Reducing Global Warming Potential through Sustainable Intensification of Basmati Rice-Wheat Systems in India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Treatments
2.3. Agronomic Management
2.3.1. Crop Establishment
2.3.2. Weed Management
2.3.3. Water Management
2.3.4. Nutrient Management
2.4. Data Recording
2.5. CH4 and N2O Emission Measurement
2.6. Soil Sampling and Laboratory Analysis
2.7. Calculation of Net Global Warming Potential (GWP)
2.8. Economic Analysis
2.9. Data Analysis
3. Results and Discussion
3.1. Weather during Experimental Period
3.2. Rice, Wheat and System Productivity
3.3. Economic Profitability
3.4. Methane Emissions
3.5. Nitrous Oxide Emissions
3.6. Total Global Warming Potential
3.7. Wider Economic and Environmental Impacts of CA in RW Systems in the NW IGP, India
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wani, S.A.; Manhas, S.K.; Kumar, P. Basmati Rice in India-Its Prodution and Export. Available online: http://www.fnbnews.com/article/detnews.asp?articleid=36925§ionid=1 (accessed on 24 September 2015).
- Dutta, R. India’s to Export Record Basmati Rice in 2012/13. Available online: http://in.reuters.com/article/2012/07/06/india-Basmati-idINL3E8I62QO20120706 (accessed on 24 September 2015).
- Gathala, M.K.; Ladha, J.K.; Saharawat, Y.S.; Kumar, V.; Kumar, V.; Sharma, P.K. Effect of Tillage and Crop Establishment Methods on Physical Properties of a Medium-Textured Soil under a Seven-Year Rice–Wheat Rotation. Soil Sci. Soc. Am. J. 2011, 75, 1851–1862. [Google Scholar] [CrossRef]
- Kumar, V.; Ladha, J.K. Direct Seeding of Rice: Recent Developments and Future Research Needs. Adv. Agron. 2011, 111, 297–413. [Google Scholar]
- Tashiro, T.; Wardlaw, I. A comparison of the effect of high temperature on grain development in wheat and rice. Ann. Bot. 1989, 64, 59–65. [Google Scholar] [CrossRef]
- Lobell, D.B.; Sibley, A.; Ivan Ortiz-Monasterio, J. Extreme heat effects on wheat senescence in India. Nat. Clim. Chang. 2012, 2, 186–189. [Google Scholar] [CrossRef]
- Pathak, H.; Ladha, J.; Aggarwal, P.; Peng, S.; Das, S.; Singh, Y.; Singh, B.; Kamra, S.; Mishra, B.; Sastri, A.S.R.A.; et al. Trends of climatic potential and on-farm yields of rice and wheat in the Indo-Gangetic Plains. Field Crops Res. 2003, 80, 223–234. [Google Scholar] [CrossRef]
- Ladha, J.K.; Kumar, V.; Alam, M.M.; Sharma, S.; Gathala, M.K.; Chandna, P.; Saharawat, Y.S.; Balasubramanian, V. Integrating crop and resource management technologies for enhanced productivity, profitability, and sustainability of the rice-wheat system in South Asia. In Integrated Crop and Resource Management in the Rice-Wheat System of South Asia; Ladha, J.K., Yadvinder-Singh, Erenstein, O., Hardy, B., Eds.; IRRI: Los Baños, Philippines, 2009; pp. 69–108. [Google Scholar]
- Jat, M.L.; Gathala, M.K.; Ladha, J.K.; Saharawat, Y.S.; Jat, A.S.; Kumar, V.; Sharma, S.K.; Kumar, V.; Gupta, R. Evaluation of precision land leveling and double zero-till systems in the rice–wheat rotation: Water use, productivity, profitability and soil physical properties. Soil Tillage Res. 2009, 105, 112–121. [Google Scholar] [CrossRef]
- Saharawat, Y.S.; Singh, B.; Malik, R.K.; Ladha, J.K.; Gathala, M.; Jat, M.L.; Kumar, V. Evaluation of alternative tillage and crop establishment methods in a rice–wheat rotation in North Western IGP. Field Crops Res. 2010, 116, 260–267. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Majumdar, K.; Jat, M.L.; Kumar, A.; Bishnoi, D.K.; Mcdonald, A.J.; Pampolino, M. Precision nutrient management in conservation agriculture based wheat production of Northwest India: Profitability, nutrient use efficiency and environmental footprint. Field Crops Res. 2014, 155, 233–244. [Google Scholar] [CrossRef]
- Ko, J.; Kang, H. The effects of cultural practices on methane emission from rice fields. Nutr. Cycl. Agroecosyst. 2000, 58, 311–314. [Google Scholar] [CrossRef]
- Wassmann, R.; Neue, H.U.; Ladha, J.K.; Aulakh, M.S. Mitigating greenhouse gas emissions from rice-wheat cropping systems in Asia. Environ. Dev. Sustain. 2004, 6, 65–90. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Jat, M.L.; Aryal, J.P.; Jat, R.K.; Khatri-Chhetri, A. Climate change adaptation, greenhouse gas mitigation and economic profitability of conservation agriculture: Some examples from cereal systems of Indo-Gangetic Plains. J. Integr. Agric. 2015, 14, 1524–1533. [Google Scholar] [CrossRef]
- Sidhu, H.S.; Singh, M.; Singh, Y.; Blackwell, J.; Lohan, S.K.; Humphreys, E.; Jat, M.L.; Singh, V.; Singh, S. Development and evaluation of the Turbo Happy Seeder for sowing wheat into heavy rice residues in NW India. Field Crops Res. 2015, 184, 201–212. [Google Scholar] [CrossRef]
- Clough, T.J.; Rochette, P.; Thomas, S.M.; Pihlatie, M.; Christiansen, J.R.; Thorman, R.E. Chamber Design. In Nitrous Oxide Chamber Methodology Guidelines; de Klein, C.A.M., Harvey, M.J., Eds.; Ministry for Primary Industries: Wellington, New Zealand, 2012. [Google Scholar]
- Sapkota, T.B.; Rai, M.; Singh, L.K.; Gathala, M.K.; Jat, M.L.; Sutaliya, J.M.; Bijarniya, D.; Jat, M.K.; Jat, R.K.; Parihar, C.M.; et al. Greenhouse Gas Measurement from Smallholder Production Systems: Guidelines for Static Chamber Method; International Maize and Wheat Improvement Center (CIMMYT): New Delhi, India, 2014. [Google Scholar]
- Intergovernmental Panel on Climate Change. IPCC Climate Change: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Zhou, M.; Zhu, B.; Brüggemann, N.; Wang, X.; Zheng, X.; Butterbach-bahl, K. Nitrous oxide and methane emissions from a subtropical rice–rapeseed rotation system in China: A 3-year field case study. Agric. Ecosyst. Environ. 2015, 212, 297–309. [Google Scholar] [CrossRef]
- Dendooven, L.; Patiño-Zúñiga, L.; Verhulst, N.; Luna-Guido, M.; Marsch, R.; Govaerts, B. Global warming potential of agricultural systems with contrasting tillage and residue management in the central highlands of Mexico. Agric. Ecosyst. Environ. 2012, 152, 50–58. [Google Scholar] [CrossRef]
- Thelen, K.D.; Fronning, B.E.; Kravchenko, A.; Min, D.H.; Robertson, G.P. Integrating livestock manure with a corn-soybean bioenergy cropping system improves short-term carbon sequestration rates and net global warming potential. Biomass Bioenergy 2010, 34, 960–966. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Lal, R. Carbon emission from farm operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Ussiri, D.A.N.; Lal, R.; Jarecki, M.K. Nitrous oxide and methane emissions from long-term tillage under a continuous corn cropping system in Ohio. Soil Tillage Res. 2009, 104, 247–255. [Google Scholar] [CrossRef]
- CoHort, S. CoHort Software. Available online: www.cohort.com (accessed on 25 March 2014).
- Jat, R.K.; Sapkota, T.B.; Singh, R.G.; Jat, M.L.L.; Kumar, M.; Gupta, R.K. Seven years of conservation agriculture in a rice-wheat rotation of Eastern Gangetic Plains of South Asia: Yield trends and economic profitability. Field Crops Res. 2014, 164, 199–210. [Google Scholar] [CrossRef]
- Sharma, P.K.; Ladha, J.K.; Bhushan, L. Soil physical effects of puddling in rice-wheat cropping systems. In Improving the Productivity and Sustainability of Rice–Wheat Systems: Issues and Impacts; American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America: Madison, WI, USA, 2003; pp. 97–113. [Google Scholar]
- Gathala, M.K.; Ladha, J.K.; Kumar, V.V.; Saharawat, Y.S.; Kumar, V.V.; Sharma, P.K.; Sharma, S.; Pathak, H. Tillage and Crop Establishment Affects Sustainability of South Asian Rice–Wheat System. Agron. J. 2011, 103, 961–971. [Google Scholar] [CrossRef]
- Zou, J.; Huang, Y.; Jiang, J.; Zheng, X.; Sass, R.L. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application. Glob. Biogeochem. Cycles 2005, 19, 1–9. [Google Scholar] [CrossRef]
- Yagi, K.; Tsuruta, H.; Kanda, K.; Minami, K. Effect of water management on methane emission from a Japanese rice paddy field: Automated methane monitoring. Glob. Biogeochem. Cycles 1996, 10, 255–267. [Google Scholar] [CrossRef]
- Wassmann, R.; Buendia, L.V.; Lantin, R.S.; Bueno, C.S.; Lubigan, L.A.; Umali, A.; Nocon, N.N.; Javellana, A.M.; Neue, H.U. Mechanisms of crop management impact on methane emissions from rice fields in Los Banos, Philippines. Nutr. Cycl. Agroecosyst. 2000, 58, 107–119. [Google Scholar] [CrossRef]
- Malla, G.; Bhatia, A.; Pathak, H.; Prasad, S.; Jain, N.; Singh, J. Mitigating nitrous oxide and methane emissions from soil in rice–wheat system of the Indo-Gangetic plain with nitrification and urease inhibitors. Chemosphere 2005, 58, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Majumdar, D.; Jain, M.C. Methane and nitrous oxide emissions from an irrigated rice of North India. Chemosphere 2003, 51, 181–195. [Google Scholar] [CrossRef]
- Ali, M.A.; Hoque, M.A.; Kim, P.J. Mitigating global warming potentials of methane and nitrous oxide gases from rice paddies under different irrigation regimes. Ambio 2013, 42, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Masscheleyn, P.H.; Delaune, R.D.; Patrick, W.H. Methane and nitrous oxide emissions from laboratory measurements of rice soil suspension: Effect of soil oxidation-reduction status. Chemosphere 1993, 26, 251–260. [Google Scholar] [CrossRef]
- Dendooven, L.; Gutiérrez-Oliva, V.F.; Patiño-Zúñiga, L.; Ramírez-Villanueva, D.A.; Verhulst, N.; Luna-Guido, M.; Marsch, R.; Montes-Molina, J.; Gutiérrez-Miceli, F.A.; Vásquez-Murrieta, S.; et al. Greenhouse gas emissions under conservation agriculture compared to traditional cultivation of maize in the central highlands of Mexico. Sci. Total Environ. 2012, 431, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Gathala, M.K.; Kumar, V.; Sharma, P.C.C.; Saharawat, Y.S.; Jat, H.S.S.; Singh, M.; Kumar, A.; Jat, M.L.L.; Humphreys, E.; Sharma, D.K.K.; et al. Optimizing intensive cereal-based cropping systems addressing current and future drivers of agricultural change in the northwestern Indo-Gangetic Plains of India. Agric. Ecosyst. Environ. 2013, 177, 85–97. [Google Scholar] [CrossRef]
- AgriNet Solutions. Basmati Acreage & Yield Estimation in Punjab, Haryana, Delhi, Uttarakhand, Himachal Pradesh, Western Uttar Pradesh and Parts of Jammu & Kashmir; AgriNet Solutions: Mumbai, India, 2014; pp. 1–29. [Google Scholar]
- Erenstein, O.; Gérard, B.; Tittonell, P. Biomass use trade-offs in cereal cropping systems in the developing world: Overview. Agric. Syst. 2015, 134, 1–5. [Google Scholar] [CrossRef]
- Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Chang. 2014, 4, 945–948. [Google Scholar] [CrossRef]
Treatments † | Grain Yield (Mg ha−1) | Net Return (USD ha−1) | ||||||
---|---|---|---|---|---|---|---|---|
Rice | Wheat | Green Gram | System | Rice | Wheat | Green Gram | System | |
CTR-CTW | 5.01ab | 5.79 | - | 10.81 | 1283 | 1127 | - | 2411c |
CTR-CTW+GG | 5.04a | 5.95 | 0.80 | 11.79 | 1404 | 1158 | 618 | 3180a |
ZTR-ZTW-R | 4.70d | 6.18 | - | 10.88 | 1456 | 1278 | - | 2734b |
ZTR-ZTW-R+GG | 4.78cd | 6.09 | 0.82 | 11.69 | 1493 | 1235 | 712 | 3440a |
ZTR-ZTW+R | 4.91abc | 6.22 | - | 11.13 | 1513 | 1113 | - | 2626bc |
ZTR-ZTW+R+GG | 4.86bcd | 6.35 | 0.83 | 12.04 | 1487 | 1130 | 722 | 3339a |
Year | Treatments † | Rice Season | Wheat Season ‡ | |
---|---|---|---|---|
CH4 (kg C ha−1) | N2O (kg N ha−1) | N2O (kg N ha−1) | ||
2011–2012 | CTR-CTW | 22.54 ± 2.03a | 1.37 ± 0.10 | 2.48 ± 1.00 |
CTR-CTW+GG | 21.84 ± 1.19a | 2.04 ± 0.44 | 2.17 ± 0.84 | |
ZTR-ZTW-R | −0.98 ± 0.23ab | 2.68 ± 0.43 | 1.97 ± 0.51 | |
ZTR-ZTW-R+GG | 5.48 ± 1.20b | 2.03 ± 0.21 | 2.41 ± 1.18 | |
ZTR-ZTW+R | 0.53 ± 1.51b | 2.73 ± 0.77 | 1.69 ± 0.54 | |
ZTR-ZTW+R+GG | −0.37 ± 1.14b | 2.19 ± 0.39 | 1.43 ± 0.26 | |
Treatment Effect | *** | NS | NS | |
2012–2013 | CTR-CTW | 23.08 ± 1.09a | 2.20 ± 0.23 | 2.64 ± 0.10 |
CTR-CTW+GG | 20.74 ± 3.73a | 2.20 ± 0.66 | 4.23 ± 0.79 | |
ZTR-ZTW-R | 0.32 ± 1.37b | 2.45 ± 0.00 | 4.37 ± 0.78 | |
ZTR-ZTW-R+GG | 2.05 ± 0.82b | 1.52 ± 0.27 | 3.26 ± 0.40 | |
ZTR-ZTW+R | 5.44 ± 1.72b | 2.31 ± 1.06 | 4.53 ± 0.83 | |
ZTR-ZTW+R+GG | 4.63 ± 1.33b | 3.67 ± 1.08 | 3.15 ± 0.56 | |
Treatment Effect | *** | NS | NS |
Treatments † | GWP from Inputs | GWP from Operation | GWP from Emission | GWP from ∆SOC | System Level GWP | ||||
---|---|---|---|---|---|---|---|---|---|
Rice | Wheat | Rice | Wheat | Rice | Wheat | Rice–Wheat | Area-Scaled (kg CO2-eq ha−1) | Yield-Scaled (kg CO2-eq Mg−1) | |
2011–2012 (kg CO2-eq ha−1) | 2011–2012 | ||||||||
CTR-CTW | 569 | 1008 | 1547a | 465 | 1296 | 1207 | 98a | 6190ab | 630a |
CTR-CTW+GG | 567 | 1008 | 1547a | 465 | 1605 | 1057 | 778a | 7144a | 595a |
ZTR-ZTW-R | 663 | 999 | 980b | 322 | 1275 | 960 | −896a | 4304b | 450a |
ZTR-ZTW-R+GG | 653 | 1012 | 980b | 322 | 1143Z | 1173 | 477a | 5871ab | 503a |
ZTR-ZTW+R | 646 | 1024 | 980b | 322 | 1345 | 825 | −7084b | −1942c | −217b |
ZTR-ZTW+R+GG | 689 | 1034 | 980b | 322 | 1057 | 695 | −7962b | −3073c | −264b |
2012–2013 (kg CO2-eq ha−1) | 2012–2013 | ||||||||
CTR-CTW | 601 | 901 | 1494a | 465 | 1755 | 1284 | 98a | 6598a | 867a |
CTR-CTW+GG | 574 | 935 | 1494a | 465 | 1609 | 2061 | 778a | 8034a | 837a |
ZTR-ZTW-R | 623 | 935 | 917b | 322 | 1203 | 2127 | −896a | 5230a | 672a |
ZTR-ZTW-R+GG | 575 | 953 | 917b | 322 | 796 | 1585 | 477a | 5736a | 598a |
ZTR-ZTW+R | 614 | 930 | 917b | 322 | 1274 | 2204 | −7084b | −823b | −99b |
ZTR-ZTW+R+GG | 634 | 960 | 917b | 322 | 1917 | 1533 | −7962b | −1568b | −155b |
Treatments † | Water Consumption per kg of Grain (m3 kg−1grain) | ||
---|---|---|---|
Rice | Wheat | System | |
CTR-CTW | 3.17a | 0.70a | 1.85a |
CTR-CTW+GG | 3.16a | 0.68a | 1.83a |
ZTR-ZTW-R | 2.47b | 0.46b | 1.33b |
ZTR-ZTW-R+GG | 2.43bc | 0.46b | 1.35b |
ZTR-ZTW+R | 2.37bc | 0.45b | 1.30b |
ZTR-ZTW+R+GG | 2.39c | 0.44b | 1.31b |
Treatment effect | *** | *** | *** |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sapkota, T.B.; Shankar, V.; Rai, M.; Jat, M.L.; Stirling, C.M.; Singh, L.K.; Jat, H.S.; Grewal, M.S. Reducing Global Warming Potential through Sustainable Intensification of Basmati Rice-Wheat Systems in India. Sustainability 2017, 9, 1044. https://doi.org/10.3390/su9061044
Sapkota TB, Shankar V, Rai M, Jat ML, Stirling CM, Singh LK, Jat HS, Grewal MS. Reducing Global Warming Potential through Sustainable Intensification of Basmati Rice-Wheat Systems in India. Sustainability. 2017; 9(6):1044. https://doi.org/10.3390/su9061044
Chicago/Turabian StyleSapkota, Tek B., Vivek Shankar, Munmun Rai, Mangi L Jat, Clare M. Stirling, Love K. Singh, Hanuman S. Jat, and Mohinder S. Grewal. 2017. "Reducing Global Warming Potential through Sustainable Intensification of Basmati Rice-Wheat Systems in India" Sustainability 9, no. 6: 1044. https://doi.org/10.3390/su9061044
APA StyleSapkota, T. B., Shankar, V., Rai, M., Jat, M. L., Stirling, C. M., Singh, L. K., Jat, H. S., & Grewal, M. S. (2017). Reducing Global Warming Potential through Sustainable Intensification of Basmati Rice-Wheat Systems in India. Sustainability, 9(6), 1044. https://doi.org/10.3390/su9061044