Comparative Analysis of Responses of Land Surface Temperature to Long-Term Land Use/Cover Changes between a Coastal and Inland City: A Case of Freetown and Bo Town in Sierra Leone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Image Preprocessing
2.4. Urban Growth Assessment Using Remote Sensing and Census Data in Freetown and Bo Town
2.5. LST Retrieval from Thermal Infrared Data
2.5.1. Conversion from Digital Numbers to Brightness Temperature
2.5.2. Surface Emissivity () Retrieval
2.6. Linking Urban Growth to LST
3. Results
3.1. Remote Sensing Based Urban Growth Assessment in Freetown and Bo Town
3.2. Census Based Urban Growth Patterns in Freetown and Bo town
3.3. Responses of LST to Growth Patterns in Freetown and Bo Town
3.4. Link between Long Term Changes in LULC and LST Dynamics
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Study AreaYear | Bo Town and Freetown Accuracy Assessment | |||||
---|---|---|---|---|---|---|
LULC Category | Producer Accuracy | User Accuracy | Overall Accuracy | Khat | ||
(%) | (%) | (%) | ||||
Freetown | 1998 | Agricultural land | 92.31 | 89.75 | 91.56 | 0.91 |
Built-up area | 96.57 | 94.87 | ||||
Dense vegetation | 96.77 | 93.33 | ||||
Exposed land | 89.98 | 91.65 | ||||
Sparse vegetation | 85.39 | 88.71 | ||||
Waterbody | 100 | 100 | ||||
2000 | Agricultural land | 100 | 90 | 95.56 | 0.95 | |
Built-up area | 100 | 100 | ||||
Dense vegetation | 96.55 | 93.33 | ||||
Exposed land | 100 | 100 | ||||
Sparse vegetation | 87.1 | 90 | ||||
Waterbody | 90.91 | 100 | ||||
2007 | Agricultural land | 97.11 | 86.67 | 93.33 | 0.92 | |
Built-up area | 95.33 | 86.67 | ||||
Dense vegetation | 93.33 | 93.33 | ||||
Exposed land | 96.77 | 100 | ||||
Sparse vegetation | 89.57 | 93.33 | ||||
Waterbody | 98.39 | 100 | ||||
2015 | Agricultural land | 96.55 | 93.33 | 89.44 | 0.87 | |
Built-up area | 96.55 | 93.33 | ||||
Dense vegetation | 87.88 | 96.67 | ||||
Exposed land | 95.65 | 73.33 | ||||
Sparse vegetation | 85.71 | 80 | ||||
Waterbody | 78.95 | 100 | ||||
Botown | 1998 | Agricultural land | 89.78 | 87.87 | 89.87 | 0.88 |
Built-up area | 93.22 | 91.33 | ||||
Dense vegetation | 95.67 | 92.89 | ||||
Exposed land | 89.89 | 86.78 | ||||
Sparse vegetation | 87.56 | 83.89 | ||||
Waterbody | 100 | 99.8 | ||||
2000 | Agricultural land | 93.1 | 90 | 89.44 | 0.87 | |
Built-up area | 96.3 | 86.67 | ||||
Dense vegetation | 100 | 93.33 | ||||
Exposed land | 71.79 | 93.33 | ||||
Sparse vegetation | 92.31 | 80 | ||||
Waterbody | 90.32 | 93.33 | ||||
2007 | Agricultural land | 96.15 | 83.33 | 87.78 | 0.85 | |
Built-up area | 96.67 | 96.67 | ||||
Dense vegetation | 100 | 90 | ||||
Exposed land | 68.57 | 80 | ||||
Sparse vegetation | 93.1 | 90 | ||||
Waterbody | 78.79 | 86.67 | ||||
2015 | Agricultural land | 96.3 | 86.67 | 88.33 | 0.86 | |
Built-up area | 90.91 | 100 | ||||
Dense vegetation | 100 | 76.67 | ||||
Exposed land | 74.36 | 96.67 | ||||
Sparse vegetation | 86.21 | 83.33 | ||||
Waterbody | 89.66 | 86.67 |
References
- Owen, T.W.; Carlson, T.N.; Gillies, R.R. An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. Int. J. Remote Sens. 1998, 19, 1663–1681. [Google Scholar] [CrossRef]
- Hallegatte, S.; Corfee-Morlot, J. Understanding climate change impacts, vulnerability and adaptation at city scale: An introduction. Clim. Chang. 2010, 104, 1–12. [Google Scholar] [CrossRef]
- Nayak, S.; Mandal, M. Impact of land-use and land-cover changes on temperature trends over Western India. Curr. Sci. 2012, 102, 1166–1173. [Google Scholar]
- Pielke, R.A.; Pitman, A.; Niyogi, D.; Mahmood, R.; McAlpine, C.; Hossain, F.; Goldewijk, K.K.; Nair, U.; Betts, R.; Fall, S.; et al. Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 828–850. [Google Scholar] [CrossRef]
- Acharya, T.D.; Parajuli, J.; Poudel, D.; Yang, I. Extraction and Modelling of Spatio-Temporal Urban Change in Kathmandu Valley. Int. J. Eng. Appl. Sci. Res. 2015, 4, 1–11. [Google Scholar]
- Shi, T.; Huang, Y.; Wang, H.; Shi, C.-E.; Yang, Y.-J. Influence of urbanization on the thermal environment of meteorological station: Satellite-observed evidence. Adv. Clim. Chang. Res. 2015, 6, 7–15. [Google Scholar] [CrossRef]
- Odindi, J.O.; Bangamwabo, V.; Mutanga, O. Assessing the value of urban green spaces in mitigating multi-seasonal urban heat using MODIS Land Surface Temperature (LST) and Landsat 8 data. Int. J. Environ. Res. 2015, 9, 9–18. [Google Scholar]
- Gusso, A.; Cafruni, C.; Bordin, F.; Veronez, M.R.; Lenz, L. Multitemporal Analysis of Thermal Distribution Characteristics for Urban Heat Island Management. In Proceedings of the 4th World Sustainability Forum, Basel, Switzerland, 1–30 November 2014; pp. 1–17. [Google Scholar]
- Mushore, T.D.; Mutanga, O.; Odindi, J.; Dube, T. Linking major shifts in land surface temperatures to long term land use and land cover changes: A case of Harare, Zimbabwe. Urban Clim. 2017, 20, 120–134. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, L.; Hao, L.; Sun, G.; Liu, Y.; Zhu, C. Spatiotemporal trends of urban heat island effect along the urban development intensity gradient in China. Sci. Total Environ. 2016, 544, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Devara, P. A wavelet-based spectral analysis of long-term time series of optical properties of aerosols obtained by lidar and radiometer measurements over an urban station in Western India. J. Atmos. Sol. Terr. Phys. 2012, 84–85, 75–87. [Google Scholar] [CrossRef]
- Behrendt, A.; Wagner, G.; Petrova, A.; Shiler, M.; Pal, S.; Schaberl, T.; Wulfmeyer, V. Modular lidar systems for high-resolution 4-dimensional measurements of water vapor, temperature, and aerosols. SPIE 2005, 5653, 220. [Google Scholar] [CrossRef]
- Harlan, S.L.; Declet-Barreto, J.H.; Stefanov, W.L.; Petitti, D.B. Neighborhood effects on heat deaths: Social and environmental predictors of vulnerability in Maricopa county, Arizona. Environ. Health Perspect. 2013, 121, 197–204. [Google Scholar] [PubMed]
- Gronlund, C.J.; Berrocal, V.J.; White-Newsome, J.L.; Conlon, K.C.; O’Neill, M.S. Vulnerability to extreme heat by socio-demographic characteristics and area green space among the elderly in Michigan, 1990–2007. Environ. Res. 2015, 136, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Mushore, T.; Mutanga, O.; Odindi, J.; Dube, T. Outdoor thermal discomfort analysis in Harare, Zimbabwe in Southern Africa. S. Afr. Geogr. J. 2017. [Google Scholar] [CrossRef]
- Uejio, C.K.; Wilhelmi, O.V.; Golden, J.S.; Mills, D.M.; Gulino, S.P.; Samenow, J.P. Intra-urban societal vulnerability to extreme heat: The role of heat exposure and the built environment, socioeconomics, and neighborhood stability. Health Place 2011, 17, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Reid, C.E.; Mann, J.K.; Alfasso, R.; English, P.B.; King, G.C.; Lincoln, R.A.; Margolis, H.G.; Rubado, D.J.; Sabato, J.E.; West, N.L.; et al. Evaluation of a Heat Vulnerability Index on Abnormally Hot Days: An Environmental Public Health Tacking Study. Environ. Health Perspect. 2012, 120, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Dousset, B.; Gourmelon, F. Satellite multi-sensor data analysis of urban surface temperatures and landcover. ISPRS J. Photogramm. Remote Sens. 2003, 58, 43–54. [Google Scholar] [CrossRef]
- Simone, D.G.; Janeiro, R.D.; Toronto, T.D.; Jack, D.; York, N.; Toronto, J.P.; Rahman, M. Climate Change and Human Health in Cities. In Cities and Climate Change—First Assessment Report of the Urban Climate Change Research Network; Cambridge University Press: Cambridge, UK, 2011; pp. 179–213. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2001: Synthesis Report. In Acontribution of Working Groups I, II and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Watson, R.T., The Core Writing Team, Eds.; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Wu, H.; Ye, L.-P.; Shi, W.-Z.; Clarke, K.C. Assessing the effects of land use spatial structure on urban heat islands using HJ-1B remote sensing imagery in Wuhan, China. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 67–78. [Google Scholar] [CrossRef]
- Forkuor, G.; Cofie, O. Dynamics of land-use and land-cover change in Freetown, Sierra Leone and its effects on urban and peri-urban agriculture—A remote sensing approach. Int. J. Remote Sens. 2011, 32, 1017–1037. [Google Scholar] [CrossRef]
- Sithole, K.; Odindi, J.O. Determination of Urban Thermal Characteristics on an Urban/Rural Land Cover Gradient Using Remotely Sensed Data. S. Afr. J. Geomat. 2015, 4, 384–396. [Google Scholar] [CrossRef]
- Mushore, T.D.; Mutanga, O.; Odindi, J.; Dube, T. Assessing the potential of integrated Landsat 8 thermal bands, with the traditional reflective bands and derived vegetation indices in classifying urban landscapes. Geocarto Int. 2017, 32, 886–899. [Google Scholar] [CrossRef]
- Lo, C.P.; Quattrochi, D.A.; Luvall, J.C. Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. Int. J. Remote Sens. 2010, 18, 287–304. [Google Scholar] [CrossRef]
- Weng, Q.; Liu, H.; Lu, D. Assessing the effects of land use and land cover patterns on thermal conditions using landscape metrics in city of Indianapolis, United States. Urban Ecosyst. 2007, 10, 203–219. [Google Scholar] [CrossRef]
- Franco, S.; Mandla, V.R.; Rao, K.R.M.; Kumar, M.P.; Anand, P.C. Study of Temperature Profile on Various Land Use and Land Cover for Emerging Heat Island. J. Urban Environ. Eng. 2015, 9, 32–37. [Google Scholar] [CrossRef]
- Sha, B.; Ghauri, B. Mapping Urban Heat Island Effect in Comparison with the Land Use, Land Cover of Lahore District. Pak. J. Meteorol. 2015, 11, 37–48. [Google Scholar]
- Mushore, T.D.; Mutanga, O.; Odindi, J.; Dube, T. Prediction of future urban surface temperatures using medium resolution satellite data in Harare metropolitan city, Zimbabwe. Build. Environ. 2017, 122, 397–410. [Google Scholar] [CrossRef]
- Abegunde, L.; Adedeji, O. Impact of Landuse Change on Surface Temperature in Ibadan, Nigeria. Int. J. Environ. Ecol. Geol. Geophys. Eng. 2015, 9, 235–241. [Google Scholar]
- Odindi, J.; Mutanga, O.; Abdel-Rahman, E.M.; Adam, E.; Bangamwabo, V. Determination of urban land-cover types and their implication on thermal characteristics in three South African coastal metropolitans using remotely sensed data. S. Afr. Geogr. J. 2017, 99, 52–67. [Google Scholar] [CrossRef]
- Liu, H.; Weng, Q.H. Scaling Effect on the Relationship between Landscape Pattern and Land Surface Temperature: A Case Study of Indianapolis, United States. Photogramm. Eng. Remote Sens. 2009, 75, 291–304. [Google Scholar] [CrossRef]
- Statistics Sierra Leone. Sierra Leone Population and Housing Census 2004; Final Report; Statistics Sierra Leone: Freetown, Sierra Leone, 2006. [Google Scholar]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Storey, J.; Scaramuzza, P.; Schmidt, G.; Barsi, J. LANDSAT 7 Scan Line Corrector- off Gap-Filled Product Development. In Proceedings of the Pecora 16 Conference on Global Priorities in Land Remote Sensing, Sioux Falls, SD, USA, 23–27 October 2005. [Google Scholar]
- Markham, B.; Goward, S.; Arvidson, T.; Barsi, J.; Scaramuzza, P. Landsat-7 long-term acquisition plan radiometry-evolution over time. Photogramm. Eng. Remote Sens. 2006, 72, 1129–1135. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS J. Photogramm. Remote Sens. 2015, 101, 36–46. [Google Scholar] [CrossRef]
- Matthew, M.W.; Adler-Golden, S.M.; Berk, A.; Richtsmeier, S.C.; Levine, R.Y.; Bernstein, L.S.; Acharya, P.K.; Anderson, G.P.; Felde, G.W.; Hoke, M.P. Status of Atmospheric Correction Using a MODTRAN4-Based Algorithm; Spectral Sciences Inc.: Burlington, MA, USA, 2000. [Google Scholar]
- Kaufman, Y.J.; Wald, A.E.; Remer, L.A.; Gao, B.-C.; Li, R.-R.; Flynn, L. The MODIS 2.1-/SPL mu/m channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1286–1298. [Google Scholar] [CrossRef]
- Adelabu, S.; Mutanga, O.; Adam, E.; Cho, M.A. Exploiting machine learning algorithms for tree species classification in a semiarid woodland using RapidEye image. J. Appl. Remote Sens. 2013, 7, 073480. [Google Scholar] [CrossRef]
- Jia, K.; Wei, X.; Gub, X.; Yao, Y.; Xie, X.; Li, B. Land cover classification using Landsat 8 Operational Land Imager data in Beijing, China. Geocarto Int. 2014, 29, 941–951. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, A.; Hou, X.; Li, M. Multi-temporal remote sensing of land cover change and urban sprawl in the coastal city of Yantai, China. Int. J. Digit. Earth 2013, 6, 37–41. [Google Scholar] [CrossRef]
- Salvati, L.; Sabbi, A. Exploring long-Term Land Cover Changes in an Urban Region of Southern Europe. Int. J. Sustain. Dev. World Ecol. 2011, 18, 273–282. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Sobrino, J.; Caselles, V.; Becker, F. Significance of the remotely sensed thermal infrared measurements obtained over a citrus orchard. ISPRS J. Photogramm. Remote Sens. 1990, 44, 343–354. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Markham, B.L. Landsat MSS and TM Post-Calibration Dynamic Ranges, Exoatmospheric Reflectances and at-Satellite Temperatures; Landsat Technical Notes; European Space Agency (ESA): Paris, France, 1986; Volume 1, pp. 3–8. [Google Scholar]
- Chen, X.-L.; Zhao, H.-M.; Li, P.-X.; Yin, Z.-Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Anderson, J.R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Government Printing Office: Washington, DC, USA, 1976; Volume 964.
- Omran, E.-S.E. Detection of Land-Use and Surface Temperature Change at Different Resolutions. J. Geogr. Inf. Syst. 2012, 04, 189–203. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Zhang, Q.; Schaaf, C.; Seto, K.C. The Vegetation adjusted NTL Urban Index: A new approach to reduce saturation and increase variation in nighttime luminosity. Remote Sens. Environ. 2013, 129, 32–41. [Google Scholar] [CrossRef]
- Adebowale, B.I.; Kayode, S.E. Geospatial Assessment of Urban Expansion and Land Surface Temperature in Akure, Nigeria. In Proceedings of the ICUC9—9th International Conference on Urban Climate Jointly with 12th Symposium on the Urban Environment, Toulouse, France, 20–24 July 2015; pp. 1–6. [Google Scholar]
- Kamusoko, C.; Gamba, J.; Murakami, H. Monitoring Urban Spatial Growth in Harare Metropolitan Province, Zimbabwe. Adv. Remote Sens. 2013, 2, 322–331. [Google Scholar] [CrossRef]
- Blake, R.; Grimm, A.; Ichinose, T.; Horton, R.; Gaffin, S.; Jiong, S.; Bader, D.A.; Cecil, L.D. Urban climate: Processes, trends and projections. In First Assessment Report of the Urban Climate Change Research Network; Cambridge University Press: Cambridge, UK, 2011; pp. 43–81. [Google Scholar]
- Rasul, A.; Balzter, H.; Smith, C. Spatial variation of the daytime Surface Urban Cool Island during the dry season in Erbil, Iraqi Kurdistan, from Landsat 8. Urban Clim. 2015, 14, 176–186. [Google Scholar] [CrossRef]
- Grimmond, S.U.E. Urbanization and global environmental change: Local effects of urban warming. Geogr. J. 2007, 173, 83–88. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, Z.; Ye, X.; Cai, Y.; Ma, W.; Chen, M. Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China. Appl. Geogr. 2013, 44, 121–133. [Google Scholar] [CrossRef]
- Thatcher, M.; Hurley, P. Simulating Australian Urban Climate in a Mesoscale Atmospheric Numerical Model. Bound. Layer Meteorol. 2012, 142, 149–175. [Google Scholar] [CrossRef]
- Zhang, Y.; Odeh, I.O.A.; Han, C. Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 256–264. [Google Scholar] [CrossRef]
- Mushore, T.D.; Mutanga, O.; Odindi, J.; Dube, T. Determining extreme heat vulnerability of Harare Metropolitan City using multispectral remote sensing and socio-economic data. J. Spat. Sci. 2017, 1–19. [Google Scholar] [CrossRef]
- Jiang, J.; Tian, G. Analysis of the impact of Land use/Land cover change on Land Surface Temperature with Remote Sensing. Procedia Environ. Sci. 2010, 2, 571–575. [Google Scholar] [CrossRef]
Year | Freetown | Bo Town | ||
---|---|---|---|---|
OA | Kappa | OA | Kappa | |
1998 | 91.56 | 0.91 | 89.87 | 0.88 |
2000 | 95.56 | 0.95 | 89.44 | 0.87 |
2007 | 93.33 | 0.92 | 87.88 | 0.85 |
2015 | 89.44 | 0.87 | 88.33 | 0.86 |
Year | Population Size | |
---|---|---|
Freetown | Bo Town | |
1963 | 127,917 | 26,613 |
1974 | 276,247 | 39,741 |
1985 | 469,776 | 59,768 |
2004 | 772,873 | 148,705 |
2015 | 1,050,301 | 173,905 |
1998 | 2000 | 2007 | 2015 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DT (°C) | S (%) | CI | DT (°C) | S (%) | CI | DT (°C) | S (%) | CI | DT (°C) | S (%) | CI | |
Built-up | 2.67 | 9.92 | 0.26 | 3.17 | 13.16 | 0.42 | 2.15 | 17.84 | 0.38 | 2.92 | 24.73 | 0.72 |
Dense green | −2.19 | 21.43 | −0.47 | −2.79 | 21.98 | −0.61 | −1.51 | 28.76 | −0.43 | −2.60 | 25.82 | −0.67 |
Sparse green | −1.15 | 29.52 | −0.34 | −1.28 | 34.55 | −0.44 | −0.48 | 22.57 | −0.11 | −0.37 | 37.29 | −0.14 |
Agriculture | 0.18 | 22.93 | 0.04 | −0.48 | 17.16 | −0.08 | −0.42 | 13.85 | −0.06 | 0.97 | 0.98 | 0.10 |
Bare/sand | 1.70 | 10.46 | 0.18 | 1.21 | 7.61 | 0.09 | 1.43 | 10.60 | 0.15 | 1.74 | 5.24 | 0.09 |
Water | −1.17 | 5.73 | −0.07 | −0.41 | 5.55 | −0.02 | −1.15 | 6.38 | −0.07 | −2.65 | 5.95 | −0.16 |
1998 | 2000 | 2007 | 2015 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DT (°C) | S (%) | CI | DT (°C) | S (%) | CI | DT (°C) | S (%) | CI | DT (°C) | S (%) | CI | |
Built-up | 3.65 | 5.08 | 0.19 | 2.78 | 7.38 | 0.21 | 2.58 | 12.69 | 0.33 | 2.09 | 19.79 | 0.41 |
Dense green | −2.31 | 47.06 | −1.09 | −2.21 | 24.68 | −0.55 | −1.63 | 31.09 | −0.51 | −2.51 | 33.97 | −0.85 |
Sparse green | −1.44 | 19.91 | −0.29 | −1.48 | 49.14 | −0.73 | −0.83 | 31.39 | −0.26 | −0.93 | 26.11 | −0.24 |
Agriculture | 0.52 | 18.26 | 0.10 | 0.54 | 14.76 | 0.08 | 0.38 | 10.49 | 0.04 | 0.20 | 8.62 | 0.02 |
Bare/sand | 1.25 | 7.96 | 0.10 | 1.56 | 3.72 | 0.06 | 0.78 | 11.15 | 0.09 | 1.29 | 9.69 | 0.13 |
Water | −1.70 | 1.73 | −0.03 | −1.22 | 0.31 | −0.01 | −1.27 | 3.20 | −0.01 | −0.13 | 1.83 | −0.01 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarawally, M.; Xu, W.; Hou, W.; Mushore, T.D. Comparative Analysis of Responses of Land Surface Temperature to Long-Term Land Use/Cover Changes between a Coastal and Inland City: A Case of Freetown and Bo Town in Sierra Leone. Remote Sens. 2018, 10, 112. https://doi.org/10.3390/rs10010112
Tarawally M, Xu W, Hou W, Mushore TD. Comparative Analysis of Responses of Land Surface Temperature to Long-Term Land Use/Cover Changes between a Coastal and Inland City: A Case of Freetown and Bo Town in Sierra Leone. Remote Sensing. 2018; 10(1):112. https://doi.org/10.3390/rs10010112
Chicago/Turabian StyleTarawally, Musa, Wenbo Xu, Weiming Hou, and Terence Darlington Mushore. 2018. "Comparative Analysis of Responses of Land Surface Temperature to Long-Term Land Use/Cover Changes between a Coastal and Inland City: A Case of Freetown and Bo Town in Sierra Leone" Remote Sensing 10, no. 1: 112. https://doi.org/10.3390/rs10010112
APA StyleTarawally, M., Xu, W., Hou, W., & Mushore, T. D. (2018). Comparative Analysis of Responses of Land Surface Temperature to Long-Term Land Use/Cover Changes between a Coastal and Inland City: A Case of Freetown and Bo Town in Sierra Leone. Remote Sensing, 10(1), 112. https://doi.org/10.3390/rs10010112