J. High yield technology of soybean in Northeast China. Jilin Agric. 2015, 15, 45. (In Chinese) [Google Scholar]
- Guo, Q.Y. Studing and application of fertilization techniques for high-yield and good quality in soybean. Chin. Agric. Sci. Bull. 2003. Available online: http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZNTB200303027.htm (accessed on 26 June 2017). (In Chinese with English Abstract).
- Yan, H.K.; Hu, B.; Gao, L. Effects on available nutrients of brown soil in Northern Liaoning under long-term use of straw and organic fertilizer. J. Shenyang Agric. Univ. 2013, 44, 812–815, (In Chinese with English Abstract). [Google Scholar]
- Wu, Z.J.; Zhang, H.J.; Xu, G.S. Effect of maize straw returning on soil fertility. J. Appl. Ecol. 2002, 13, 539–542, (In Chinese with English Abstract). [Google Scholar]
- He, Z. Effects of Farming Management Measures on Soil Greenhouse Gas Emissions and Dynamic Simulation of soil Organic carbon. Master’s Thesis, Shenyang Agricultural University, Shenyang, China, 2012. [Google Scholar]
- Bowley, S.R. A Hitchhiker’s Guide to Statistics in Plant Biology, 2nd ed.; Any Old Subject Books: Guelph, ON, Canada, 2008. [Google Scholar]
- Jamieson, P.D.; Porter, J.R.; Wilson, D.R. A test of the computer simulation model ARC-WHEAT1 on wheat crops grown in New Zealand. Field Crop Res. 1991, 27, 337–350. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Willmott, C.J.; Ackleson, S.G.; Avis, R.; Eeddema, J.J.; Klink, K.M.; Legates, D.R.; O’Donnell, J.; Rowe, C.M. Statistics for the evaluation and comparison of models. J. Geophys. Res. 1985, 90, 8995–9005. [Google Scholar] [CrossRef]
- Kong, X.B.; Lal, R.; Li, B.G.; Liu, H.B.; Li, K.J.; Feng, G.L.; Zhang, Q.P.; Zhang, B.B. Chapter Four—Fertilizer intensification and its impacts in China’s HHH Plains. Adv. Agron. 2014, 125, 135–169. [Google Scholar]
- Zhu, Z.L.; Chen, D.L. Nitrogen fertilizer use in China—Contributions to food production, impacts on the environment and best management strategies. Nutr. Cycl. Agroecosyst. 2002, 63, 117–127. [Google Scholar] [CrossRef]
- Liang, R.; Han, X.Z.; Ding, X.L. Research Progress on organic matter composition and structure of black soil in Northeast China. Soil 2012, 44, 888–897, (In Chinese with English abstract). [Google Scholar]
- Zhai, L.M.; Liu, H.B.; Zhang, J.Z.; Huang, J.; Wang, B.R. Long-term application of organic manure and mineral fertilizer on N2O and CO2 emissions in a red soil from cultivated maize-wheat rotation in China. Agric. Sci. China 2011, 10, 1748–1757. [Google Scholar] [CrossRef]
- Zhong, W.H.; Cai, Z.C.; Zhang, H. Effects of long-term application of inorganic fertilizers on biochemical properties of a rice-planting red soil. Pedosphere 2007, 17, 419–428. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, C.; Zhang, H.M.; Zhang, W.J.; Dai, J.J.; Xu, M.G. Dynamic change of organic matter in the black soil under long-term fertilization. Soil Fertil. Sci. 2011, 5, 7–11, (In Chinese with English Abstract). [Google Scholar]
- Lal, R. Soil carbon sequestration in China through agricultural intensification and restoration of degraded and desertified ecosystems. Land Degrad. Dev. 2002, 13, 469–478. [Google Scholar] [CrossRef]
- Wang, G.H.; Han, X.Z.; Nakayama, N.; Watanabe, T.; Watanabe, A.; Kimura, M. Soil organic matter dynamics in lands continuously cultivated with maize and soybean in Heilongjiang Province. Soil Sci. Plant Nutr. 2006, 52, 139–144, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Xin, G.; Yan, L.; Wang, J.K.; Guan, L.Z. Changes of organic carbon in black soils with the different reclamation years. Chin. J. Soil Sci. 2002, 33, 332–335, (In Chinese with English Abstract). [Google Scholar]
- Zhang, W.J.; Wang, X.J.; Xu, M.G.; Huang, S.M.; Liu, H.; Peng, C. Soil organic carbon dynamics under long-term fertilization in arable land of northern China. Biogeosciences 2010, 7, 409–425. [Google Scholar] [CrossRef]
- Lehtinen, T.; Schlatter, N.; Baumgarten, A.; Bechini, L.; Kruger, J.; Grignani, C.; Zavattaro, L.; Costamagna, C.; Spiegel, H. Effect of crop residue incorporation on soil organic carbon and greenhouse gas emissions in European agricultural soils. Soil Use Manag. 2014, 30, 524–538. [Google Scholar] [CrossRef]
- Cong, P.F.; Ouyang, Z.; Hou, R.X.; Han, D.R. Effects of application of microbial fertilizer on aggregation and aggregate-associated carbon in saline soils. Soil Tillage Res. 2017, 168, 33–41. [Google Scholar] [CrossRef]
- Gao, C.; Yang, G.; Wang, J.; Zhang, X. Using CENTURY model to simulate the evolution of soil organic carbon in black soil under different agricultural management models. J. Ecol. 2008, 27, 911–915. [Google Scholar]
- Martinez, J.M.; Galantini, J.A.; Duval, M.E.; Lopez, F.M. Tillage effects on labile pools of soil organic nitrogen in a semi-arid climate of Argentina: A long-term field study. Soil Tillage Res. 2017, 169, 71–80. [Google Scholar] [CrossRef]
- Mazzoncini, M.; Antichi, D.; Bene, C.D.; Risaliti, R.; Petri, M.; Bonari, E. Soil carbon and nitrogen changes after 28 years of no-tillage management under Mediterranean conditions. Eur. J. Agron. 2016, 77, 156–165. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, T.; Jia, Z.K.; Han, Q.F.; Ren, X.L. Soil aggregate and crop yield changes with different rates of straw incorporation in semiarid areas of northwest China. Geoderma 2014, 230, 41–49. [Google Scholar] [CrossRef]
- Campbell, C.A.; Vanden Bygaart, A.J.; Grant, B.; Zentner, R.P.; McConkey, B.G.; Lemke, R.; Gregorichl, E. G.; Fernandez, M.R. Quantifying carbon sequestration in a conventionally tilled crop rotation study in southwestern Saskatchewan. Can. J. Soil Sci. 2007, 87, 23–38. [Google Scholar] [CrossRef]
Site | Latitude | Longitude | Particle Fraction (%) | pH | Soil Classification | Mean Annual Temperature (°C) | Bulk Density | Initial SOC | Calibration | Validation | Crop Rotation | Treatment | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
°N | °E | Sand | Silt | Clay | (g/cm3) | (g/100 g) | (Year) | (Year) | ||||||
Harbin | 45.67 | 126.58 | 13.2 | 48.2 | 38.6 | 7.23 | Luvic Phaeozems | 3.5 | 1.18 | 1.55 | 1980–2000 | 2001–2015 | W-C-S | NPK |
MNPK | ||||||||||||||
Hailun | 47.45 | 126.93 | 31 | 29 | 40 | 6.2 | Luvic Phaeozems | 1.3 | 0.98 | 3.13 | 1985–1995 | 1996–2003 | W-C-S | NPK |
MNPK | ||||||||||||||
0.98 | 2.66 | 2004–2006 | 2007–2012 | C-S | CK | |||||||||
SNPK | ||||||||||||||
Nehe | 48.56 | 124.88 | 35 | 23 | 42 | 6.1 | Luvic Phaeozems | 1.1 | 1.15 | 1.88 | 2004–2006 | 2007–2010 | S(4)-C(3) | NPK |
Dehui | 44.2 | 125.55 | 40.11 | 24 | 35.85 | 6.48 | Luvic Phaeozems | 4.4 | 1.33 | 1.63 | 2001–2007 | 2008–2013 | C-S | MP |
NT | ||||||||||||||
Gongzhuling | 43.51 | 124.81 | 39.08 | 29.9 | 31.05 | 7.6 | Luvic Phaeozems | 5.6 | 1.19 | 1.35 | 1989–2000 | 2001–2009 | C-C | NPK |
MNPK | ||||||||||||||
SNPK | ||||||||||||||
Lishu | 43.31 | 124.23 | 24.81 | 47.7 | 27.54 | 7.1 | Luvic Phaeozems | 6.8 | 1.1 | 1.16 | 2007–2009 | 2011–2015 | C-C | NT |
Site | Crop Rotation | Simulated SOC Period | Corn/Wheat | Soybean | Straw Quantity | ||
---|---|---|---|---|---|---|---|
N | P2O5 | N | P2O5 | ||||
(kg/ha) | (kg/ha) | (kg/ha) | (kg/ha) | (kg/ha) | |||
Harbin | W-C-S | 2016–2100 | 157 | 56 | 60 | 40 | corn and wheat 4500 soybean 1200 |
Hailun | C-S | 2013–2100 | 157 | 56 | 60 | 40 | |
Nehe | C-S | 2011–2100 | 157 | 56 | 60 | 40 | |
Dehui | C-S | 2014–2100 | 180 | 75 | 60 | 40 | |
Gongzhuling | C-C | 2010–2100 | 180 | 75 | |||
Lishu | C-C | 2016–2100 | 180 | 75 |
Site | Treatments | NRMSE (%) | EF | MAE (g/100 g) |
---|---|---|---|---|
Harbin | NPK | 5.64 | 0.35 | 0.015 |
MNPK | 7.523 | –0.02 | 0.041 | |
Hailun | CK | 0.225 | 0.73 | 0.003 |
SNPK | 2.355 | 0.58 | 0.047 | |
NPK | 3.749 | 0.3 | 0.053 | |
MNPK | 2.712 | 0.29 | 0.046 | |
Nehe | NPK | 0.756 | 0.05 | 0.009 |
Dehui | NT | 2.089 | –0.35 | 0.007 |
MP | 2.752 | 0.53 | 0.022 | |
Gongzhuling | MNPK | 8.816 | 0.96 | 0.048 |
NPK | 7.967 | 0.92 | 0.017 | |
SNPK | 4.059 | 0.95 | 0.025 | |
Lishu | NT | 1.578 | 0.61 | 0.015 |
Site | Treatments | NRMSE (%) | EF | MAE (g/100 g) |
---|---|---|---|---|
Harbin | NPK | 6.635 | –0.13 | 0.059 |
MNPK | 10.99 | –0.18 | 0.073 | |
Hailun | CK | 0.964 | 0.11 | 0.022 |
SNPK | 2.186 | 0.77 | 0.054 | |
NPK | 0.582 | 0.54 | 0.003 | |
MNPK | 2.968 | –0.39 | 0.007 | |
Nehe | NPK | 2.711 | 0.21 | 0.022 |
Dehui | NT | 1.068 | –0.26 | 0.013 |
MP | 5.225 | 0.96 | 0.003 | |
Gongzhuling | MNPK | 11.14 | 0.88 | 0.011 |
NPK | 13.85 | 0.66 | 0.216 | |
SNPK | 4.796 | 0.98 | 0.188 | |
Lishu | NT | 2.067 | 0.788 | 0.004 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Zhang, J.; Liu, M.; Guo, L.; Ma, F.; Xie, L.; Xu, M.; Yun, A. Simulation on the Future Change of Soil Organic Carbon from Phaeozems under Different Management Practices in Northeast China. Sustainability 2017, 9, 1129. https://doi.org/10.3390/su9071129
Zhang M, Zhang J, Liu M, Guo L, Ma F, Xie L, Xu M, Yun A. Simulation on the Future Change of Soil Organic Carbon from Phaeozems under Different Management Practices in Northeast China. Sustainability. 2017; 9(7):1129. https://doi.org/10.3390/su9071129
Chicago/Turabian StyleZhang, Maoxin, Jing Zhang, Mingguo Liu, Liping Guo, Fawang Ma, Liyong Xie, Minggang Xu, and Anping Yun. 2017. "Simulation on the Future Change of Soil Organic Carbon from Phaeozems under Different Management Practices in Northeast China" Sustainability 9, no. 7: 1129. https://doi.org/10.3390/su9071129
APA StyleZhang, M., Zhang, J., Liu, M., Guo, L., Ma, F., Xie, L., Xu, M., & Yun, A. (2017). Simulation on the Future Change of Soil Organic Carbon from Phaeozems under Different Management Practices in Northeast China. Sustainability, 9(7), 1129. https://doi.org/10.3390/su9071129