Assessing Global Ocean Wind Energy Resources Using Multiple Satellite Data
Abstract
:1. Introduction
2. Data
2.1. QuikSCAT, WindSAT and ASCAT Data
2.2. NDBC Buoys Data
3. Methodology
3.1. Wind Profile Method
3.2. Wind Resource Assessment Method
4. Results
4.1. Evaluation of MWS and WPD Derived from Multiple Satellite Data Compared with Buoy Measurement Data
4.2. Spatial Variability of Global Ocean Wind Energy Resources Using Multiple Satellite Data
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of regional climate change on human health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Snyder, C.W. Evolution of global temperature over the past two million years. Nature 2016, 538, 226–228. [Google Scholar] [CrossRef] [PubMed]
- Stern, P.C.; Sovacool, B.K.; Dietz, T. Towards a science of climate and energy choices. Nat. Clim. Chang. 2016, 6, 547–555. [Google Scholar] [CrossRef]
- Buonocore, J.J.; Luckow, P.; Norris, G.; Spengler, J.D.; Biewald, B.; Fisher, J.; Levy, J.I. Health and climate benefits of different energy-efficiency and renewable energy choices. Nat. Clim. Chang. 2015, 6, 100–105. [Google Scholar] [CrossRef]
- Barthelmie, R.J.; Pryor, S.C. Potential contribution of wind energy to climate change mitigation. Nat. Clim. Chang. 2014, 4, 684–688. [Google Scholar] [CrossRef]
- Lu, X.; McElroy, M.B.; Peng, W.; Liu, S.; Nielsen, C.P.; Wang, H. Challenges faced by China compared with the US in developing wind power. Nat. Energy 2016, 1. [Google Scholar] [CrossRef]
- Zheng, C.W.; Li, C.Y.; Pan, J.; Liu, M.Y.; Xia, L.L. An overview of global ocean wind energy resource evaluations. Renew. Sustain. Energy Rev. 2016, 53, 1240–1251. [Google Scholar] [CrossRef]
- Kucukali, S.; Dinçkal, Ç. Wind energy resource assessment of Izmit in the West Black Sea Coastal Region of Turkey. Renew. Sustain. Energy Rev. 2014, 30, 790–795. [Google Scholar] [CrossRef]
- Mattar, C.; Borvarán, D. Offshore wind power simulation by using WRF in the central coast of Chile. Renew. Energy 2016, 94, 22–31. [Google Scholar] [CrossRef]
- Chadee, X.T.; Clarke, R.M. Large-scale wind energy potential of the Caribbean region using near-surface reanalysis data. Renew. Sustain. Energy Rev. 2014, 30, 45–58. [Google Scholar] [CrossRef]
- Zheng, C.W.; Pan, J. Assessment of the global ocean wind energy resource. Renew. Sustain. Energy Rev. 2014, 33, 382–391. [Google Scholar] [CrossRef]
- Zheng, C.W.; Pan, J.; Li, C.Y. Global oceanic wind speed trends. Ocean Coast. Manag. 2016, 129, 15–24. [Google Scholar] [CrossRef]
- Hasager, C.B.; Nielsen, M.; Astrup, P.; Barthelmie, R.; Dellwik, E.; Jensen, N.O.; Jørgensen, B.H.; Pryor, S.C.; Rathmann, O.; Furevik, B.R. Offshore wind resource estimation from satellite SAR wind field maps. Wind Energy 2005, 8, 403–419. [Google Scholar] [CrossRef]
- Christiansen, M.B.; Koch, W.; Horstmann, J.; Bayhasager, C.; Nielsen, M. Wind resource assessment from C-band SAR. Remote Sens. Environ. 2006, 105, 68–81. [Google Scholar] [CrossRef]
- Hasager, C.B.; Badger, M.; Peña, A.; Larsén, X.G.; Bingöl, F. SAR-Based Wind Resource Statistics in the Baltic Sea. Remote Sens. 2011, 3, 117–144. [Google Scholar] [CrossRef] [Green Version]
- Chang, R.; Zhu, R.; Badger, M.; Hasager, C.; Zhou, R.; Ye, D.; Zhang, X. Applicability of Synthetic Aperture Radar Wind Retrievals on Offshore Wind Resources Assessment in Hangzhou Bay, China. Energies 2014, 7, 3339–3354. [Google Scholar] [CrossRef] [Green Version]
- Hasager, C.B.; Mouche, A.; Badger, M.; Bingöl, F.; Karagali, I.; Driesenaar, T.; Stoffelen, A.; Peña, A.; Longépé, N. Offshore wind climatology based on synergetic use of Envisat ASAR, ASCAT and QuikSCAT. Remote Sens. Environ. 2015, 156, 247–263. [Google Scholar] [CrossRef] [Green Version]
- Chang, R.; Zhu, R.; Badger, M.; Hasager, C.; Xing, X.; Jiang, Y. Offshore Wind Resources Assessment from Multiple Satellite Data and WRF Modeling over South China Sea. Remote Sens. 2015, 7, 467–487. [Google Scholar] [CrossRef]
- Doubrawa, P.; Barthelmie, R.J.; Pryor, S.C.; Hasager, C.B.; Badger, M.; Karagali, I. Satellite winds as a tool for offshore wind resource assessment: The Great Lakes Wind Atlas. Remote Sens. Environ. 2015, 168, 349–359. [Google Scholar] [CrossRef]
- Beaucage, P.; Lafrance, G.; Lafrance, J.; Choisnard, J.; Bernier, M. Synthetic aperture radar satellite data for offshore wind assessment: A strategic sampling approach. J. Wind Eng. Ind. Aerodyn. 2011, 99, 27–36. [Google Scholar] [CrossRef]
- Liu, W.T.; Tang, W.; Xie, X. Wind power distribution over the ocean. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Pimenta, F.; Kempton, W.; Garvine, R. Combining meteorological stations and satellite data to evaluate the offshore wind power resource of Southeastern Brazil. Renew. Energy 2008, 33, 2375–2387. [Google Scholar] [CrossRef]
- Capps, S.B.; Zender, C.S. Global ocean wind power sensitivity to surface layer stability. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Capps, S.B.; Zender, C.S. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Karamanis, D.; Tsabaris, C.; Stamoulis, K.; Georgopoulos, D. Wind energy resources in the Ionian Sea. Renew. Energy 2011, 36, 815–822. [Google Scholar] [CrossRef]
- Jiang, D.; Zhuang, D.; Huang, Y.; Wang, J.; Fu, J. Evaluating the spatio-temporal variation of China’s offshore wind resources based on remotely sensed wind field data. Renew. Sustain. Energy Rev. 2013, 24, 142–148. [Google Scholar] [CrossRef]
- Bentamy, A.; Croize-Fillon, D. Spatial and temporal characteristics of wind and wind power off the coasts of Brittany. Renew. Energy 2014, 66, 670–679. [Google Scholar] [CrossRef]
- Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Silva Santos, C. Offshore winds and wind energy production estimates derived from ASCAT, OSCAT, numerical weather prediction models and buoys—A comparative study for the Iberian Peninsula Atlantic coast. Renew. Energy 2017, 102, 433–444. [Google Scholar] [CrossRef]
- Gadad, S.; Deka, P.C. Offshore wind power resource assessment using Oceansat-2 scatterometer data at a regional scale. Appl. Energy 2016, 176, 157–170. [Google Scholar] [CrossRef]
- Remote Sensing Systems. Available online: http://www.remss.com/missions (accessed on 12 April 2016).
- National Data Buoy Center. Available online: http://www.ndbc.noaa.gov (accessed on 1 September 2016).
- Badger, M.; Peña, A.; Hahmann, A.N.; Mouche, A.A.; Hasager, C.B. Extrapolating satellite winds to turbine operating heights. J. Appl. Meteorol. Climatol. 2016, 55, 975–991. [Google Scholar] [CrossRef]
- Takeyama, Y.; Ohsawa, T.; Kozai, K.; Hasager, C.B.; Badger, M. Comparison of geophysical model functions for SAR wind speed retrieval in Japanese coastal waters. Remote Sens. 2013, 5, 1956–1973. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, K.; Shamshirband, S.; Yee, P.L.; Petkovic, D.; Zamani, M.; Ch, S. Predicting the wind power density based upon extreme learning machine. Energy 2015, 86, 232–239. [Google Scholar] [CrossRef]
- Mohammadi, K.; Alavi, O.; Mostafaeipour, A.; Goudarzi, N.; Jalilvand, M. Assessing different parameters estimation methods of Weibull distribution to compute wind power density. Energy Convers. Manag. 2016, 108, 322–335. [Google Scholar] [CrossRef]
- Barthelmie, R.J.; Pryor, S.C. Can satellite sampling of offshore wind speeds realistically represent wind speed distributions? J. Appl. Meteorol. 2003, 42, 83–94. [Google Scholar] [CrossRef]
- Badger, M.; Badger, J.; Nielsen, M.; Hasager, C.B.; Pena, A. Wind class sampling of satellite SAR imagery for offshore wind resource mapping. J. Appl. Meteorol. Climatol. 2010, 490, 2474–2491. [Google Scholar] [CrossRef]
- Atlas, R.; Hoffman, R.N.; Bloom, S.C.; Jusem, J.C.; Ardizzone, J. A multiyear global surface wind velocity dataset using SSM/I wind observations. Bull. Am. Meteorol. Soc. 1996, 77, 869–882. [Google Scholar] [CrossRef]
- Hasager, C.B.; Astrup, P.; Zhu, R.; Chang, R.; Badger, M.; Hahmann, A.N. Quarter-century offshore winds from SSM/I and WRF in the North Sea and South China Sea. Remote Sens. 2016, 8, 769. [Google Scholar] [CrossRef]
- Ritter, M.; Pieralli, S.; Odening, M. Neighborhood effects in wind farm performance: A regression approach. Energies 2017, 10, 365. [Google Scholar] [CrossRef]
Satellite Platform | QuikSCAT | Coriolis | MetOp-A |
---|---|---|---|
Instrument | SeaWinds | WindSAT | ASCAT |
Band of operation | Ku (13.4 GHz) | 5 discrete channels: 6.8, 10.7, 18.7, 23.8, and 37.0 GHz | C (5.3 GHz) |
Total | 6944 | 8372 | 6379 |
Ascending | 3514 | 4197 | 3194 |
Descending | 3430 | 4175 | 3185 |
January | 549 | 665 | 486 |
February | 512 | 609 | 445 |
March | 567 | 701 | 549 |
April | 560 | 683 | 521 |
May | 562 | 690 | 555 |
June | 580 | 618 | 537 |
July | 610 | 696 | 554 |
August | 656 | 736 | 557 |
September | 620 | 739 | 532 |
October | 612 | 751 | 552 |
November | 539 | 735 | 535 |
December | 577 | 749 | 556 |
Time period | 1999–2009 | 2003-current | 2007-current |
Time of datasets | 1999.07–2009.11 | 2003.02–2015.12 | 2007.03–2015.12 |
Descending node time | 06:00 | 06:00 | 9:30 |
Ascending node time | 18:00 | 18:00 | 21:30 |
Spatial resolution | 0.25° × 0.25° | 0.25° × 0.25° | 0.25° × 0.25° |
Produce version | V4 | V7.0.1 | V2.1 |
Different Combinations of Satellite Data | RMSE | Bias | Corr. | R2 | Slope | N |
---|---|---|---|---|---|---|
QuikSCAT | 0.39 | 0.23 | 0.91 | 0.78 | 1.03 | 4134–7063 |
WindSAT | 0.36 | −0.07 | 0.90 | 0.81 | 0.99 | 3474–7643 |
ASCAT | 0.33 | 0.09 | 0.90 | 0.77 | 1.01 | 2717–4017 |
QuikSCAT + WindSAT | 0.27 | 0.10 | 0.94 | 0.87 | 1.01 | 8307–14,586 |
QuikSCAT + ASCAT | 0.35 | 0.18 | 0.91 | 0.78 | 1.02 | 7209–11,080 |
WindSAT + ASCAT | 0.28 | 0.00 | 0.93 | 0.86 | 1.00 | 6272–11,086 |
QuikSCAT + WindSAT + ASCAT | 0.27 | 0.10 | 0.94 | 0.86 | 1.01 | 11,229–18,029 |
Different Combinations of Satellite Data | RMSE | Bias | Corr. | R2 | Slope | N |
---|---|---|---|---|---|---|
QuikSCAT | 55.4 | 34.6 | 0.91 | 0.82 | 1.09 | 4134–7063 |
WindSAT | 53.5 | −19.7 | 0.88 | 0.78 | 0.95 | 3474–7643 |
ASCAT | 42.2 | 4.7 | 0.91 | 0.81 | 1.01 | 2717–4017 |
QuikSCAT + WindSAT | 37.0 | 9.9 | 0.93 | 0.87 | 1.02 | 8307–14,586 |
QuikSCAT + ASCAT | 47.5 | 23.3 | 0.91 | 0.83 | 1.06 | 7209–11,080 |
WindSAT + ASCAT | 40.5 | −9.2 | 0.92 | 0.84 | 0.97 | 6272–11,086 |
QuikSCAT + WindSAT + ASCAT | 36.9 | 8.7 | 0.93 | 0.87 | 1.02 | 11,229–18,029 |
Different Combinations of Satellite Data | RMSE | Bias | Corr. | R2 | Slope | N |
---|---|---|---|---|---|---|
QuikSCAT | 0.48 | 0.29 | 0.91 | 0.78 | 1.03 | 4134–7063 |
WindSAT | 0.45 | −0.09 | 0.90 | 0.81 | 0.99 | 3474–7643 |
ASCAT | 0.40 | 0.11 | 0.90 | 0.77 | 1.01 | 2717–4017 |
QuikSCAT + WindSAT | 0.33 | 0.12 | 0.94 | 0.87 | 1.01 | 8307–14,586 |
QuikSCAT + ASCAT | 0.43 | 0.22 | 0.91 | 0.79 | 1.03 | 7209–11,080 |
WindSAT + ASCAT | 0.34 | 0.00 | 0.93 | 0.86 | 1.00 | 6272–11,086 |
QuikSCAT + WindSAT + ASCAT | 0.34 | 0.12 | 0.94 | 0.86 | 1.01 | 11,229–18,029 |
Different Combinations of Satellite Data | RMSE | Bias | Corr. | R2 | Slope | N |
---|---|---|---|---|---|---|
QuikSCAT | 105.0 | 65.6 | 0.91 | 0.82 | 1.09 | 4134–7063 |
WindSAT | 101.1 | −37.0 | 0.88 | 0.77 | 0.95 | 3474–7643 |
ASCAT | 79.2 | 8.3 | 0.91 | 0.81 | 1.01 | 2717–4017 |
QuikSCAT + WindSAT | 70.2 | 18.8 | 0.93 | 0.87 | 1.03 | 8307–14,586 |
QuikSCAT + ASCAT | 89.6 | 44.0 | 0.91 | 0.83 | 1.06 | 7209–11,080 |
WindSAT + ASCAT | 76.8 | −17.5 | 0.92 | 0.84 | 0.97 | 6272–11,086 |
QuikSCAT + WindSAT + ASCAT | 69.8 | 16.4 | 0.93 | 0.87 | 1.02 | 11,229–18,029 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Xu, X.; Zhang, K.; Li, Z.; Huang, W.; Mansaray, L.R.; Liu, W.; Wang, X.; Gao, J.; Huang, J. Assessing Global Ocean Wind Energy Resources Using Multiple Satellite Data. Remote Sens. 2018, 10, 100. https://doi.org/10.3390/rs10010100
Guo Q, Xu X, Zhang K, Li Z, Huang W, Mansaray LR, Liu W, Wang X, Gao J, Huang J. Assessing Global Ocean Wind Energy Resources Using Multiple Satellite Data. Remote Sensing. 2018; 10(1):100. https://doi.org/10.3390/rs10010100
Chicago/Turabian StyleGuo, Qiaoying, Xiazhen Xu, Kangyu Zhang, Zhengquan Li, Weijiao Huang, Lamin R. Mansaray, Weiwei Liu, Xiuzhen Wang, Jian Gao, and Jingfeng Huang. 2018. "Assessing Global Ocean Wind Energy Resources Using Multiple Satellite Data" Remote Sensing 10, no. 1: 100. https://doi.org/10.3390/rs10010100
APA StyleGuo, Q., Xu, X., Zhang, K., Li, Z., Huang, W., Mansaray, L. R., Liu, W., Wang, X., Gao, J., & Huang, J. (2018). Assessing Global Ocean Wind Energy Resources Using Multiple Satellite Data. Remote Sensing, 10(1), 100. https://doi.org/10.3390/rs10010100