Trend Detection for the Extent of Irrigated Agriculture in Idaho’s Snake River Plain, 1984–2016
Abstract
:1. Introduction
2. Study Region
2.1. Climate and Agriculture
2.2. Water Rights
3. Materials and Methods
3.1. Image Classification
3.2. Time Series
3.3. Precipitation
3.4. Water Rights in the Eastern Snake River Plain
4. Results
4.1. Time Series
4.2. Precipitation
4.3. Water Rights in the Eastern Snake River Plain
5. Discussion
5.1. Sources of Uncertainty
5.2. Opportunities for Future Research
6. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Lag | Autocorrelation | Q (p-Value) | Autocorrelation | Q (p-Value) | ||
---|---|---|---|---|---|---|
NDMI of Irrigated Areas | NDMI of Non-Irrigated Areas | |||||
1 | 0.576 | 11.98 | (0.001) | −0.011 | 0.00 | (0.947) |
2 | 0.519 | 22.01 | (0.000) | 0.040 | 0.07 | (0.968) |
3 | 0.326 | 26.11 | (0.000) | −0.290 | 3.30 | (0.347) |
4 | 0.220 | 28.04 | (0.000) | −0.148 | 4.17 | (0.384) |
5 | 0.238 | 30.39 | (0.000) | 0.062 | 4.33 | (0.503) |
6 | 0.075 | 30.62 | (0.000) | 0.003 | 4.33 | (0.632) |
7 | 0.155 | 31.69 | (0.000) | 0.061 | 4.50 | (0.721) |
8 | 0.022 | 31.71 | (0.000) | −0.345 | 9.98 | (0.266) |
9 | 0.019 | 31.73 | (0.000) | −0.033 | 10.04 | (0.348) |
10 | −0.045 | 31.83 | (0.000) | 0.105 | 10.59 | (0.391) |
Classification threshold | Irrigated area | |||||
1 | 0.395 | 5.64 | (0.018) | 0.073 | 0.19 | (0.663) |
2 | 0.326 | 9.60 | (0.008) | 0.520 | 10.26 | (0.006) |
3 | −0.011 | 9.60 | (0.022) | −0.165 | 11.31 | (0.010) |
4 | −0.029 | 9.63 | (0.047) | 0.085 | 11.60 | (0.021) |
5 | 0.079 | 9.89 | (0.078) | −0.250 | 14.17 | (0.015) |
6 | −0.063 | 10.06 | (0.122) | −0.034 | 14.22 | (0.027) |
7 | 0.139 | 10.91 | (0.143) | −0.204 | 16.07 | (0.025) |
8 | −0.176 | 12.34 | (0.137) | −0.069 | 16.29 | (0.039) |
9 | 0.042 | 12.43 | (0.190) | −0.277 | 19.97 | (0.018) |
10 | −0.055 | 12.58 | (0.248) | −0.088 | 20.36 | (0.026) |
Lag | Autocorr. | Q (p-Value) | Autocorr. | Q (p-Value) | Autocorr. | Q (p-Value) | |||
---|---|---|---|---|---|---|---|---|---|
Irrigated Area, Groundwater | Irrigated Area, Mixed | Irrigated Area, Surface Water | |||||||
1 | 0.488 | 8.60 | (0.003) | 0.195 | 1.36 | (0.243) | 0.226 | 1.84 | (0.175) |
2 | 0.521 | 18.71 | (0.000) | 0.429 | 8.24 | (0.016) | 0.396 | 7.67 | (0.022) |
3 | 0.386 | 24.45 | (0.000) | −0.144 | 9.03 | (0.029) | 0.201 | 9.23 | (0.026) |
4 | 0.391 | 30.55 | (0.000) | −0.080 | 9.29 | (0.054) | 0.190 | 10.67 | (0.031) |
5 | 0.153 | 31.51 | (0.000) | −0.124 | 9.93 | (0.077) | 0.062 | 10.83 | (0.055) |
6 | 0.192 | 33.08 | (0.000) | −0.124 | 10.58 | (0.102) | 0.135 | 11.60 | (0.071) |
7 | 0.069 | 33.30 | (0.000) | −0.125 | 11.27 | (0.127) | 0.071 | 11.83 | (0.106) |
8 | 0.033 | 33.35 | (0.000) | −0.177 | 12.72 | (0.122) | −0.131 | 12.62 | (0.126) |
9 | −0.030 | 33.39 | (0.000) | −0.215 | 14.94 | (0.093) | −0.018 | 12.64 | (0.180) |
10 | 0.030 | 33.44 | (0.000) | −0.079 | 15.25 | (0.123) | −0.173 | 14.13 | (0.167) |
Time Series | Trend Coeff. (p-Value) | Dickey–Fuller Test Statistic (p-Value) | |
---|---|---|---|
NDMI of irrigated areas | 0.002050 (0.000) | −4.053 (0.007) | |
NDMI of non-irrigated areas | 0.000474 (0.365) | −5.134 (0.000) | |
Classification threshold | 0.002054 (0.005) | −3.975 (0.010) | |
Irrigated area | 4.492831 (0.582) | −5.274 (0.000) | |
Irrigated area, groundwater | 0.004339 (0.000) | −6.335 (0.000) | |
Irrigated area, mixed | 0.000653 (0.130) | −4.974 (0.000) | |
Irrigated area, surface water | −0.000560 (0.545) | −4.317 (0.003) |
Time Series | Log-Likelihood | Estimates (p-Value) | ||
---|---|---|---|---|
Constant Coeff. | AR(1) Coeff. | Sigma | ||
NDMI of irrigated areas | 82.354 | 0.5028 (0.000) | 0.6913 (0.000) | 0.0198 (0.000) |
NDMI of non-irrigated areas | 71.515 | −0.0180 (0.001) | −0.0132 (0.952) | 0.0277 (0.000) |
Classification threshold | 61.847 | 0.3419 (0.000) | 0.4256 (0.015) | 0.0370 (0.000) |
Irrigated area | −246.886 | 11271.78 (0.000) | 0.0797 (0.735) | 429.38 (0.000) |
Irrigated area, groundwater | 57.012 | 0.7311 (0.000) | 0.8085 (0.000) | 0.0423 (0.000) |
Irrigated area, mixed | 78.316 | 0.6011 (0.000) | 0.2390 (0.222) | 0.0225 (0.000) |
Irrigated area, surface water | 53.704 | 0.4478 (0.000) | 0.2203 (0.233) | 0.0475 (0.000) |
References
- Carleton, T.A.; Hsiang, S.M. Social and economic impacts of climate. Science 2016, 353, aad9837. [Google Scholar] [CrossRef] [PubMed]
- McDonald, R.I.; Girvetz, E.H. Two challenges for US irrigation due to climate change: Increasing irrigated area in wet states and increasing irrigation rates in dry states. PLoS ONE 2013, 8, e65589. [Google Scholar] [CrossRef] [PubMed]
- Mehta, V.K.; Haden, V.R.; Joyce, B.A.; Purkey, D.R.; Jackson, L.E. Irrigation demand and supply, given projections of climate and land-use change, in Yolo County, California. Agric. Water Manag. 2013, 117, 70–82. [Google Scholar] [CrossRef]
- Niles, M.T.; Lubell, M.; Brown, M. How limiting factors drive agricultural adaptation to climate change. Agric. Ecosyst. Environ. 2015, 200, 178–185. [Google Scholar] [CrossRef]
- Schlenker, W.; Hanemann, W.M.; Fisher, A.C. Water availability, degree days, and the potential impact of climate change on irrigated agriculture in California. Clim. Chang. 2007, 81, 19–38. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R. A Landsat-based energy balance and evapotranspiration model in western U.S. water rights regulation and planning. Irrig. Drain. Syst. 2005, 19, 251–268. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Noordman, E.J.M.; Pelgrum, H.; Davids, G.; Thoreson, B.P.; Allen, R.G. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. J. Irrig. Drain. Eng. 2005, 131, 85–93. [Google Scholar] [CrossRef]
- Folhes, M.T.; Renno, C.D.; Soares, J.V. Remote sensing for irrigation water management in the semi-arid Northeast of Brazil. Agric. Water Manag. 2009, 96, 1398–1408. [Google Scholar] [CrossRef]
- Ozdogan, M.; Woodcock, C.E.; Salvucci, G.D.; Demir, H. Changes in summer irrigated crop area and water use in Southeastern Turkey from 1993 to 2002: Implications for current and future water resources. Water Resour. Manag. 2006, 20, 467–488. [Google Scholar] [CrossRef]
- Biggs, T.W.; Thenkabail, P.; Gumma, M.K.; Scott, C.A.; Parthasaradhi, G.; Turral, H. Irrigated area mapping in heterogeneous landscapes with MODIS time series, ground truth and census data, Krishna Basin, India. Int. J. Remote Sens. 2006, 27, 4245–4266. [Google Scholar] [CrossRef]
- Chance, E.W.; Cobourn, K.M.; Thomas, V.A.; Dawson, B.C.; Flores, A.N. Identifying irrigated areas in the Snake River Plain, Idaho: Evaluating performance across compositing algorithms, spectral indices, and sensors. Remote Sens. 2017, 9, 546. [Google Scholar] [CrossRef]
- Draeger, W.C. Monitoring irrigated land acreage using Landsat imagery: An application example. In Proceedings of the ERIM 11th International Symposium on Remote Sensing of Environment, Ann Arbor, MI, USA, 25–29 April 1977; Volume 1, pp. 515–524. [Google Scholar]
- Myeni, R.B.; Hall, F.G.; Sellers, P.J.; Marshak, A.L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote 1995, 33, 481–486. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Davenport, M.L.; Malo, A.R. A comparison of the vegetation response to rainfall in the Sahel and East Africa, using normalized difference vegetation index from NOAA AVHRR. Clim. Chang. 1990, 17, 209–241. [Google Scholar] [CrossRef]
- Ozdogan, M.; Yang, Y.; Allez, G.; Cervantes, C. Remote sensing of irrigated agriculture: Opportunities and challenges. Remote Sens. 2010, 2, 2274–2304. [Google Scholar] [CrossRef]
- Heller, R.C.; Johnson, K.A. Estimating irrigated land acreage from Landsat imagery [Aerial photography]. Photogramm. Eng. Remote Sens. 1979, 45, 1379–1386. [Google Scholar]
- Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.; Velpuri, M.; Gumma, M.; Gangalakunta, O.R.P.; Turral, H.; Cai, X.; et al. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millenium. Int. J. Remote Sens. 2009, 30, 3679–3733. [Google Scholar] [CrossRef]
- Alexandridis, T.K.; Gitas, I.Z.; Silleos, N.G. An estimation of the optimum temporal resolution for monitoring vegetation condition on a nationwide scale using MODIS/Terra data. Int. J. Remote Sens. 2008, 29, 3589–3607. [Google Scholar] [CrossRef]
- Kamthonkiat, D.; Honda, K.; Turral, H.; Tripathi, N.K.; Wuwongse, V. Discrimination of irrigated and rainfed rice in a tropical agricultural system using SPOT VEGETATION NDVI and rainfall data. Int. J. Remote Sens. 2005, 26, 2527–2547. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Schull, M.; Turral, H. Ganges and Indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data. Remote Sens. Environ. 2005, 95, 317–341. [Google Scholar] [CrossRef]
- Toomanian, N.A.S.M.; Gieske, A.S.M.; Akbary, M. Irrigated area determination by NOAA-landsat upscaling techniques, Zayandeh River Basin, Isfahan, Iran. Int. J. Remote Sens. 2004, 25, 4945–4960. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R.; et al. Greenness in semi-arid areas across the globe 1981–2007—An Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 2012, 121, 144–158. [Google Scholar] [CrossRef]
- Rudquist, D.C.; Hoffman, R.O.; Carlson, M.P.; Cook, A.E. The Nebraska Center-Pivot Inventory: An example of operational satellite remote sensing on a long-term basis. Photogramm. Eng. Remote Sens. 1989, 55, 587–590. [Google Scholar]
- National Elevation Dataset (NED). Available online: https://lta.cr.usgs.gov/NED (accessed on 15 December 2017).
- Fry, J.A.; Xian, G.; Jin, S.; Dewitz, J.A.; Homer, C.G.; Limin, Y.; Barnes, C.A.; Herold, N.D.; Wickham, J.D. Completion of the 2006 national land cover database for the conterminous United States. Photogramm. Eng. Remote Sens. 2011, 77, 858–864. [Google Scholar]
- Census of Agricultuture. Available online: https://www.agcensus.usda.gov/ (accessed on 15 December 2017).
- Climate of Idaho. Available online: https://wrcc.dri.edu/narratives/IDAHO.htm (accessed on 15 December 2017).
- Global Climate Change Impacts in the United States: 2009 Report. Available online: https://nca2009.globalchange.gov/ (accessed on 15 December 2017).
- Barnett, T.P.; Pierce, D.W.; Hidalgo, H.G.; Bonfils, C.; Santer, B.D.; Das, T.; Bala, G.; Wood, A.W.; Nozawa, T.; Mirin, A.A.; et al. Human-induced changes in the hydrology of the western United States. Science 2008, 319, 1080–1083. [Google Scholar] [CrossRef] [PubMed]
- Dettinger, M.D.; Knowles, N.; Cayan, D.R. Trends in snowfall versus rainfall in the Western United States—Revisited. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 12–16 December 2015; #GC23B-1134. American Geophysical Union: Washington, DC, USA, 2015. [Google Scholar]
- Knowles, N.; Dettinger, M.D.; Cayan, D.R. Trends in snowfall versus rainfall in the western United States. J. Clim. 2006, 19, 4545–4559. [Google Scholar] [CrossRef]
- Kormos, P.R.; Luce, C.H.; Wenger, S.J.; Berghuijs, W.R. Trends and sensitivities of low streamflow extremes to discharge timing and magnitude in Pacific Northwest mountain streams. Water Resour. Res. 2016, 52, 4990–5007. [Google Scholar] [CrossRef]
- Kunkel, M.L.; Pierce, J.L. Reconstructing snowmelt in Idaho’s watershed using historic streamflow records. Clim. Chang. 2010, 98, 155–176. [Google Scholar] [CrossRef]
- Mote, P.W.; Hamlet, A.F.; Clark, M.P.; Lettenmaier, D.P. Declining mountain snowpack in western North America. Bull. Am. Meteorol. Soc. 2005, 86, 39–49. [Google Scholar] [CrossRef]
- Kenny, J.F.; Barber, N.L.; Hutson, S.S.; Linsey, K.S.; Lovelace, J.K.; Maupin, M.A. Estimated Use of Water in the United States in 2005; Circular 1344; US Geological Survey: Reston, VA, USA, 2009.
- U.S. Department of Agriculture. Soil Survey Geographic (SSURGO) Data Base: Data Use Information; Miscellaneous Publication 1527; National Cartography and GIS Center: Fort Worth, TX, USA, 1995.
- Brent, D.A. The Value of Heterogeneous Property Rights and the Costs of Water Volatility. Am. J. Agric. Econ. 2016, 99, 73–102. [Google Scholar] [CrossRef]
- Buck, S.; Auffhammer, M.; Sunding, D. Land Markets and the Value of Water: Hedonic analysis using repeat sales of farmland. Am. J. Agric. Econ. 2014, 96, 953–969. [Google Scholar] [CrossRef]
- Ji, J.; Cobourn, K.M. The economic benefits of irrigation districts under Prior Appropriation Doctrine: An econometric analysis of agricultural land-allocation decisions. Can. J. Agric. Econ. 2018. [Google Scholar] [CrossRef]
- Mapping Evapotranspiration. Available online: https://www.idwr.idaho.gov/GIS/mapping-evapotranspiration/ (accessed on 15 December 2017).
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Bowman, A.W.; Azzalini, A. Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations; Oxford University Press: Oxford, UK, 1997; Volume 18, ISBN 0-9-852396-3. [Google Scholar]
- Myers, P.; McIntosh, C.S.; Patterson, P.E.; Taylor, R.G.; Hopkins, B.G. Optimal crop rotation of Idaho potatoes. Am. J. Potato Res. 2008, 85, 183–197. [Google Scholar] [CrossRef]
- National Weather Service Forecast Office: Boise, ID. Available online: http://w2.weather.gov/climate/xmacis.php?wfo=boi (accessed on 15 December 2017).
- National Weather Service: Advanced Hydrologic Prediction Service. Available online: http://water.weather.gov/precip/download.php (accessed on 15 December 2017).
- Laitta, M.T.; Legleiter, K.J.; Hanson, K.M. The National Watershed Boundary Dataset. Hydro Line 2004. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs143_021601.pdf (accessed on 15 December 2017).
- Farmer, N. Hagerman Valley landslides triggered by land-use change endanger lives, and destroy natural and cultural resources (Hagerman Valley Fossil Beds National Monument, NPS, Idaho). J. Jpn. Landslide Soc. 2003, 40, 341–343. [Google Scholar] [CrossRef]
- Galbraith, K. Why is a utility paying customers? New York Times. 23 January 2010. Available online: http://www.nytimes.com/2010/01/24/business/energy-environment/24idaho.html (accessed on 15 December 2017).
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Barrett, C.B. On price risk and the inverse farm size-productivity relationship. J. Dev. Econ. 1996, 51, 193–215. [Google Scholar] [CrossRef]
- Woodhouse, P. Beyond industrial agriculture? Some questions about farm size, productivity and sustainability. J. Agrar. Chang. 2010, 10, 437–453. [Google Scholar] [CrossRef]
- Nagayets, O. Small farms: Current status and key trends. In The future of small farms. In Proceedings of the A Research Workshop, Wye, UK, 26–29 June 2005; International Food Policy Research Institute: Washington, DC, USA, 2005. [Google Scholar]
- Sumner, D.A. American farms keep growing: Size, productivity, and policy. J. Econ. Perspect. 2014, 28, 147–166. [Google Scholar] [CrossRef]
- Alonso, A.; Muñoz-Carpena, R.; Kennedy, R.E.; Murcia, C. Wetland landscape spatio-temporal degradation dynamics using the new Google Earth Engine cloud-based platform: Opportunities for non-specialists in remote sensing. Trans. ASABE 2016, 59, 1331–1342. [Google Scholar] [CrossRef]
- Flood, N. Seasonal composite Landsat TM/ETM+ images using the medoid (a multi-dimensional median). Remote Sens. 2013, 5, 6481–6500. [Google Scholar] [CrossRef]
- Schmidt, H.; Karnieli, A. Remote sensing of the seasonal variability of vegetation in a semi-arid environment. J. Arid Environ. 2000, 45, 43–59. [Google Scholar] [CrossRef]
- Zheng, B.; Campbell, J.B.; de Beurs, K.M. Remote sensing of crop residue cover using multi-temporal Landsat imagery. Remote Sens. Environ. 2012, 117, 177–183. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chance, E.W.; Cobourn, K.M.; Thomas, V.A. Trend Detection for the Extent of Irrigated Agriculture in Idaho’s Snake River Plain, 1984–2016. Remote Sens. 2018, 10, 145. https://doi.org/10.3390/rs10010145
Chance EW, Cobourn KM, Thomas VA. Trend Detection for the Extent of Irrigated Agriculture in Idaho’s Snake River Plain, 1984–2016. Remote Sensing. 2018; 10(1):145. https://doi.org/10.3390/rs10010145
Chicago/Turabian StyleChance, Eric W., Kelly M. Cobourn, and Valerie A. Thomas. 2018. "Trend Detection for the Extent of Irrigated Agriculture in Idaho’s Snake River Plain, 1984–2016" Remote Sensing 10, no. 1: 145. https://doi.org/10.3390/rs10010145
APA StyleChance, E. W., Cobourn, K. M., & Thomas, V. A. (2018). Trend Detection for the Extent of Irrigated Agriculture in Idaho’s Snake River Plain, 1984–2016. Remote Sensing, 10(1), 145. https://doi.org/10.3390/rs10010145